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 Deep learning-based approaches have been widely used in various 

applications, including segmentation and classification. However, a large 

amount of data is required to train such techniques. Indeed, in the 

surveillance video domain, there are few accessible data due to acquisition 

and experiment complexity. In this paper, we propose an end-to-end deep 

auto-encoder system for object segmenting from surveillance videos. Our 

main purpose is to enhance the process of distinguishing the foreground 

object when only limited data are available. To this end, we propose two 

approaches based on transfer learning and multi-depth auto-encoders to 

avoid over-fitting by combining classical data augmentation and principal 

component analysis (PCA) techniques to improve the quality of training 

data. Our approach achieves good results outperforming other popular 

models, which used the same principle of training with limited data. In 

addition, a detailed explanation of these techniques and some 

recommendations are provided. Our methodology constitutes a useful 

strategy for increasing samples in the deep learning domain and can be 

applied to improve segmentation accuracy. We believe that our strategy has 

a considerable interest in various applications such as medical and biological 

fields, especially in the early stages of experiments where there are few 

samples. 
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1. INTRODUCTION 

In the last years, deep learning architectures provided state-of-the-art results in various computer 

vision-related tasks, including image classification, object detection, and natural language processing (NLP) 

[1]–[3], to name a few. The deep learning concept is an artificial intelligence (AI) subfield which is different 

from machine learning techniques in how it learns representations from data. Unlike traditional machine 

learning techniques, deep learning models extract autonomously the hidden features from the data using a 

hierarchical network through numerous layers. Over the last few years, a wide range of deep learning 

architectures have been developed, examined, and discussed [3], [4]. In general, deep learning techniques 

may be divided into four main categories, namely: recurrent neural networks (RNNs), convolutional neural 

networks (CNNs), auto-encoders (AEs), and sparse coding [5]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Recently, deep learning models are becoming one of the most important concepts to solve several 

computer vision-related tasks, especially for image segmentation-based applications and dynamic 

background modeling [6]–[8], because it provides better performance over traditional machine learning 

methods. Several studies in the literature targeted the development of deep learning-based object 

segmentation models such as the works in [6], [9]. Most of these works studied the performance of deep 

learning segmentation methods in the case of using large datasets to train the deep learning model-based 

models. However, only a few studies explored how to train and enhance a deep learning model performance 

in the case of small datasets. 

The segmentation of foreground regions that depict moving objects in videos is the core concept in 

most computer vision systems. Object segmentation is considered a crucial step, whereas, it presents a 

challenging task for many video surveillance applications like people counting, action recognition, and traffic 

monitoring [10]–[12]. Also, building an accurate model that is capable of segmenting moving objects in  

low-quality videos is even more challenging. In addition, other problems such as the presence of shadow, 

illumination change, dynamic background, and bad weather conditions can make the modeling task more 

complex. Moreover, the segmentation applied to small datasets remains a crucial challenge in computer 

vision which is also often the case in many real-world applications. 

Training deep learning models on a small dataset has attracted particular attention in recent research 

studies in several fields. However, only a few works have addressed such a problem. For example, to 

overcome the problem of small dataset size, Salehinejad et al. [13] used a cylindrical transformation 

technique in a cylindrical coordinate system. Applying such transformations, they were able to make an 

object segmentation from 3D abdominal tomography achieving higher performance than the fully 

convolutional networks (FCNs) [14] in the case of using a limited number of annotated images. In order to 

mitigate the lack of training data, Keshari et al. [15] proposed an spectro-spatial feature-convolutional neural 

network (SSF-CNNN) architecture that modified the structure and strength of the filters obtained by CNN to 

reduce the number of learnable parameters. The proposed technique has proven its effectiveness for  

real-world newborn face recognition problems and multi-object classification. Salehinejad et al. [16] used a 

pixel-level radial transformation in a polar coordinate system for each image in order to increase the dataset 

samples’ number. The proposed approach increased the models’ generalization performance for various 

datasets. 

The current study is part of a deep learning model developed for moving object segmentation. Deep 

learning is learned from data from the high-level features generated from the different network layers using 

simple learning methods. Furthermore, the presence of big databases is necessary in order to efficiently 

reconstruct the resulting segmentation mask and obtain better results from these precise features. However, in 

the real-world scenario, large databases are not always available. Based on this fact, we propose enhancing 

the precision of segmenting moving objects with little data training by using and comparing  

end-to-end auto-encoder through transfer learning and multi-depth techniques. Furthermore, most researchers 

use only traditional and general data augmentation techniques to enlarge the database such as (rotation, and 

translation) used in the general domain. Moreover, it is a common practice to fix the training data and change 

the model architecture. In the present work, some changes to the data are carried out to increase the number 

of samples. For this reason, we propose, compare and discuss object segmentation-oriented techniques to 

augment and enhance the quality of the training dataset that helps the model extract the relevant 

characteristics and cover the lack of necessary samples. 

According to the fact that deep learning is a highly recommended topic in several fields, we 

conducted our work to be one of the first contributions that deals with the problem of training with little data 

in the area of deep learning. The results obtained from the comparative experiments between the proposed 

approaches and the well-known models show that the strategies used to improve and increase the database 

provide good results and help the model generalization. Hence, our work is considered to be an essential 

source of contribution to the research community and can be used in other areas when a large dataset is 

needed. 

The rest of the paper is organized. In section 2, we present some theoretical basis for the used deep 

learning methods, concepts, and used materials. The proposed approaches and their performance evaluation 

are discussed in section 3. We discuss and conclude the paper in sections 4 and 5, respectively. 

 

 

2. METHODS AND MATERIALS 

In this section, we aim to present the methods and materials used to build a robust object 

segmentation system from video surveillance. We provide a detailed description of each of the main building 

blocks introduced in our methodology. In addition, the details of the proposed approach and the different data 

augmentation strategies are presented. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 End-to-end deep auto-encoder for segmenting a moving object with limited training data (Abdeldjalil Kebir) 

6047 

2.1.  Auto-encoder 

The auto-encoder is a successful deep neural network (DNN) type, which is considered among the 

unsupervised algorithms. It aims to reproduce the input data at the output [17], [18] where both the input and 

output layers have the same number of neurons. The auto-encoder consists of two main parts, which are the 

encoder and the decoder. The encoder’s main role is to compress the input data into a lower-dimensional 

representation through the use of non-linear transformation while preserving the valuable features from the 

data by deleting the unnecessary elements. Then, the encoder outputs are fed to the decoder part to 

decompress them and reconstruct the original data from the generated lower dimension data. According to 

the literature, there exist four main auto-encoder architectures, including convolutional auto-encoder, 

variational auto-encoder, denoising auto-encoder, and sparse auto-encoder. Auto-encoders can be adopted in 

several applications like data denoising and dimensionality reduction [19]. Figure 1 shows the overall 

network architecture. 

 

 

 
 

Figure 1. The architecture of the general auto-encoder approach 

 

 

The auto-encoder has three essential blocks: i) encoder part: the encoder aims to encode all of the 

relevant information about the input in the latent space; ii) latent space: it represents the space represented by 

a compressed form of the input; and iii) decoder part: the decoder aims to reproduce the input data at the 

output level by focusing only on the data in the latent space. Encoding the input data X with nonlinear 

encoder function E to Z=E(X), then decoding z to Y=D(Z) through nonlinear decoder function D which 

approximates the original data X. As shown in Figure 2. We can describe this algorithm in its simplest form 

as (1). 

 

𝑌 = 𝐷(𝐸(𝑋)) (1) 

 

The learning process minimizes the loss function between the input X and output Y as (2). 

 

𝐿𝑜𝑠𝑠(X, Y) = ||X − Y||
2

= ||X − D(Z)||
2

= ||X − D(E(X))||
2
 (2) 

 

 

 
 

Figure 2. The basic expression of a general auto-encoder 

 

 

2.2.  Transfer learning 

Transfer learning is an interesting approach to training efficient deep learning models when only 

small datasets are available. Compared to deep learning models trained from scratch, the transfer learning 
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technique aims to improve the model accuracy using lower computational power. The transfer learning 

concept could be considered as a two-step technique. Firstly, it aims to learn data representation by training a 

model on available datasets containing a large number of annotated data. Then, it uses this representation to 

build a new model based on the pre-trained model using a smaller dataset, by training only some selected 

layers or the final decision layer [20], [21]. 

Transfer learning [22], [23] is a machine learning method, where a model developed for a given task 

is reused as a reference for another model on a second task. The concept is to use the knowledge learned 

from the first model when solving a new problem. In other words, we can say that it is a transfer of 

knowledge. However, the benefit of using transfer learning is that large dataset training is not needed to 

avoid over-fitting and not many computational resources are required. 

 

2.3.  Data augmentation 

The performance of deep learning models depends on the size of the training dataset. However, the 

lack of available datasets, in several fields, is one of the most critical issues facing researchers. To overcome 

such a problem, several solutions have been proposed over the years, including transfer learning and data 

augmentation. To this end, in the current study, we tested dataset augmentation [20]. Data augmentation is a 

procedure that aims to enlarge the dataset size by applying some transformations, where both the original and 

the created images are used to train the model [24]. Therefore, our main objective is to use the existing 

dataset to generate new data to avoid the over-fitting problem while improving the model performance. One 

of the main data augmentation techniques is to perform some adjustments and geometric transformations, 

including cropping, translation, scaling, mirroring, rotating, and changing lighting conditions. These methods 

are widely used in the literature to solve problems related to image and video processing, including detection, 

recognition, and segmentation, to name a few. 

 

2.4.  Principal component analysis 

Principal component analysis (PCA) [25] is an unsupervised technique based on simple linear 

transformation, it is a dimensionality reduction technique [26]. However, the main goal of a PCA is to 

compress data. It is used in many applications of image processing such as image compression [27] and face 

recognition [28]. Indeed, in our case, it will be used as new feature extraction compression and reconstruction 

technique to preserve and extract new and essential features linearly in various levels of the distribution of 

the data with the aim of using it as a new data augmentation technique. 

The implementation used for the reconstruction and compression of color frames using PCA can be 

divided into 3 main steps: i) splitting the frames into 3 channels R, G, and B arrays; ii) performing the PCA 

and selecting the most dominated N eigenvalues on each color value matrix; and iii) recreating the original 

frames by merging the R, G, and B components. 

 

2.5.  Evaluation protocol 

The proposed approaches in this study are based on transfer learning and multi-depth auto-encoder. 

To perform the segmentation of the moving object, we employ the auto-encoder as supervised learning for 

both approaches. For the first approach, we construct the network by fine-tuning the VGG-16 network [29], 

[30] that was pre-trained trained on the famous ImageNet dataset [29], [31] as the encoder part. Then, we 

changed the fully connected layers with a latent space. On the other hand, the transposed architecture of the 

VGG-16 has been used in the decoder part to reconstruct the resulting mask of the input frames. The 

reconstruction process aims to increase the encoder output size to reconstruct the original input data through 

upsampling and convolution operations, which are called transposed VGG-16 architecture. Finally, we only 

train the latent space and the decoder part with the CDnet2014 dataset [32] while there is no training process 

on the pre-trained encoder part. 

In the second approach, convolution and pooling layers are stacked to build the encoder part, 

whereas, upsampling layers are used in the decoder part to up-sampling the images in the latent space. The 

hidden layers are in multi-depth. For this approach, we have trained the whole model with the CDnet2014 

dataset. Figures 3 and 4 show the overall architectures proposed in the current study, which are based on 

transfer learning and multi-depth auto-encoder architectures. 

 

2.6.  Dataset and metrics 

The Cdnet2014 dataset (change detection) [32] is adopted to train and test our model. It consists of 

real videos captured in challenging scenarios as shown in Table 1. For further generalization of the training 

process, we select all video sequences (53 scenes), which contain 11 video categories from the CDnet2014 

dataset; each video has an average of 2,000 frames. 
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Figure 3. Structure layers of the transfer learning-based model approach 

 

 

 
 

Figure 4. Detailed information of five models at different depths 
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Table 1. Shows the list of categories and video names in the CDnet 2014 dataset 
Categories/Challenges Video names 

Baseline Highway, Office, Pedestrians, PETS2006 
Camera Jitter Badminton, Sidewalk, Traffic, Boulevard 
Bad Weather Skating, Wet snow, Blizzard, Snowfall 

Dynamic Background Boats, Canoe, Fountain1, Fountain2, Fall, Overpass 
Intermittent Object Motion Abandoned box, Street light, Parking, Sofa, Tram stop, Winter driveway 

Low Frame rate Port_0\_17 fps, Tram crossroad\_1 fps, tunnel exit\_0\_35 fps, Turnpike\_0\_5 fps 
Night Videos Bridge entry, busy boulevard, fluid highway, Street corner at night, Tram station, Winter street 

PTZ Continuous pan, Intermittent pan, Two-position ptz cam, Zoom in zoom out 
Shadow Back door, Copy machine, Bungalows, Bus station, Cubicle, People in shade 
Thermal Corridor, Library, Lakeside, Dining room, Park 

Turbulence Turbulence0, Turbulence1, Turbulence2, Turbulence3 

 

 

Several metrics are adopted to evaluate the deep learning-based models [32], including specificity, 

precision, f-measure, false positive rate, false negative rate, and percentage of wrong classifications, by using 

the four parameters of the confusion matrix. These metrics can be measured according to: 

 

Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (3) 

 

False Positive Rate =
𝐹𝑃

𝑇𝑁+𝐹𝑃
  (4) 

 

False Negative Rate =
𝐹𝑁

𝑇𝑃+𝐹𝑁
 (5) 

 

Percentage of the Wrong Classifications = 100 ×
𝐹𝑁+𝐹𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 (6) 

 

F − Measure = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (7) 

 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8) 

 

where TP, FP, FN, and TN denote true positive, false positive, false negative, and true negative, respectively. 

 

2.7.  Training data process 

In this sub-section, we present the training data process of our data selection strategies, we manually 

chose twenty-five frames for each video that contain important foreground objects to help our model learn 

and segment the foreground accurately. However, the model has been fed across a variety of data training 

strategies, including: i) the PCA strategy: this strategy consists of generating four different projections of the 

principal components (geometric transformation) using the PCA technique at a rate of 80%, 60%, 40%, and 

20% to eliminate non-informative variables, for each selected training frame; ii) the data augmentation (DA) 

strategy: the DA strategy aims to enlarge the data by generating four morphological transformation frames 

for each selected training frame, including translating, flipping, zooming, and rotating; iii) the PCA and DA 

strategy: this strategy consists of merging the aforementioned strategies (PCA and DA) to build more data 

frames for each video. Figure 5 shows the results of various transformation techniques and strategies. Table 2 

provides the description and the amount of samples used for the training process of all strategies. 

In our experiments, we perform our implementation using an open-source library called Keras which 

was developed in 2018 by Chollet et al. [33]. The training process is done on the Google Colaboratory 

platform through a Tesla K80 GPU [34], [35] for 100 epochs. We selected the RMSprop as the main 

optimizer to train our model. Binary cross entropy (BCE) loss function is used to compute the loss between 

the ground truth label and the predicted result, which can be measured using (9): 

 

𝐵𝐶𝐸(𝑌, X̃) =  −(𝑌 ∗ log(�̃�) + (1 − 𝑌) ∗ log(1 − X̃)) (9) 

 

where X̃ and Y denote the ground-truth label and the label predicted by the models, respectively. We train the 

networks with 80% frames from the training data and 20% frames as validation. We evaluate the models with 

50% of the dataset. 
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Figure 5. Examples of the different strategies transformation 

 

 

Table 2. Description and number of training samples used for each strategy 
Strategy Description Number of samples used to train the model 

DA 25(frames) x 53(all video) x 5 6625 
PCA 25(frames) x 53(all video) x 5 6625 

PCA+DA 25(frames) x 53(all video) x 9 11925 

 

 

3. EXPERIMENTAL RESULTS 

In the current section, we aim to present the implementation and the achieved results using our 

proposed approaches. Moreover, to illustrate the effectiveness of our models, we compare them with the 

conventional algorithms. More detail is described in subsections 3.1 to 3.3. 

 

3.1.  Experiments 

For the first approach, we freeze the first 14 layers of the VGG16 (encoder part), then we execute 

the training for the remaining layers of the latent space and all the decoder part (VGG16 transposed). The 

dropout layer [31] applied after every convolution layer of the decoder part is set to a learning rate of 0.2. 

Figure 3 shows an explanatory diagram. 

We developed five models in the second approach, starting with four hidden layers and eventually 

increasing to eighteen hidden layers. The dropout layer [31] applied after every convolution layer is set to a 

learning rate of 0.2 to generalize the model. Figure 4 shows the detailed information and structure concerning 

the layers of the different multi-depth approach models. 

 

3.2.  Evaluation of the proposed approaches 

In this sub-section, we analyze the training strategies using the obtained results and present their 

influences on the adopted dataset. Subsection 3.2.1 explained about transfer learning approach. Subsection 

3.2.2 explained about multi-depth approach. 

 

3.2.1. Transfer learning approach 

The obtained results using the transfer learning approach are shown in Table 3 and Figure 6. The 

results clearly show that the PCA+DA strategy outperformed the other strategies providing better 

performance. Figure 6 shows the training and validation accuracies and losses graphs. 

 

 

Table 3. The test results obtained by PCA, DA and PCA+DA strategies 
Strategy Sp FPR FNR PWC FM Pr 

PCA 0.993 0.0058 0.3458 1.383 0.692 0.748 

DA 0.997 0.0029 0.3338 1.073 0.742 0.853 
PCA+DA 0.997 0.0020 0.3571 1.027 0.811 0.873 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6045-6057 

6052 

 According to the loss graph of the classical DA strategy as shown in Figure 6, we can clearly see the 

gap between validation and training loss indicating that the model is over-fitting. The over-fitting could be 

due to the lack of training samples. Also, as shown in Figure 6, the gap between train and test losses is 

reduced in the case of using the PCA strategy, and there is a slightly difference between training and 

validation loss values. Therefore, we can see that the over-fitting effect has been reduced due to the presence 

of PCA transformation with higher precision features which help and facilitate the system for the learning 

task. 

 

 

 
 

Figure 6. Used strategies training and validation accuracies and losses graphs 

 

 

The proposed PCA+DA strategy provides the best and lowest training and testing losses over the 

other two strategies as shown in Figure 6. Thus, the model avoids over-fitting through the number of samples 

added to the training data-set. For the accuracy curves in Figure 6, observe that with each increase of the 

PCA samples in the training data the accuracy increases and both curves converge even more. 

 

3.2.2. Multi-depth approach 

 The current study sought to evaluate the auto-encoder model in various depths, we analyzed the 

influence and the results of the multi-depth training model. For that, both loss function and accuracy function 

curves between training and validation data have been plotted. We fed the five models only with the DA 

strategy. The results are shown in Figures 7 and 8. 

 We can see that for the models (A), (B), and (C), the validation and training losses are very close but 

have a higher error. Validation and training accuracy have a low precision value. According to Figure 8, we 

can see that the models (D) and (E) starts to over-fit, and the error begins to decrease. The validation 

accuracy and training accuracy start to increase. 

 Generally, when we increase the number of layers, it may result in better accuracy and minimum 

loss, increasing the depth means increasing the capacity of the model (can learn complex representations), 

but with little training data, it may cause a high risk of over-fitting. We show that the model (E) provides 

better results than the other methods in terms of accuracy and error. However, the model (E) starts to over-fit 

from around epoch 50. To this end, we selected the model (E) as the base model to be improved by adding 

more training data. The results of the improved version are shown in Figure 9. 

The model (F) is the same model (E) but trained with more data. In addition to the data generated 

using the classical DA techniques, the data used to train the model (F) is generated using the PCA strategy. 

Hence, the model is trained using both DA and PCA strategies. As shown in Figure 9, we can notice that the 

validation loss and accuracy of the model (F) are improved making it more robust to over-fitting. Our main 

goal is to achieve high performance in terms of accuracy and loss using deep CNN architectures with small 

datasets while avoiding over-fitting. 
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Figure 7. Used strategies training and validation accuracy graphs 

 

 

 
 

Figure 8. Used strategies training and validation loss graphs 

 

 

3.3.  Comparison with reference algorithms 

The amount of training data that is used to produce the models are also different in different 

approaches. Since that, we compared our models with methods that use the same principle of training with 

few training data. We compared our model with the one developed by Babaee et al. [9]. This model is trained 

by 5% (100 frames) of frames from each video sequence. Furthermore, both BSUV-Net [36] and fast  

BSUV-Net 2.0 [37] proposed background subtraction algorithms for unseen videos based on a fully CNN. 

They introduced a spatio-temporal data augmentation technique to overcome the lack of training samples 

issue. Also, our approach is compared with other traditional algorithms, including SuBSENSE [38], IUTIS-5 

[39], and pan-arctic water-carbon cycles (PAWCS) [40], where the models are trained through little frames 

from each video sequence of the dataset. We compare with our best models for each approach, both  
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multi-depth auto-encoder (MD AE) and transfer learning auto-encoder (TL AE) training with the PCA+DA 

strategy. The results obtained using our models are compared with other studies as shown in Table 4. 

 

 

 
 

Figure 9. Used strategies training and validation accuracy and loss graphs 

 

 

Table 4. A comparison of our result approach with reference algorithms 
Method Sp FPR FNR PWC FM Pr 

TL AE 0.997 0.0020 0.3571 1.027 0.811 0.873 

Fast BSUV-Net 2.0 [37] 0.995 0.0044 0.1819 0.905 0.803 0.842 
BSUV-Net [36] 0.995 0.0054 0.1797 1.140 0.787 0.811 

CNN [9] 0.990 0.0095 0.2455 1.992 0.755 0.833 

MD AE 0.990 0.0071 0.4467 1.836 0.747 0.809 

IUTIS-5 [39] 0.995 0.0052 0.2151 1.198 0.772 0.808 

PAWCS [40] 0.995 0.0051 0.2280 1.199 0.740 0.786 

SuBSENSE [38] 0.990 0.0096 0.1876 1.678 0.741 0.751 
TL AE 0.997 0.0020 0.3571 1.027 0.811 0.873 

 

 

For further evaluation, we compare our approaches with other state-of-the-art models. Figure 10 

provides qualitative comparison results. Three frames of video sequences from the CDnet 2014 dataset are 

selected as demonstrative examples. The first column and second columns in Figure 10, shows the input 

frames and the ground truth, respectively. The third column presents our deep Auto-encoder model based on 

transfer learning trained through (PCA+DA) strategy. Whereas, the rest columns in Figure 10 represent the 

results of the reference models. The results from Table 4 and Figure 10 show that our approach based on the 

PCA+DA training strategy provides better results and selectivity segmentation than the other models. 

 

 

 
 

Figure 10. Visual comparison between proposed and reference models generated foreground masks 
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4. DISCUSSION 

 The model was trained using a transfer learning technique in the first experiment, while in the 

second experiment we went dive deeper into auto-encoder architecture for training a multi-depth model. As 

shown in section 3, the PCA+DA strategy provides significant improvements across all objective metrics 

over other adopted strategies for the transfer learning and multi-depth approaches. Consequently, we used the 

models based on these strategies to compare with the popular CNN model [9] and the state-of-the-art 

methods. From the results obtained in Table 4 and Figure 10, we can see that the results of our model based 

on (TL AE) achieve improved performance than those obtained by the reference algorithms. 

 When comparing our two developed approaches, the achieved performance by the transfer learning 

approach due to the transferred knowledge to the first layers of the encoder part trained with the VGG16 

(ImageNet dataset) model. Furthermore, the key information provided by the main components in the PCA 

transformation is ordered according to their power of representation, which encourages features in the dataset 

to be statistically independent. The addition of transformed images by PCA at several rates has the objective 

to increase the training dataset size while preserving essential information. In addition, to provide adapted 

and meaningful data to recompense for the loss in the first layer of the decoder part of the network. As a 

result, we prove the effectiveness of the proposed and novel data augmentation strategy. This strategy is 

based on the preservation of necessary information, which proves its ability to avoid the over-fitting impact.  

 

 

5. CONCLUSION 

 Motivated by the recent development of moving object segmentation methods based on deep 

learning, we presented experiments comparing two deep learning approaches trained using three different 

strategies to increase data size. The main purpose of the proposed methods is to increase the dataset size 

using different strategies to improve the model accuracy. The adopted data augmentation strategies are; PCA 

technique-based geometric transformation and classical data augmentation. The aforementioned strategies 

were adopted to reduce the over-fitting problem as well as to generate the required features for the moving 

object segmentation while improving the model performance. The deep learning category used in our 

experiments is based on a deep convolution auto-encoder, which is mostly used for image segmentation 

tasks. 

 The main objective is to enhance the object segmentation method based on a supervised deep  

auto-encoder using limited training data. However, it can be concluded that combining morphological and 

geometrical transformation for model training, helps the model enhance its generalization capabilities and 

generate a precise model with minimal training data. Furthermore, compared to the traditional data 

augmentation techniques (mirroring, rotation, and shifting) that rely on changing the placement of the 

coordinates in the same mathematical plane which produces correlated variables and can offer minimal 

enhancement. Our work demonstrates the value of purposefully enriching training data as with PCA to create 

a new representation of the variables in a new plane with an important variance. As well as extracting the 

variables required for the segmentation task and removing the unnecessary variables that can distort the 

results of the prediction. 
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