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 The problem considered in this work is formation control for non-identical 

linear multi-agent systems (MASs) under a time-varying communication 

network. The size of the formation is scalable via a scaling factor determined 

by a leader agent. Past works on scalable formation are limited to identical 

agents under a fixed communication network. In addition, the formation 

scaling variable is updated under a leader-follower network. Differently, this 

work considers a leaderless undirected network in addition to a  
leader-follower network to update the formation scaling variable. The 

control law to achieve scalable formation is based on the internal model 

principle and consensus algorithm. A biased reference output, updated in a 

distributed manner, is introduced such that each agent tracks a different 
reference output. Numerical examples show the effectiveness of the 

proposed method. 

Keywords: 

Formation control 

Multi-agent systems 

Non-identical 

Size scaling 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Djati Wibowo Djamari 

Department of Mechanical Engineering, Sampoerna University 

L'Avenue Building, Pasar Minggu highway No. Kav. 16, South Jakarta, Jakarta, 12780, Indonesia 

Email: djati.wibowo@sampoernauniversity.ac.id 

 

 

1. INTRODUCTION 

Cooperative control of multi-agent systems (MASs) has received much attention from the research 

community in recent years. One active area in MASs is achieving state or output consensus among agents 

[1]–[4], and others, wireless sensor networks [5]–[7] and others, and task scheduling [8], [9], and others. One 

extension of consensus is multi-agent formation. In the literature of multi-agent formation, the formation is 

produced by introducing a bias to the consensus control law of each agent, see for example [10]–[15]. The 

bias is introduced so that the states or outputs of agents differ by the bias amount. Another formation control 

problem is by considering obstacle or collision avoidance [16], [17] and multi-robot navigation [18]–[22]. 

However, in the approaches mentioned above, the formation size cannot be controlled or changed during the 

operation of MAS. The environment where MAS operates may change over time, for example, MAS may 

encounter a path narrower than its current formation size. In this situation, the ability to adjust the formation 

size is essential for MAS in continuing its operation. 

Past works on formation control with formation size adjustment (scalable formation problem) are 

sparse. The works Coogan and Arcak [23] and Coogan et al. [24] solve the scalable formation problem of 

double integrator agents by introducing an auxiliary state that acts as a multiplier to the bias in the standard 

formation control law. In one of the methods discussed by [24], the auxiliary state is updated by using a 

consensus algorithm. Whereas in [23], the auxiliary state is updated by estimating the desired formation 

scaling factor (known only by leader agent (s)) by monitoring the relative position of agents’ neighbor. In 

[23], both the single link and multi-link method in monitoring the neighbors’ position is discussed, while in 
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[24], only the single link method is discussed. When the auxiliary state reaches consensus, all agents have 

similar multiplier to their formation parameter. Thus, the whole group reach a formation where its size is a 

multiplication to the consensus value of the auxiliary state. In [24], the leader-follower network is used so 

that the consensus value of the auxiliary state is dictated by the initial value of the leader agent’s auxiliary 

state. The work [25] discusses scalable formation for single integrator and double integrator agents by using a 

self-loop communication weight. The formation parameter is embedded in the self-loop communication 

weight. However, the communication network is considered to be fixed. 

Scalable formation control considering identical linear system agents is discussed in [26]. In [26], a 

consensus-based scalable formation algorithm is used as a dynamic compensator. Similar to [24], the work 

[26] also uses auxiliary state as the multiplier to the formation parameter. In addition to the scalable 

formation, the work [26] allow for orientation adjustment. This additional adjustment is achieved by adding a 

variable multiplied to the desired position in the dynamic compensator. The works [23]–[26] consider fixed 

communication networks and identical agents in their formulation. Moreover, the network used to update the 

auxiliary state (formation scaling factor variable) is a leader-follower network. Scalable formation for 

heterogeneous agents under time-varying network can be found in [27]. The work considers continuous time 

agent model and leader-follower network. 

Unlike the works [23]–[26] that consider scalable formation for identical agents under fixed 

network, this work considers scalable formation for non-identical agents under a time-varying 

communication network. Moreover, unlike the work [27], this work considers leaderless undirected network 

in addition to leader-follower network in updating the formation scaling variable. Non-identical agents’ 

consideration is important in the formulation of MAS since not all agents are made similar; and also,  

non-identical agents formulation allows for different agents to cooperatively work under similar network  

(for example, drone and ground robot). Time-varying communication consideration is important since the 

communication network among agents may be changing during the operation due to weather, packet drop, 

and signal loss. The time-varying network formulation is important to guarantee the MAS algorithm to work 

under these situations (under some common network assumption, for example jointly connected network).  

Leaderless network formulation is needed on a situation where leader-follower network is not 

suitable for MAS operation. An example is when the formation leader (the agent that determine the formation 

size) must be changed during the operation. In scalable formation under leader-follower network, the leader 

agent is the formation leader, and the leader agent does not receive information from other agents. Suppose 

agent 𝑞 is the leader agent in the network. When the formation leader is changed to another agent; since there 

is no information coming to agent 𝑞, then the whole agents cannot reach consensus (spanning tree condition 

is violated). Formation leader change during the operation is needed when the formation leader experiences 

faulty which makes it unable to continue its purpose.  

The control input in this work is based on the internal model principal approach described by [3]. 

The internal model principle approach is to devise a reference output which will be tracked by the output of 

each agent. A bias is then introduced in the reference output so that agents track different output and hence 

reach a formation. Moreover, a virtual state is multiplied to the reference output for the purpose of resizing 

the formation. Two network cases in updating the virtual state, leader-follower and leaderless undirected 

(both are time-varying networks), are discussed in this work. In achieving scalable formation for leaderless 

undirected network, the result from [28] is used to estimate the consensus time duration. This time duration is 

needed by the formation leader to know when it can change the formation size into the new one. It is shown 

that the consensus time duration is a function of the desired error bounds between the desired and actual 

formation scaling factor. The proposed work is expected to contribute in the application of search and rescue 

[29]–[32], area surveillance [33], [34], and others. 

Non-negative and positive integer sets are indicated by ℤ0
+, and ℤ+ respectively. Let 𝑀, 𝐿 ∈  ℤ+ with 

𝑀 > 𝐿. Then ℤ0
𝑀 ∶= {0,1,2, ⋯ , 𝑀} and ℤ𝐿

𝑀 ∶= {𝐿, 𝐿 + 1, ⋯ , 𝑀}. Meanwhile, ℝ, ℝ𝑛 , ℝ𝑛×𝑚 refer respectively 

to the sets of real numbers, 𝑛-dimensional real vectors and 𝑛 by 𝑚 real matrices. 𝐼𝑛 is the 𝑛 ×  𝑛 identity 

matrix with 1𝑛 being the 𝑛-column vector of all ones (subscript omitted when the dimension is clear). Given 

a set 𝐶, |𝐶| denotes its cardinality. The transpose of matrix 𝑀 and vector 𝑣 are indicated by 𝑀′ and 𝑣′, 
respectively. Additional notations are introduced when required in the text. 

 

 

2. RESEARCH METHOD 

In this section, the problem will be formally presented, and the proposed distributed algorithm will 

be discussed. The proposed distributed algorithm is based on the internal model principle which has the 

advantage to be used when the communication network is time-varying, and the agent’s model are non-

identical. Since the proposed algorithm involves the use of graph, a brief discussion on the graph notation is 
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discussed in the beginning of this section. The problem definition and the proposed algorithm are presented 

subsequently.  

 

2.1.  Graph notation 

The network of 𝑁 nodes described by a time-varying graph is 𝒢(𝑡) = (𝒱, ℰ(𝑡)) with vertex set 

𝒱 = {1,2, ⋯ , 𝑁} and edge set ℰ(𝑡) ⊆  𝒱 × 𝒱. When the graph sequence 𝒢(𝑡) is a directed graph, the pair 
(𝑗, 𝑖) ∈ ℰ(𝑡) if node 𝑗 points towards node 𝑖 at time 𝑡. On the other hand, when the graph sequence 𝒢(𝑡) is 

undirected, (𝑗, 𝑖) ∈ ℰ(𝑡) if node 𝑗 is adjacent to node 𝑖 at time 𝑡 and vice versa. The set of neighbors of node 𝑖 
at time 𝑡 is 𝒩𝑖(𝑡): = {𝑗 ∈ 𝒱: (𝑗, 𝑖) ∈ ℰ(𝑡), 𝑖 ≠  𝑗}. We define 𝑑𝑖(𝑡) = |𝒩𝑖(𝑡)| to be the number of neighbors 

of agent 𝑖 at time 𝑡. 

Remark 1. The largest possible 𝑑𝑖(𝑡) for all 𝑖 ∈ ℤ𝑁, 𝑡 ≥  0, is 𝑁 − 1.  

The union of the graph sequence 𝒢(𝑡) at the time interval [𝑡𝑎 , 𝑡𝑏] is defined as 𝒢𝑡𝑎

𝑡𝑏  = (𝒱, ⋃ ℰ(𝑡)
𝑡𝑏
𝑡𝑎

). 

The adjacency matrix 𝒜(𝑡) = [𝑎𝑖𝑗(𝑡)] of 𝒢(𝑡) is the 𝑁 ×  𝑁 matrix whose (𝑖, 𝑗) entry is 1 if 

(𝑗, 𝑖) ∈ ℰ(𝑡), and 0 otherwise. When the graph 𝒢(𝑡) is undirected, then 𝑎𝑖𝑗(𝑡) = 𝑎𝑗𝑖(𝑡) for all 𝑖, 𝑗 ∈ 𝒱. The 

standard Perron matrix 𝑃(𝑡) = [𝑝𝑖𝑗(𝑡)] associated with to graph 𝒢(𝑡) is defined by 

 

𝑝𝑖𝑗(𝑡) = {
1 − 𝛾 ⋅ 𝑑𝑖(𝑡)

𝛾 ⋅ 𝑎𝑖𝑗(𝑡)
   

𝑖 = 𝑗,
𝑖 ≠ 𝑗,

 

 

where 𝛾 =
1

𝑁
, and this imply that the off-diagonal term of 𝑃(𝑡) is either 

1

𝑁
 or 0. By the above construction, it 

is easy to see that 𝑃(𝑡) is a nonnegative matrix and its row sum equals one, implying that 𝑃(𝑡) is a stochastic 

matrix, and also its diagonal entries are positive. 

 

2.2.  Problem formulation 

Consider 𝑁 non-identical agents where each agent 𝑖 is given by the discrete-time model (1) and (2): 

 

𝑥𝑖(𝑡 + 1) = 𝐴𝑖𝑥𝑖(𝑡) + 𝐵𝑖𝑢𝑖(𝑡), 𝑖 ∈ ℤ𝑁 (1) 

 

𝑦𝑖(𝑡) = 𝐶𝑖𝑥𝑖(𝑡), 𝑖 ∈ ℤ𝑁 (2) 

 

where 𝑥𝑖(⋅) ∈ ℝ𝑛𝑖 , 𝑦𝑖(⋅) ∈ ℝ𝑝 and 𝑢𝑖(⋅) ∈ ℝ𝑚𝑖 are the state, output, and control signal of agent 𝑖. 
Meanwhile, 𝐴𝑖, 𝐵𝑖, 𝐶𝑖 are the state matrix, input matrix, and output matrix of agent 𝑖, respectively. The 

variables 𝑛𝑖 ∈ ℤ+, 𝑝 ∈ ℤ+, 𝑚𝑖 ∈ ℤ+ are the vector’s dimension of the state 𝑥𝑖, output 𝑦𝑖 , and control input 𝑢𝑖. 

By non-identical agents, it means that 𝐴𝑖, 𝐵𝑖, 𝐶𝑖 are not necessarily similar to 𝐴𝑗, 𝐵𝑗, 𝐶𝑗 for 𝑖, 𝑗 ∈ ℤ𝑁. Also note 

that the output dimension for all agents is the same and this is necessary for agents to reach output-formation. 

The assumptions on the systems' matrices are: 

Assumption (A1). The pair (𝐴𝑖, 𝐵𝑖) and (𝐴𝑖, 𝐶𝑖) are stabilizable and detectable for all 𝑖 ∈  ℤ𝑁. 

This work aims to coordinate the 𝑁 agents in a distributed manner to form a scalable formation via a 

scaling factor (scalable formation). Let 𝛿𝑖 ∈ ℝ𝑝 and 𝛿𝑗  ∈ ℝ𝑝 be the desired outputs of agents 𝑖 and 𝑗 defined 

on a local coordinate system, then the scalable formation objective is such that: 

 

lim
𝑡→∞

(𝑦𝑖(𝑡) − 𝑦𝑗(𝑡))  = 𝛼(𝛿𝑖 − 𝛿𝑗), ∀ 𝑖, 𝑗 ∈ ℤ𝑁, 

 

where 𝛼 ∈ ℝ+ is the desired scaling factor of the formation that is determined by a leader agent (formation 

leader).  

The communication network among agents is represented by a time-varying graph 𝒢(𝑡) with two 

cases being considered: 

- Case leader-follower (LF). 𝒢(𝑡) is a directed graph with 𝜅 ∈ ℤ𝑁 as the leader node. This implies that 

𝑎𝜅𝑗(𝑡) = 0 for all 𝑡 ≥  0 and 𝑗 ∈ ℤ𝑁. 

- Case leaderless undirected (LLU). 𝒢(𝑡) is an undirected graph. 

Remark 2. Let 𝑒𝜅 ∈ ℝ𝑁 be a vector of zeros except its 𝜅𝑡ℎ  entry being 1. The consequences of Case LF is 

that the 𝜅𝑡ℎ  row of 𝑃(𝑡) is 𝑒𝜅
′  for all 𝑡 ≥  0. Thus, 𝑒𝜅

′ 𝑃(𝑡) = 𝑒𝜅
′  holds for all 𝑡 ≥  0. This implies that 𝑒𝜅

′  is the 

left eigenvector of 𝑃(𝑡) corresponding to its eigenvalue of 1 for all 𝑡 ≥  0.  

Remark 3. In case LLU, 𝑃(𝑡) is a doubly stochastic matrix. Therefore, 1𝑁
′  is the left eigenvector of 𝑃(𝑡) 

corresponding to its eigenvalue of 1 for all 𝑡 ≥  0, i.e., 1𝑁
′ 𝑃(𝑡) = 1𝑁

′  for all 𝑡 ≥  0.  
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2.3.  Proposed control input for case LF 

The proposed control input to the 𝑖𝑡ℎ agent (1)-(2) is based on the internal model principal approach 

discussed in [3]: 

 

𝑢𝑖(𝑡) = 𝐾𝑖�̂�𝑖(𝑡) + 𝐿𝜆𝑖
𝜆𝑖(𝑡) + 𝐿𝑤𝑖

𝑤𝑖(𝑡),   𝑖 ∈ ℤ𝑁 (3) 

 

where 𝐾𝑖 ∈ ℝ𝑚𝑖× 𝑛𝑖 is a feedback matrix designed such that (𝐴𝑖 + 𝐵𝑖𝐾𝑖) is Schur for all 𝑖 ∈ ℤ𝑁, while 

𝐿𝜆𝑖
∈ ℝ𝑚𝑖 and 𝐿𝑤𝑖

∈ ℝ𝑚𝑖× �̅�  are the feedback vector and feedback matrix from the internal model principle. 

The state �̂�𝑖 ∈ ℝ𝑛𝑖 in (3) is the estimate of 𝑥𝑖 obtained from 

 

�̂�𝑖(𝑡 + 1) = 𝐴𝑖�̂�𝑖(𝑡) + 𝐵𝑖𝑢𝑖(𝑡) + 𝐻𝑖(�̂�𝑖(𝑡) − 𝑦𝑖(𝑡)), 𝑖 ∈ ℤ𝑁 (4) 

 

�̂�𝑖(𝑡) = 𝐶𝑖�̂�𝑖(𝑡), 𝑖 ∈ ℤ𝑁 (5) 

 

where �̂�𝑖 is the estimated output, and 𝐻𝑖 ∈ ℝ𝑛𝑖× 𝑝 is feedback matrix designed such that (𝐴𝑖 + 𝐻𝑖𝐶𝑖) is Schur 

for all 𝑖 ∈ ℤ𝑁. The variables 𝜆𝑖 ∈ ℝ and 𝑤𝑖 ∈ ℝ�̅� in (3) are the states of reference generator, with 𝜆𝑖 as the 

formation scaling factor variable of agent 𝑖 and 𝑤𝑖 as the common trajectory among all agents. The dynamics 

of 𝜆𝑖 and 𝑤𝑖 are 

 

𝜆𝑖(𝑡 + 1) =  ∑ 𝑝𝑖𝑗(𝑡)𝜆𝑗(𝑡)𝑁
𝑗=1 , 𝑖 ∈ ℤ𝑁 (6) 

 

𝑤𝑖(𝑡 + 1) = 𝑆 ∑ 𝑝𝑖𝑗(𝑡)𝑤𝑗(𝑡), 𝑖 ∈ ℤ𝑁𝑁
𝑗=1  (7) 

 

In (6)-(7), 𝑝𝑖𝑗(𝑡) is the entry of the Perron matrix 𝑃(𝑡). In (7), 𝑆 is the state matrix of the reference 

generator state 𝑤𝑖 with the following assumption made on 𝑆: 

Assumption (A2). Eigenvalues of S lie on the unit circle. 

Meanwhile, the assumption on graph 𝒢(𝑡) for case LF is. 

Assumption (A3). The graph 𝒢(𝑡) is uniformly connected.  

The graph sequence 𝒢(𝑡) is said to be uniformly connected if there exist a finite time horizon 𝑇 > 0 such that 

for all 𝑡, the graph 𝒢𝑡
𝑡+𝑇 contains a spanning tree, or that there exist a directed path from at least one node to 

every other node. (A3) is a standard assumption on consensus problem under directed time-varying graph 

(see for example [35] and [1]). 

To achieve scalable formation, the output of agent 𝑖 will be made to track its reference-output defined 

in (8): 

 

𝑦𝑖,𝑟𝑒𝑓(𝑡) =  𝛿𝑖𝜆𝑖(𝑡) + 𝑄𝑤𝑖(𝑡) (8) 

 

where 𝛿𝑖 ∈ ℝ𝑝 (𝛿𝑖 ≠ 𝛿𝑗;  𝑖, 𝑗 ∈ ℤ𝑁) is the desired output of agent 𝑖 defined on the local coordinate system and 

𝑄 is the output matrix of 𝑤𝑖 . Refer to [35] and [1], under (A3), the 𝑁 agents (6)-(7) reach consensus 

exponentially, or that 𝜆𝑖(𝑡) → 𝜆∞ and 𝑤𝑖(𝑡) →  �̅�(𝑡) exponentially for all 𝑖 ∈ ℤ𝑁, where �̅�(𝑡) is a solution to 

𝑤0(𝑡 + 1) = 𝑆𝑤0(𝑡) for some 𝑤0 ∈ ℝ�̅�. Since 𝜆𝑖(𝑡) → 𝜆∞ and 𝑤𝑖(𝑡) →  �̅�(𝑡)for all 𝑖 ∈ ℤ𝑁, then 

𝑦𝑖,,𝑟𝑒𝑓(𝑡) → 𝛿𝑖𝜆∞ + 𝑄�̅�(𝑡) for all 𝑖 ∈ ℤ𝑁. Thus, we can see that asymptotically 𝑦𝑖,𝑟𝑒𝑓(𝑡) contains two 

components. The first component, 𝛿𝑖𝜆∞, is the formation component scalable by 𝜆∞ and the second 

component, 𝑄�̅�(𝑡), is the common (consensus) trajectory component.  

If each 𝑦𝑖 tracks 𝑦𝑖,𝑟𝑒𝑓 asymptotically, which will be shown shortly, then asymptotically the outputs 

of agents 𝑖 and 𝑗, 𝑖, 𝑗 ∈ ℤ𝑁 will differ by 𝜆∞(𝛿𝑖 − 𝛿𝑗), i.e. lim
𝑡→ ∞

(𝑦𝑖(𝑡) − 𝑦𝑗(𝑡)) = 𝜆∞(𝛿𝑖 − 𝛿𝑗) for all 𝑖, 𝑗 ∈ ℤ𝑁. 

This implies that 𝜆∞ is the formation scaling factor. The following lemma shows that for Case LF, suppose 

node 𝜅 is the leader node, then agent 𝜅 is also the leader agent that can determine 𝜆∞ (formation leader): 

Lemma 1. Let node 𝜅 ∈ ℤ𝑁 be the leader node in the leader-follower graph 𝒢(𝑡). Given system of 𝑁 agents 

(6). Suppose (A3) holds. Then 𝜆𝑖(𝑡) → 𝜆𝜅(𝑡0) for all 𝑖 ∈ ℤ𝑁, where 𝜆𝜅(𝑡0) is the initial condition of 𝜆𝜅 and 

𝑡0 is a moving initial time (𝑡0 is not necessarily equals zero). Lemma 1 is a special case of the discrete-time 

case in [2]. The proof of Lemma 1 can be shown by taking results from [2] and utilizing Remark 2. Thus, the 

proof is omitted. 

By noting that asymptotically 𝑦𝑖,𝑟𝑒𝑓(𝑡) = 𝛿𝑖𝜆∞ + 𝑄�̅�(𝑡), where 𝜆∞ is a constant and �̅�(𝑡) is a 

solution to the dynamics 𝑤0(𝑡 + 1) = 𝑆𝑤0(𝑡), to ensure each agent tracks their own reference-output, the 

feedback vector 𝐿𝜆𝑖
 and feedback matrix 𝐿𝑤𝑖

 are designed via the well-known internal model principle [36]. 
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𝐿𝜆𝑖
 in (3) is feedback vector computed by 𝐿𝜆𝑖

= Γ𝜆𝑖
− 𝐾𝑖Π𝜆𝑖

, where Γ𝜆𝑖
 and Π𝜆𝑖

 are the solutions to the 

following Francis equations: 

 

𝐴𝑖Π𝜆𝑖
+ 𝐵𝑖Γ𝜆𝑖

= Π𝜆𝑖
 (9) 

 

𝐶𝑖Π𝜆𝑖
= 𝛿𝑖 (10) 

 

On the other hand, 𝐿𝑤𝑖
 is feedback matrix computed by 𝐿𝑤𝑖

= Γ𝑤𝑖
− 𝐾𝑖Π𝑤𝑖

, where Γ𝑤𝑖
 and Π𝑤𝑖

 are the 

solutions to the following Francis equations: 

 

𝐴𝑖Π𝑤𝑖
+ 𝐵𝑖Γ𝑤𝑖

= Π𝑤𝑖
𝑆 (11) 

 

𝐶𝑖Π𝑤𝑖
= 𝑄 (12) 

 

To guarantee solvability of (9)-(10) and (11)-(12) for any 𝛿𝑖 and 𝑄, the following assumption is needed [36]: 

Assumption (A4). The matrices: 

 

[
𝐴𝑖 − 𝐼𝑛𝑖

𝐵𝑖

𝐶𝑖 0
] and [

𝐴𝑖 − 𝜉𝐼𝑛𝑖
𝐵𝑖

𝐶𝑖 0
] 

 

are full-row rank for all 𝑖 ∈ ℤ𝑁 and for every eigenvalue 𝜉 of 𝑆. 

 

2.4.  Proposed control input for case LLU 

The case LLU is similar to Case LF. The controller, observer, dynamics of λ_i and w_i are similarly 

given by (3), (4)-(5), (6)-(7). All assumptions are also needed except (A3). Instead of (A3), the assumption 

on the communication graph is 

Assumption (A5). The graph 𝒢(𝑡) is uniformly strongly connected. 

The graph sequence 𝒢(𝑡) is said to be uniformly strongly connected if there exist a finite time horizon 𝑇 > 0 

such that for all 𝑡, the graph 𝒢𝑡
𝑡+𝑇 is strongly connected, or that there exist a directed path between any two 

nodes. Since an undirected graph is bidirectional, an undirected graph that contains a spanning tree has the 
properties that any two nodes in the graph is connected by a path, which means that the graph is strongly 

connected. Therefore, (A5) is used here instead of (A3).  

We will now discuss the method so that a designated leader agent is able to determine the formation 

scaling factor. Since case LLU is similar to case LF, except of the network topology, it can be shown that the 

consensus value of 𝜆 is also the formation scaling factor. We first state the following result which is the 

undirected network version of Lemma 1: 

Lemma 2. Given system of N agents (6) where the communication graph 𝒢(𝑡) is undirected. Suppose (A5) 

holds, then 𝜆𝑖(𝑡) →
1

𝑁
∑  𝜆𝑗(𝑡0)𝑁

𝑗=1  for all 𝑖 ∈ ℤ𝑁. The proof of Lemma 2 can be shown by taking results from 

[2] and noting Remark 3. Thus, the proof is omitted. 

By Lemma 2, for case LLU, the formation scaling factor is the average of the initial condition of 𝜆. To 

make the consensus value of 𝜆 equal to the desired formation scaling factor, then the leader agent must know 

the initial states of 𝜆𝑖 for all 𝑖 which is too demanding. Our approach is to have the leader agent to wait until 

𝜆 reach consensus with some reasonable tolerance, and then the leader agent uses its own 𝜆 as the estimate of 

the 𝜆 of other agents. In other words, the problem is to compute the waiting time, 𝑡̅, before the leader agent 

can change its 𝜆 to a new value such that the error bound between the desired formation scaling factor, 𝜆d, 

and the actual formation scaling factor, 𝜆∞, is known. We shall assume here that although the leader agent 

updates its λ using (6), the leader agent is authorized to reset its 𝜆 to any real number at any time. 

Let agent 𝜅 ∈ ℤ𝑁 be the designated leader agent. We start the analysis by first defining the choice of 

the reset value of 𝜆𝜅 or 𝜆𝜅(𝑡0new
), followed by the analysis of the error bound between 𝜆d and 𝜆∞ , and the 

computation of 𝑡̅. Suppose 𝜈 >  0 is chosen where it is desired that |𝜆∞ − 𝜆d| ≤ 𝜈. Suppose further at 

𝑡∗, |𝜆𝑖(𝑡∗) − 𝜆𝑗(𝑡∗)| ≤ 𝜈 for all 𝑖, 𝑗 ∈ ℤ𝑁, where 𝑡∗ = 𝑡̅ + 𝑡0old
, where 𝑡0old

 is the previous value of 𝑡0. Let 

agent 𝜅 reset its 𝜆 at 𝑡 = 𝑡∗ to 

 

𝜆𝜅
∗ = 𝑁𝜆d − (𝑁 − 1)𝜆𝜅(𝑡∗) (13) 

 

where 𝜆𝜅(𝑡∗) is computed from (6). The following lemma shows that |𝜆∞ − 𝜆d| ≤ 𝜈 holds: 

Lemma 3. Consider system of 𝑁 agents (6). Let agent 𝜅 ∈ ℤ𝑁 reset its 𝜆 at 𝑡 = 𝑡∗ by (13) and suppose 

|𝜆𝑖(𝑡∗) − 𝜆𝑗(𝑡∗)| ≤ 𝜈 holds for all 𝑖, 𝑗 ∈ ℤ𝑁, then |𝜆∞ − 𝜆𝑑| ≤ 𝜈 holds. 
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Proof from Lemma 2, the steady state value of 𝜆 is the average of its the initial states. Let the new 𝑡0, 𝑡0𝑛𝑒𝑤
=

𝑡∗, we can write the following for 𝜆𝑖, 𝑖 ∈ ℤ𝑁:  

 

Lim
t→∞

𝜆𝑖(𝑡)  =
1

𝑁
∑ 𝜆𝑗(𝑡0new

)

𝑁

𝑗=1

=
1

𝑁
( ∑ 𝜆𝑗(𝑡0new

+ 𝜆𝜅
∗

𝑁

𝑗=1;𝑗≠𝜅

)) 

 

by replacing 𝜆𝜅
∗  using (13), we obtain 

 

Lim
t→∞

𝜆𝑖(𝑡)  =
1

𝑁
(∑ 𝜆𝑗(𝑡∗) + 𝑁𝜆𝑑 − (𝑁 − 1)𝜆𝜅(𝑡∗)𝑁

𝑗=1;𝑗≠𝜅 )  

                    =
1

𝑁
(𝑁𝜆d + ∑ (𝜆𝑗(𝑡∗) − 𝜆𝜅(𝑡∗))𝑁

𝑗=1;𝑗≠𝜅 )  

                    = 𝜆d +
1

𝑁
∑ 𝜌𝑗

𝑁
𝑗=1;𝑗≠𝜅  = 𝜆∞, (14) 

 

where 𝜌𝑗 = 𝜆𝑗(𝑡∗) − 𝜆𝜅(𝑡∗). Since |𝜆𝜅(𝑡∗) − 𝜆𝑗(𝑡∗)| ≤ 𝜈 for all 𝑗, 𝑗 ≠ 𝜅, then −𝜈 ≤ 𝜌𝑗 ≤ 𝜈. Thus, (14) can 

be written as: 

 

𝜆d −
𝑁 − 1

𝑁
𝜈 ≤ 𝜆∞ ≤ 𝜆d +

𝑁 − 1

𝑁
𝜈 

⇒ 𝜆d − 𝜈 ≤ 𝜆∞ ≤ 𝜆d + 𝜈  
⇒ |𝜆∞ − 𝜆d| ≤ 𝜈. 

 

Then, the next problem is to compute the value of 𝑡̅ such that at 𝑡∗ = 𝑡̅ + 𝑡0old
, |𝜆𝑖(𝑡∗) − 𝜆𝑗(𝑡∗)| ≤ 𝜈 holds. 

There are two steps that will be involved to compute 𝑡̅. For the first step, we first write the solution of (6) for 

all agents as : 

 

𝜆(𝑡 + 1) = 𝑃(𝑡) ⋯  𝑃(𝑡0)𝜆(𝑡0) = 𝑃(𝑡, 𝑡0)𝜆(𝑡0) 

 

Let 𝑇 ∈ ℤ be the bounded communication interval where the union of graph sequence 𝒢(𝑡) is strongly 

connected at least every T time steps. The following lemma [28] shows that, under (A5), the difference 

between 𝑃(𝑡, 𝑡0) and 1𝑁𝑞(𝑡0) decays geometrically where 𝑞(𝑡0) = [𝑞1(𝑡0), ⋯ , 𝑞𝑁(𝑡0)]′ ∈ ℝ𝑁 is a stochastic 

vector. 

Lemma 4. [28] Consider the product of the stochastic matrices 𝑃(𝑡, 𝑡0). Let (A5) be satisfied, then for each 

𝑡0 ≥  0 there is a stochastic vector 𝑞(𝑡0) such that for all 𝑖, 𝑗 ∈ ℤ𝑁 and 𝑡 ≥  𝑡0. 

 

|[𝑃(𝑡, 𝑡0)]𝑖𝑗 − 𝑞𝑗(𝑡0)| ≤  2 ((1 −
1

𝑁𝑁𝑇
)

1
𝑇

)

𝑡−𝑡0

 

 

The reader is referred to [28] for the proof of Lemma 4. In view of Lemma 2, we know that  

lim
𝑡→∞

𝑃(𝑡, 𝑡0) =
1

𝑁
1𝑁1𝑁′. Applying this to Lemma 4 and using 𝑡0old

as the initial time, under (A5), we get 

|[𝑃(𝑡∗, 𝑡0old
)]

𝑖𝑗
−

1

𝑁
| ≤ 𝜇, with 

 

𝜇 = 2 ((1 −
1

𝑁𝑁𝑇)

1

𝑇
)

�̅�

 (15) 

 

where 𝑡̅ = 𝑡∗ − 𝑡0old
. If 𝜇 is known, then 𝑡̅ can be computed using (15). The second step is to derive 𝑡̅ as a 

function of 𝜈 where |𝜆𝑖(𝑡∗) − 𝜆𝑗(𝑡∗)| ≤ 𝜈 for all 𝑖, 𝑗 ∈ ℤ𝑁, which will be given next. 

Let |[𝑃(𝑡∗, 𝑡0old
)]

𝑖𝑗
−

1

𝑁
| ≤ 𝜇, for all 𝑖, 𝑗 ∈ ℤ𝑁then |[𝑃(𝑡∗, 𝑡0old

)]
𝑖𝑗

− [𝑃(𝑡∗, 𝑡0old
)]

ℓ𝑗
| ≤  2𝜇 for all 

𝑖, 𝑗, ℓ ∈ ℤ𝑁. Since each 𝜆𝑖(𝑡∗) = ∑ [𝑃(𝑡∗, 𝑡0old
)]

𝑖𝑗
𝜆𝑗(𝑡0old

)𝑁
𝑗=1  and 𝜆ℓ(𝑡∗) = ∑ [𝑃(𝑡∗, 𝑡0old

)]
ℓ𝑗

𝜆𝑗(𝑡0old
)𝑁

𝑗=1 , 

𝑖, ℓ ∈ ℤ𝑁, we can write 𝜆𝑖(𝑡∗) − 𝜆𝑘(𝑡∗) = ∑ ([𝑃(𝑡∗, 𝑡0old
)]

𝑖𝑗
− [𝑃(𝑡∗, 𝑡0old

)]
𝑘𝑗

)𝑁
𝑗=1 𝜆𝑗(𝑡0old

), thus 
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|𝜆𝑖(𝑡∗) − 𝜆ℓ(𝑡∗)| ≤ ∑ |([𝑃(𝑡∗, 𝑡0old
)]

𝑖𝑗
− [𝑃(𝑡∗, 𝑡0old

)]
ℓ𝑗

) 𝜆𝑗(𝑡0old
)|

𝑁

𝑗

 

= ∑ |([𝑃(𝑡∗, 𝑡0old
)]

𝑖𝑗
− [𝑃(𝑡∗, 𝑡0old

)]
ℓ𝑗

)| | 𝜆𝑗(𝑡0old
)|

𝑁

𝑗=1

 

≤ ∑ 2𝜇|𝜆𝑗(𝑡0old
)| = 2𝜇‖𝝀(𝑡0old

)‖
1

= 𝜈

𝑁

𝑗=1

 

 

for all 𝑖, ℓ ∈ ℤ𝑁. Substituting (15) to the above result, we have 

 

𝑡̅ =

ln(
𝜈

4‖𝝀(𝑡0old
)‖

1

) 

ln((1−
1

𝑁𝑁𝑇)

1
𝑇)

 (16) 

 

Remark 5. The value ‖𝝀(𝑡0old
)‖

1
 for 𝑡0𝑜𝑙𝑑

= 0 can be estimated by defining the ball that contains the 

possible initial value of 𝜆𝑖 for all 𝑖. Whereas for the subsequent 𝑡0𝑜𝑙𝑑
> 0, ‖𝝀(𝑡0old

)‖
1
 can be estimated by 

utilizing the previous value of 𝜈 and 𝜆𝑑 . 
 

 

3. RESULTS AND DISCUSSION 

3.1.  Main theorem and discussion for case LF 

By having all necessary results established in section 2.3, we can present the main result of case LF: 

Theorem 1: Given system of 𝑁 agents (1)-(2) with control input 𝑢𝑖(𝑡) given by (3), observer dynamics given 

by (4)-(5), reference generator dynamics given by (6)-(7) where the communication graph 𝒢(𝑡) is directed 

leader-follower with 𝜅 ∈ ℤ𝑁 as the leader node, and reference-output 𝑦𝑖,𝑟𝑒𝑓(𝑡) given by (8). Let 𝜆𝑑 be the 

desired scaling factor of the formation and setting 𝜆𝜅(𝑡0) = 𝜆𝑑. Suppose (A1)-(A4) are satisfied, then:  

a. yi(t) →  yi,ref(t) exponentially for all i ∈ ℤN 

b. yi,ref(t) → δiλd + Qw̅(t) exponentially for all i ∈ ℤN, and 

c. lim
t→ ∞

(yi(t) − yj(t)) = λd(δi − δj) for all i, j ∈ ℤN 

Proof: 

a. We first define �̃�𝑖(𝑡) = 𝑥𝑖(𝑡) − Π𝜆𝑖
𝜆𝑖(𝑡) − Π𝑤𝑖

𝑤𝑖(𝑡), and 𝜁𝑖(𝑡) = ∑ 𝑎𝑖𝑗(𝑡)(𝜆𝑖(𝑡) − 𝜆𝑗(𝑡))𝑗 ∈𝒩𝑖(𝑡) , 

𝜙𝑖(𝑡) = ∑ 𝑎𝑖𝑗(𝑡)(𝑤𝑖(𝑡) − 𝑤𝑗(𝑡))𝑗∈ 𝒩𝑖(𝑡)  for notational simplification. By noting the definition of 𝑝𝑖𝑗(𝑡), 

we can write the time evolution of �̃�𝑖 as: 

 

�̃�𝑖(𝑡 + 1) = 𝐴𝑖𝑥𝑖(𝑡) + 𝐵𝑖 (𝐾𝑖�̂�𝑖(𝑡) + 𝐿𝜆𝑖
𝜆𝑖(𝑡) + 𝐿𝑤𝑖

𝑤𝑖(𝑡))  

                             −Π𝜆𝑖
(𝜆𝑖(𝑡) − 𝛾 𝜁𝑖(𝑡))  − Π𝑤𝑖

𝑆(𝑤𝑖(𝑡) − 𝛾 𝜙𝑖(𝑡)) 

 

By replacing 𝐿𝜆𝑖
= Γ𝜆𝑖

− 𝐾𝑖Π𝜆𝑖
, 𝐿𝑤𝑖

= Γ𝑤𝑖
− 𝐾𝑖Π𝑤𝑖

, and �̂�𝑖 = 𝑥𝑖 − 𝜖𝑖, we can write 

 

�̃�𝑖(𝑡 + 1) = (𝐴𝑖 + 𝐵𝑖𝐾𝑖)𝑥𝑖(𝑡) − 𝐵𝑖𝐾𝑖𝜖𝑖(𝑡) + 𝐵𝑖 ((Γ𝜆𝑖
− 𝐾𝑖Π𝜆𝑖

)𝜆𝑖(𝑡) + (Γ𝑤𝑖
− 𝐾𝑖Π𝑤𝑖

)𝑤𝑖(𝑡)) 

                   −(𝐴𝑖Π𝜆𝑖
+ 𝐵𝑖Γ𝜆𝑖

)𝜆𝑖(𝑡) + Π𝜆𝑖
𝛾𝜁𝑖(𝑡) − (𝐴𝑖Π𝑤𝑖

+ 𝐵𝑖Γ𝑤𝑖
)𝑤𝑖(𝑡) + Π𝑤𝑖

𝛾𝜙𝑖(𝑡). 

 

After some algebra we have 

 

�̃�𝑖(𝑡 + 1) = (𝐴𝑖 + 𝐵𝑖𝐾𝑖)�̃�𝑖(𝑡) − 𝐵𝑖𝐾𝑖𝜖𝑖(𝑡) + Π𝜆𝑖
𝛾𝜁𝑖(𝑡) + Π𝑤𝑖

𝛾𝜙𝑖(𝑡)      

 

From [1] and [35], under (A3), we know that 𝜁𝑖(𝑡), and 𝜙𝑖(𝑡) approach zero exponentially for all 𝑖 ∈ ℤ𝑁. 

As for 𝜖𝑖, we can see that: 

 

𝜖𝑖(𝑡 + 1) = 𝑥𝑖(𝑡 + 1) − �̂�𝑖(𝑡 + 1) 

  = 𝐴𝑖(𝑥𝑖(𝑡) − �̂�𝑖(𝑡)) + 𝐻𝑖𝐶𝑖(𝑥𝑖(𝑡) − �̂�𝑖(𝑡)) 

  = (𝐴𝑖 + 𝐻𝑖𝐶𝑖)𝜖𝑖(𝑡) 
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since (𝐴𝑖 + 𝐻𝑖𝐶𝑖) is Schur for all 𝑖 ∈ ℤ𝑁, 𝜖𝑖(𝑡) approach zero exponentially. Lastly, since 𝐴𝑖 + 𝐵𝑖𝐾𝑖 is 

also Schur, from (17), �̃�𝑖(𝑡) →  0 exponentially for all 𝑖 ∈ ℤ𝑁. From the above analysis, 𝑥𝑖(𝑡) →
Π𝜆𝑖

 𝜆𝑖(𝑡) + Π𝑤𝑖
𝑤𝑖(𝑡) exponentially. Whereas, from (10) and (12) we have 𝐶𝑖Π𝜆𝑖

= 𝛿𝑖 𝑎𝑛𝑑 𝐶𝑖Π𝑤𝑖
= 𝑄. 

Thus, 𝑦𝑖(𝑡) → 𝛿𝑖 𝜆𝑖(𝑡) + 𝑄𝑤𝑖(𝑡) exponentially. And so, 𝑦𝑖(𝑡) →  𝑦𝑖,𝑟𝑒𝑓(𝑡) exponentially for all 𝑖 ∈ ℤ𝑁 is 

shown. 

b. From [1] and [35], under (A3), λ and 𝑤 reach consensus exponentially. From [35], 𝑤 converge to some 

trajectories �̅�(𝑡), which is a solution to the dynamics 𝑤0(𝑡 + 1) = 𝑆𝑤0(𝑡). Whereas for λ, from Lemma 

1, lim
𝑡→∞

𝜆𝑖(𝑡)  = 𝜆𝜅(𝑡0) and since 𝜆𝜅(𝑡0) = 𝜆d, therefore lim
𝑡→∞

𝜆𝑖(𝑡) = 𝜆d . Thus, 𝑦𝑖,𝑟𝑒𝑓(𝑡) = 𝛿𝑖𝜆𝑖(𝑡) +

𝑄𝑤𝑖(𝑡) → 𝛿𝑖𝜆d + 𝑄�̅�(𝑡) exponentially for all 𝑖 ∈ ℤ𝑁 is shown. 

c. From proof a, we have that lim
𝑡→∞

𝑦𝑖(𝑡) = 𝑦𝑖,𝑟𝑒𝑓(𝑡) holds. Whereas from proof b, we have that 

lim
𝑡→∞

𝑦𝑖,𝑟𝑒𝑓(𝑡) = 𝛿𝑖𝜆d + 𝑄�̅�(𝑡). Therefore, lim
𝑡→∞

 𝑦𝑖(𝑡) = 𝛿𝑖𝜆d + 𝑄�̅�(𝑡). Evaluating lim
𝑡→∞

(𝑦𝑖(𝑡) − 𝑦𝑗(𝑡)) =

𝜆d(𝛿𝑖 − 𝛿𝑗), the result is shown. (q.e.d). 

Remark 4. In Case LF, the leader node is also the leader agent that can change the formation scaling factor. 

The leader agent can change its λ at any time and it is guaranteed that the scaling factor of the formation will 

converge to the λ of the leader agent. 

By using algorithm proposed in this section, agents are not just achieving scalable formation, but the 

formation also moves along trajectory of �̅�(𝑡). By noting that eigenvalues of 𝑆 lie on imaginary axis, the 

trajectory of �̅�(𝑡) could be in a form of step (constant) function, ramp function, and sinusoid function. When 

�̅�(𝑡) is a step function, it can then be used to shift the formation to a different location. Meanwhile, when 

�̅�(𝑡) is a ramp function, it can be used to make the formation moves continuously like a group of birds flying 

in a formation. Lastly, when �̅�(𝑡) is a sinusoid function, the formation can be made to move in a circle. This 

is useful when we want the MAS to perform surveillance while in formation. These three functions can be 

combined to create a composite trajectory that suit the purpose of the operation. 

We note that assumption (A4) is needed to guarantee the existence of feedback matrices 𝐿𝜆𝑖
 and 𝐿𝑤𝑖

. 

These matrices are needed to track the reference output, 𝑦𝑖,𝑟𝑒𝑓. Therefore, if assumption (A4) is violated, the 

scalable formation cannot be achieved. It is easy to see that to satisfy (A4), the rank of the matrices stated in 

assumption (A4) must be 𝑛𝑖 + 𝑝. From here, we also know that 𝑚𝑖 ≥ 𝑝 is necessary for assumption (A4) to 

be satisfied, where 𝑚𝑖 is the number of columns of 𝐵𝑖 (it is also the dimension of 𝑢𝑖 and 𝑝 is the number of 

rows of 𝐶𝑖. This means that the number of control input 𝑢𝑖 must be at least equal to the number of outputs it 

will regulate. For example, a 2-dimensional problem where 𝑦𝑖 ∈ ℝ2, needs at least 2 inputs that deal with the 

dynamics in both dimensions. 

 

3.2.  Main theorem and discussion for case LLU 

By having all necessary results established in section 2.4, we can state the main result of case LLU: 

Theorem 2: Given system of 𝑁 agents (1)-(2) with control input 𝑢𝑖(𝑡) given by (3), observer dynamics given 

by (4)-(5), reference generator dynamics given by (6)-(7) where the communication graph 𝒢(𝑡) is undirected 

with 𝑇 as the bounded communication interval, and reference-output 𝑦𝑖,𝑟𝑒𝑓 (𝑡) given by (8}). Let 𝜆𝑑 be the 

desired scaling factor of the formation, the desired error bound between 𝜆∞ and 𝜆𝑑 be 𝜈, the value 𝑡̅ be 

computed using (16), and also let agent 𝜅 be designated as the leader agent and setting 𝜆𝜅 at 𝑡∗ = 𝑡̅ + 𝑡0𝑜𝑙𝑑
, 

for all 𝑡0𝑜𝑙𝑑
≥  0 following (13). Suppose (A1)-(A2) and (A4)-(A5} are satisfied, then: 

a. yi(t) →  yi,ref(t) exponentially for all i ∈ ℤN, 

b. yi,ref(t) → δiλ∞ + Qw̅(t) exponentially for all i ∈ ℤN, and 

c. lim
t→ ∞

(yi(t) − yj(t)) = λ∞(δi − δj) for all i, j ∈ ℤN, 

where |𝜆∞ − 𝜆𝑑| ≤  𝜈. 

Proof: 

a. Case LLU uses the same set of control input, observer dynamics, reference generator dynamics and 

reference-output as Case LF. They only differ in the communication graph type. Therefore, the first point 

of Theorem 2 can be proven in the same way as in the first point of Theorem 1. 

b. From [1] and [35], under (A5), λ and 𝑤 reach consensus exponentially to some consensus value 𝜆∞ and 

some consensus trajectories �̅�(𝑡). These show that 𝑦𝑖,𝑟𝑒𝑓(𝑡) → 𝛿𝑖𝜆∞ + 𝑄�̅� (𝑡) exponentially holds for all 

𝑖 ∈ ℤ𝑁.  

c. From proof a, lim
𝑡→∞

𝑦_𝑖(𝑡) = 𝑦𝑖,𝑟𝑒𝑓(𝑡) holds. Whereas, from proof b, we have that lim
𝑡→ ∞

𝑦𝑖,𝑟𝑒𝑓(𝑡) = 𝛿𝑖𝜆∞ +

𝑄�̅�(𝑡). Therefore, lim
𝑡→∞

𝑦𝑖(𝑡) = 𝛿𝑖𝜆∞ + 𝑄�̅�(𝑡). Evaluating lim
𝑡→∞

(𝑦𝑖(𝑡) − 𝑦𝑗(𝑡)) = 𝜆∞(𝛿𝑖 − 𝛿𝑗), the 

premise holds. 
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Having computed 𝑡̅ using (16), by choosing the reset value 𝜆𝜅 at 𝑡∗ = 𝑡̅ + 𝑡0old
 following (13), from Lemma 

3 we have that |𝜆∞ − 𝜆d| ≤ 𝜈 for the chosen value of 𝜈 >  0. (q.e.d) 

Remark 6. For case LLU, to change the formation scaling factor, the leader agent cannot change its λ to a 

new value at any time. Furthermore, the leader agent cannot determine the formation is scaling factor for the 

first consensus process. However, in case LLU, any agent can be designated as the leader agent during the 

operation as long that agent is given the authority to reset its λ. In other words, the leader agent can be 

changed during the operation by just giving the reset authority to the new leader agent. 

As we will see in the numerical examples, due to the waiting time 𝑡̅, scalable formation under 

leaderless undirected network has longer time interval between different formation size compared to the case 

under leader-follower network. The most important step in computing 𝑡̅ is in defining 𝜈 (the error bound) and 

computing ‖𝝀(𝑡0old
)‖

1
. The (16) is applicable to any other systems utilizing consensus algorithm under  

time-varying undirected network. Thus, the result presented in this work can be used in general situation. 

One example is on consensus network; any agent that can compute 𝑡̅ using (16) can estimate the consensus 

value of the network by just computing 𝑡̅ and monitoring its own state.  

 

3.3.  Numerical examples for cases LF and LLU 

Two numerical examples of the proposed method will be given in this subsection, one for each case. 

For both examples, 𝑁 = 3, and agent 3 is chosen as the leader agent. The communication network consists of 

two graphs 𝒢1 and 𝒢2 with 𝒜1 = [𝑎𝑖𝑗(1)] and 𝒜2 = [𝑎𝑖𝑗(2)] being the associated adjacency matrices. 𝒢(𝑡) 

switches between 𝒢1 and 𝒢2 at every time step starting from 𝒢1, and the graphs are chosen such that 𝒢1 ∪ 𝒢2 

satisfies (A3) and (A5) for each example. The system considered in both examples are the discrete-time 
version of the ones used in [3]: 

 

A1 = [
1 0.0998 0.0047
0 0.9953 0.0905
0 0.0905 0.8144

] , 𝐴2 = [
1 0.0978 0.0123
0 0.9387 0.2200
0 0.3667 0.4987

] 

 

A3 = [
1 0.0995 0.0296
0 0.9852 0.5881
0 0.0490 0.9558

] , 𝐵 = [
0
0
1

] ,   𝐶 = [
0
0
1

]

′

, 𝑆 = [
1 1
0 1

], 

 

Where 𝐵1 = 𝐵2 = 𝐵3 = 𝐵, 𝐶1 = 𝐶2 = 𝐶3 = 𝐶, and 𝑄 = [1  0]. Additionally, 𝛿1 = 1, 𝛿2 = 2 and 𝛿3 = 5. 

The first state in the system above is the position, while the second and third states are the velocity and the 
actuator state. With the above choice of systems, (A1), (A2) and (A4) are satisfied by all agents. The 

formation in the examples is a one-dimensional formation since the output of agents has dimension of 1. 

Two-dimensional formation is possible when the output of agents has dimension of 2. Simulation result for 

each case will be given in the following. 

 

3.4.  Numerical example for case LF 

For Case LF, 𝑎12(1) = 𝑎23(2) = 1, while other entries of 𝒜1 and 𝒜2 are zeros. Note that 𝒢1 ∪ 𝒢2 

is uniformly connected which satisfies (A3), and node 3 is the leader node. To show how the proposed 

method perform to achieve the scalable formation determined by agent 3, the initial condition for 𝑥, �̂�, 𝑤 and 

λ are set to be arbitrary except for initial state of 𝜆3 which are 𝜆3(0) = 1, 𝜆3(150) = 2 and 𝜆3(300) = 0.5. 

Figure 1 shows the time evolution of 𝑦𝑖 and we can see that agents track a ramp trajectory with the same 

gradient. Agents are also separated by 𝛼(𝛿𝑖 − 𝛿𝑗), 𝑖, 𝑗 ∈ ℤ3, where 𝛼 ∈ ℝ+ is determined by agent 3.  

 

3.5.  Numerical example for case LLU 

For Case LLU, 𝑎12(1) = 𝑎21(1) = 𝑎23(2) = 𝑎32(2) = 1, while other entries of 𝒜1 and 𝒜2 are 

zeros. Note that 𝒢1 ∪ 𝒢2 is uniformly strongly connected which satisfies (A3). Meanwhile, the bounded 

communication interval 𝑇 = 2. To show how the proposed method perform to achieve the scalable formation 

determined by agent 3, the initial condition for 𝑥, �̂�, and 𝑤 are set to be arbitrary. The initial condition for 

𝜆𝑖(0), 𝑖 ∈ ℤ3 is specified to be within a ball of ℬ(0,0.1). Let 𝜆d be 5 and 10 and let the actual formation 

scaling factor to be 0.9 𝜆d ≤ 𝜆∞ ≤  1.1 𝜆d. These imply that the first 𝜈 = 0.5 and the second 𝜈 = 1. To 

compute the first and the second 𝑡̅, we use |𝝀(𝑡0)|1 = 0.3 and |𝝀(𝑡0)|1 = 16 respectively. 

From the data above, the first 𝑡̅ = 1280 and the second 𝑡̅ = 6060. Therefore, we set 𝜆3(𝑡0) for  

𝑡0 = 1280 and 𝑡0 = 7340 following (13). Figure 2 shows the time evolution of 𝑦𝑖 and we can see that agents 

track a ramp trajectory with the same gradient. Agents are also separated by 𝛼(𝛿𝑖 − 𝛿𝑗), 𝑖, 𝑗 ∈ ℤ3, where 

𝛼 ∈ ℝ+ is determined by agent 3. 
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Figure 1. Plots of 𝑦𝑖(𝑡) againts 𝑡 for case LF 

 

 

 
 

Figure 2. Plots of 𝑦𝑖(𝑡) againts 𝑡 for case LLU 

 

 

4. CONCLUSION 

Scalable formation for non-identical linear system agents under a time-varying network has been 

presented in this paper for two graph cases. The first graph case is LF or leader- follower network. This is the 

common network setting used in any other scalable formation problem. Leader-follower network makes the 

formation scaling adjustment easy during the operation since the formation size will always follow the initial 

state of the leader’s virtual state (𝜆). The leader agent can change the formation size at any time. However, 

changing leader agent during operation is not possible due to the leader- follower network and spanning tree 

restriction. The second graph case is LLU or leaderless undirected network. This is the first work on scalable 

formation that uses undirected network, and it allows for a leader agent to determine the formation size. 

Although the leader agent cannot change the formation size any time (it needs to wait for 𝑡̅), the leader agent 

can be changed during the operation, and it is useful when the leader agent is damaged or having technical 

issues. The presented method can also be used to estimate the consensus value of an undirected network for 

more general problem. 

The scalable formation is achieved, via internal model principle, by having agents track a  

reference-output with bias. The bias has two components which are 𝛿𝑖 and 𝜆𝑖. The former is a static 

component where the desired output of agents is specified, whereas the latter is a dynamic component 

updated in a distributed manner. To make the reference- tracking possible, feedback matrices need to be 

computed and the system’s matrices must satisfy certain requirements (assumptions (A1) and (A4)). The 

contribution from this work, scalable formation formulation for non- identical agents, makes formation with 

size adjustment possible to be developed using different type of agents (with different mathematical model). 

Several types of agents can work cooperatively to be used in surveillance, searching mission, and defense 

formation. Thus, the proposed method opens more application for MASs. We take note that the  

output-feedback internal model principle used in this work is not robust to model mismatch. A robust 

scalable formation for non-identical agents is a possible future research direction. 
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