
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 12, No. 3, June 2022, pp. 3226∼3237
ISSN: 2088-8708, DOI: 10.11591/ijece.v12i3.pp3226-3237 ❒ 3226

An efficient cloudlet scheduling via bin packing in cloud
computing

Amine Chraibi, Said Ben Alla, Abdellah Ezzati
Faculty of Science and Technology, Laboratory of Emerging Technologies Monitoring, Hassan First University of Settat, Settat, Morocco

Article Info

Article history:

Received May 10, 2021
Revised Jan 14, 2022
Accepted Jan 31, 2022

Keywords:

Bin packing problem
Cloud computing
CloudSim
Particle swarm optimisation
algorithm
Task scheduling

ABSTRACT

In this ever-developing technological world, one way to manage and deliver ser-
vices is through cloud computing, a massive web of heterogenous autonomous
systems that comprise adaptable computational design. Cloud computing can be
improved through task scheduling, albeit it being the most challenging aspect to
be improved. Better task scheduling can improve response time, reduce power
consumption and processing time, enhance makespan and throughput, and in-
crease profit by reducing operating costs and raising the system reliability. This
study aims to improve job scheduling by transferring the job scheduling prob-
lem into a bin packing problem. Three modifies implementations of bin packing
algorithms were proposed to be used for task scheduling (MBPTS) based on the
minimisation of makespan. The results, which were based on the open-source
simulator CloudSim, demonstrated that the proposed MBPTS was adequate to
optimise balance results, reduce waiting time and makespan, and improve the
utilisation of the resource in comparison to the current scheduling algorithms
such as the particle swarm optimisation (PSO) and first come first serve (FCFS).

This is an open access article under the CC BY-SA license.

Corresponding Author:

Said Ben Alla
Department of Mathematics and Computer Science, Hassan First University of Settat
577 Casablanca Road, Settat, Morocco
Email: saidb_05@hotmail.com

1. INTRODUCTION
Cloud computing provides on-demand services, including networks, servers, storage, and applications

through its massive and effective computing paradigm. The National Institute of Standards and Technology
(NIST) defines it as a developing technology that frequently offers accessible and on-demand network access
to shared computing resources [1]. The typical models of the cloud are: infrastructure as a service (IaaS),
platform as a service (PaaS), and software as a service (SaaS) [1].

Apart from that, task scheduling, which has gained traction nowadays, introduces the option of choos-
ing the resources distribution between various tasks. It should be noted that each workflow or tasks may
have scalable scheduling on multiple virtual machines (VMs). Regarding task scheduling, its nondeterministic
polynomial time (NP) nature may cause issues that stemmed from the resources’ unstable characteristics and
dynamic nature [2]. In the process, the task scheduler accepts the queued tasks from the users and assigns the
tasks to available resources based on the task resources parameters [2]. The research problem is to improve
task scheduling in cloud computing by reducing the execution time of queuing tasks and enhancing the use of
resources.

Journal homepage: http://ijece.iaescore.com

Int J Elec & Comp Eng ISSN: 2088-8708 ❒ 3227

There have been many studies recently on ways to improve task scheduling in cloud computing. The
studies rely on algorithms that demonstrate their efficiency in task scheduling. For reducing energy consump-
tion and making a whole system live longer, Kumar and Alam [3] proposed a novel scheduling algorithm based
on dynamic voltage scaling (DVS) and earliest deadline first (EDF) algorithm. Ouhame and Yadi [4] proposed
a new technique to improve the data allocation system in virtual machine (VM) for cloud computing based on a
modified grey wolf optimization algorithm. Aziz and Ninggal [5] propose a failure-aware workflow method for
scheduling parallel applications to improve the reliability and makespan metrics on homogeneous systems. To
improve the makespan, Aziz et al. [6] developed a failure-aware workflow scheduling algorithm to reprocess
the failed job and assign them to the unused resources. It is also observed that the total cost can be reduced
through an energy consumption model that is composed of the processor’s execution and transmission cost [7].
Furthermore, the improvement of the load deviation, the resource utilisation (RU) and the makespan can be
achieved through the proposed algorithm in the paper [8] denoted hybrid load balance based on genetic algo-
rithm (HLBGA). Similarly, resource utilisation, load balancing, and excellent performance can also be achieved
by implementing a novel architecture that is based on the particle swarm optimisation (PSO) and the dynamic
dispatch queues algorithms [2]. Moreover, Harun et al. [9] introduced a genetic algorithm GA-based task
scheduler algorithm for a mobile robot in the ground to find the optimum global travel itinerary for picking and
delivering products at different locations. The execution time of task scheduling and the throughput of cloud
computing can also be improved through a novel dynamic task scheduling algorithm using GA by considering
the scalability of the cloud [10]. In addition, the total execution time can also be reduced by using the algorithm
introduced by Gabi et al. [11] that is based on the orthogonal Taguchi-based cat swarm algorithm. Apart from
that, the hybrids of simulated annealing (SA) with PSO and fuzzy logic with PSO have been demonstrated to
impact makespan, waiting time, and other metrics positively [12]. Also, in order to reduce the waiting time
of tasks in a queue’s set, another smart scheduler is proposed by Abdalkafor and Alheeti in the paper [13].
Additionally, to improve the latency, response time, and amount of data used in a fog node Alsmadi et al. [14]
proposed a RR based scheduler. To minimise the overall execution time of a set of tasks of a directed acyclic
graph (DAG), Edward and Elcock [15] proposed an algorithm based on the ant colony optimisation (ACO)
algorithm denoted ranking-ant colony system (rACS). Krishnadoss and Jacob [16] proposed a hybrid algorithm
for task scheduling based on oppositional-based learning and Cuckoo search algorithm to assign users tasks and
minimise the cost and makespan of the system. Khorsand and Ramezanpour [17] proposed an improved task
scheduler based on the best-worst methods (BWM) and the technique for order preference by similarity to ideal
solution (TOPSIS) to optimise metrics like energy consumption, makespan. In [18] developed an efficient task
scheduling method to enhance resource efficiency and fault tolerance utilising a dynamic load-based distributed
queue for dependent jobs. In [19] developed an ACO method to select the best virtual machine for executing a
cloudlet to reduce energy consumption and execution time. We also proposed two tasks scheduling works [20]
and [21]; the first accelerated the PSO task scheduling algorithm, and the second improved the makespan and
other performance metrics using deep q-learning.

As solutions, this study proposes and compares novel alternatives with PSO. The proposed alternatives
were acquired by converting the task scheduling problem into a bin packing problem. In addition, the bin
packing algorithm was utilised by comparing measures of task scheduling such as waiting time, makespan, and
resource utilisation. In order to improve the reliability of the proposed method, we compare the results of our
proposed algorithms with the PSO, the most popular algorithm in the scheduling field. We also used the first
come first serve (FCFS), which is the default scheduling algorithm used in CloudSim. Section 2 of this paper
describes studies related to the current research, while section 3 describes the proposed algorithms, in which
its experimental setup and simulation results are discussed in section 4, section 5 concludes the paper.

2. PROPOSED TASK SCHEDULING ALGORITHMS
2.1. Task scheduling problem

Task scheduling is an essential approach in cloud computing to resolve many issues, especially the
overlay of cloud provider on the users’ requirements such as maximum profit and quality of service (QoS) [22].
The cloud provider attempts to minimise waiting time and effectively utilise the VMs while simultaneously
minimising the makespan. Figure 1 shows that a significant set of distinct tasks with varying parameters are
raised by various users for the cloud provider to manage, which are later assigned to the available VMs.

In this regard, various optimisation algorithms are used to fully utilise VMs and find a better approach

An efficient cloudlet scheduling via bin packing in cloud computing (Amine Chraibi)

3228 ❒ ISSN: 2088-8708

to reduce the overall execution time, which is our primary objective. To do so, we depend on (1) in calculating
the makespan and (2) in calculating the execution time in a single VM j [23].

Task 1
Task 2
Task 3

Task n

Broker

Tasks scheduler

Task waiting
queue

Cloud provider

VM VM ...
Host

VM VM ...
Host

...

...
Data center

Figure 1. Cloud scheduling architecture

Makespan = max(ExVM1
, ExVM2

, . . . , ExVMj
, . . . , ExVMm

) (1)

ExVMj
=

n∑
i=0

Exj(Cloudleti) (2)

where, VMj is the VM j, Cloudleti is the processing power of task i in million instructions per second
(MIPS) and Exj(Cloudleti) is the execution time of cloudlet i on VMj , Makespan is the overall execution
time. Figure 2 shows an example of the process using FCFS algorithm where the number of VMs is 2, and the
number of tasks is 7.

1(6) 3(8) 5(12) 7(15)

2(4) 4(18) 6(20)

VM1

VM2

0 6 14 26 41

0 4 22 42

ExVM1 = 6 + 8 + 12 + 15 = 41
ExVM2 = 4 + 18 + 20 = 42

Makespan = Max(ExVM1, ExVM2) = 42

Serial Number Burst time of
task

1 6

2 4

3 8

4 18

5 12

6 20

7 15

Figure 2. Makespan calculation example

2.2. Bin packing
Bin packing problem is an infamous issue in combinatorial optimisation [24]-[26]. It pertains to the

given n objects (items) of various values and containers (bins). Each has a max capacity Cmax. The primary
purpose is to allocate each object to a container in ways that will minimise the total number of used containers.
It can be considered that the objects have smaller values than container capacity. The following (3) is used [27]:

min

n∑
i=1

yi

subject to
n∑

j=1

wjxij ≤ Cmax × yi i = 1, · · · , n

n∑
i=1

xij = 1 j = 1, · · · , n

yi ∈ {0, 1} i = 1, · · · , n
yij ∈ {0, 1} i = 1, · · · , n j = 1, · · · , n

(3)

where, yi = 1 shows that container i is operated (yi = 0 otherwise), and xij shows that object j should be
packaged in container i and wj the weight of object j. In addition, the constraint

∑n
i=1 xij = 1 assures that

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 3226–3237

Int J Elec & Comp Eng ISSN: 2088-8708 ❒ 3229

each object j is packed just one time, while inequalities
∑n

j=1 wjxij≤Cmax×yi ensure that the capacity Cmax

constraint is respected for all containers that are used [27]. Figure 3 illustrates the bin packing problem. We
have seven initial objects of different sizes that we want to optimally place on the four given containers to use
only a few of them.

4

3

5

1

4

2

1

2

3

4

5

6
4

3

Bin 1 Bin 2 Bin 3 Bin 4

Bins (Containers, Blocks...) max capacity = 8Initial objects (elements)

5
4

1

2

47

4

Figure 3. Illustration of the bin packing problem

2.3. Proposed algorithms
This study focuses on a novel method for task scheduling based on bin packing problem algorithms

such as first-fit, next-fit, and best-fit algorithms [28]. It aims to improve efficiency through makespan optimi-
sation, reducing waiting time, improving load balancing, and increasing resource utilisation. The approaches
proposed in this study intent on reformulating the task scheduling problem to construct a bin packing problem
by considering the VMs as bins with a max capacity Cmax, in addition to considering the tasks as items to be
placed into those bins based on their length of tasks, which is also referred to as the weight of the item. The
proposed approaches also aim to minimise makespan – the maximum capacity to be used in the bin packing
problem – instead of minimising the number of bins. The maximum capacity of the bins is calculated using
the proposed (4) which we consider as the perfect makespan to approach. Where, Ti represents the average
execution times of task i on each available VM, m denotes the number of available VMs, while n is the total
number of tasks.

Cmax =

∑n
i=1 Ti

m
(4)

After defining the bin packing parameters, the bin packing algorithm is implemented to solve the
problem. Figure 4 describes the workflow of the whole scheduling process, where our proposed work is the
used scheduler. Following are three modified algorithms to be used to solve the problem of tasks scheduling
and integrated essentially in the cloud broker. We iterate the first and second algorithms based on the total
number of tasks. The third algorithm was iterated depending on the total number of tasks and the total number
of VMs.

Put the submitted
user’s task into a global

queue

Calculate the
execution time of

each taken task for
every VM

Take a fixed-size
number of tasks
from the global

queue called the
scheduler queue

Apply the scheduler
algorithm on the
scheduler queue

Evaluate scheduler
performance:

makespan and other
metrics calculation

Figure 4. Workflow of the proposed method

2.3.1. First proposed algorithm
The first proposed modified bin packing algorithm (MBPTS-1) begins with sorting all tasks in de-

scending order and then placing each task in the right bin based on algorithm 1. To understand the MBPTS-1
algorithm, we consider six tasks and three VMs with the same processing power as shown in Figure 5, where i
is the number of iterations. We iterate over each task in the ordered list and place the selected task in the next
VM based on its defined order {1, 2, 3}. Each time we get to the end of the VMs list, we set the counter back to
the beginning of the VMs list until we finish all given tasks in the queue. We sum the execution times of tasks

An efficient cloudlet scheduling via bin packing in cloud computing (Amine Chraibi)

3230 ❒ ISSN: 2088-8708

in each VM and get the biggest value. Figure 5 shows that VM3 has the biggest bin value (makespan) with a
total length of 7;2+5=7.

Algorithm 1 Pseudo-code of MBPTS-1
Input: ET // List of tasks’ execution times
Input: N // Number of bins, Also number of VMs
Output: makespan // The makespan
Function MBPTS1(ET,N):

ET ← descSort(ET) // Sort execution times in descending order
binsData← (0, . . . , 0) // List of bins size initialized with zeros
for i = 0; i < size(ET); i = i+ 1 // Iterate over execution times
do

j ← i mod N // j is for iterating over bins data
binsData[j]← binsData[j] + ET [i] // Sum with previous data

end
makespan← max(binsData) // Find the biggest value in binsData
return makespan

End Function

2

3

5

1

4.5

2

Ordered tasksInitial execution times of tasks

1

2

3

5

4.5

1

2

VM1

VM2

VM3

4.5

5

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

 Tasks assigned to the appropriate virtual machine

2

2

3

Figure 5. MBPTS-1 example

2.3.2. Second proposed algorithm
The second proposed modified bin packing algorithm (MBPTS-2) begins with sorting all tasks in

descending order. Then, the tasks are placed in the bin in reversed order each time the last container arrives
(refer to algorithm 2). For the MBPTS-2 algorithm, we apply the same dataset in the example of the first
proposition. Figure 6 shows an example of the MBPTS-2 algorithm. We iterate over all ordered tasks in
the queue based on the index i. First, we place each selected task from the queue in the next VM based on its
defined order {1, 2, 3}. Each time we reach the beginning or the ending of the VMs list, we reverse the iteration
order over VMs. The first three tasks are placed in VM1, VM2 and VM3, respectively. The following three
tasks are placed in VM3, VM2 and VM1, respectively, and we reverse the selected VM order in each following
three given tasks. Figure 6 shows that the VM2 has the most considerable bin value (makespan) with a total
length of 6.5; 2+4.5=6.5.

2.3.3. Third proposed algorithm
The third proposed modified bin packing algorithm (MBPTS-3) begins with sorting all tasks in de-

scending order and then placing each task in the right bin based on the bin’s maximum space (refer to
algorithm 3 in Appendix). Figure 7 shows an example of the MBPTS-3 algorithm considering the same dataset
in the first proposition. At this time, we place each task based on the maximum capacity Cmax, which we cal-
culated in (4). In the example the max capacity is (2 + 3 + 5 + 4.5 + 1 + 2) / 3 = 5.83. For each iteration i, we
iterate over all given VMs to find the maximum available space and place the task into it. The available space
of a VM is the Cmax minus the execution time of a VM in the current iteration i. If two or more maximum
available spaces are equals, we select the VM based on its defined order. Finally, we sum the execution times
of tasks in each VM and get the biggest value. The VM1 has the biggest bin value, with a total length of 8;
1 + 2 + 5 = 8 as shown in Figure 7.

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 3226–3237

Int J Elec & Comp Eng ISSN: 2088-8708 ❒ 3231

Algorithm 2 Pseudo-code of MBPTS-2
Input: ET // List of tasks’ execution times
Input: N // Number of VMs
Output: makespan // The makespan
Function MBPTS2(ET,N):

ET ← descSort(ET) // Sort execution times in descending order
binsData← (0, . . . , 0) // List of bins size initialised with zeros
reverseOrder ← False // A variable to reverse order of iterations over bins
for i = 0; i < size(ET); i = i+ 1 // Iterate over execution times
do

k ← i mod N // k is for iterating over bins data
j ← k
if reverseOrder // Check if the order is reversed
then

j ← k
if k = 0 then

j ← (N − 1)− k
reverseOrder ← False

end
else

j ← (N − 1)− k
if k = 0 then

j ← k
reverseOrder ← True

end
end
binsData[j]← binsData[j] + ET [i] // Sum with previous data

end
makespan← max(binsData) // Find the biggest value in binsData
return makespan

End Function

2

3

5

1

4.5

2

Ordered tasksInitial execution times of tasks

1

2

3

5

4.5

1

2

VM1

VM2

VM3

4.5

5
i = 0

i = 1

i = 2

i = 5

i = 4

i = 3

 Tasks assigned to the appropriate virtual machine

2

2

3

Figure 6. MBPTS-2 example

2

3

5

1

4.5

2

Ordered tasksInitial execution times of tasks

1

2

3

5

4.5

1 VM1

VM2

VM3

i = 0 i = 1

i = 2

i = 5

i = 4

 Tasks assigned to the appropriate virtual machine
with perfect max size is 5.83

2

2

2

3

 4.5

 5

i = 3

Cmax

Figure 7. MBPTS-3 example

An efficient cloudlet scheduling via bin packing in cloud computing (Amine Chraibi)

3232 ❒ ISSN: 2088-8708

3. RESULTS AND DISCUSSION
3.1. Experimental setup

A simulation was created using the CloudSim simulator [29] to test the proposed implementation
against other algorithms. CloudSim tasks (cloudlets) are defined according to their specifications, such as its
utilisation model, the number of processing elements, and their processing power in millions of instructions
(MI). Cloudsim employs space-shared and time-shared policies for job units scheduling [29]. In this study, the
time-shared policy was used to execute different tasks instantaneously within the same host. The simulation
was a part of the cloud broker and had the characteristics as presented in Table 1.

Table 1. Resource parameters
Enitity Type Parameter Value
Data center Number of data centers 1

Host Number of hosts 2
Storage 1 TB
Memory 2 GB

Scheduling algorithm time-shared policy
Bandwidth 10 GB/s

MIPS 27 079-177 730
Number of cores 2-6

VM Number of VMs 5
Bandwidth 1 GB/s
Memory 0.5 GB

MIPS 9.726
Workload Source The HPC2N Seth log

Numbers of tasks 20-200

The characteristics are defined by CloudSim Feitelson et al. [30] example 6 of the provided source
code, and the tasks are taken from the generated standard formatted workload "high performance computing
center north (HPC2N) Seth Log". Following example 6 and the used workload facilitate the reproducibility
of the results of our proposed work. Furthermore, to compare our proposed algorithms, we used the PSO
algorithm [31] as a popular algorithm used by many studies in the task scheduling field. We also used The
FCFS, the default scheduling algorithm used in CloudSim specified in [29]. The original PSO implementation
is not developed for particular optimisation issues like task scheduling. Therefore, a binary version of the PSO
algorithm was proposed [32]. The PSO implementation for task scheduling proposed in Figure 2 is used based
on the parameters described in Table 2. The experiments were done in a CPU Intel(R) Core(TM) i7-6500U and
coded in Java language.

Table 2. PSO used parameters
Parameter Value

Inertia weight (w) 0.9
Local weight (c1) 1.49445
Local weight (c2) 1.49445

Number of iterations 1000
Number of particles 500

3.2. Experiments and results analysis
The presented algorithms’ efficiency was assessed by repeatedly executing those algorithms using

different parameters and independent cloudlets. Their performance was evaluated based on the makespan of
many sets of tasks. In PSO, Al-Olimat et al. [33] run the simulation 100 times and compute the average
makespan; our proposed algorithms need to run only once to compute the makespan. Figure 8 shows the
results of executing the three proposed algorithms, PSO, FCFS and the perfect makespan calculated in (4),
which we are trying to approach to its value. This execution is evaluated in terms of the makespan. We increase
the number of tasks in each execution to prove the suggested algorithms’ efficacy. As illustrated in Figure 8, the
makespan increases with the number of tasks. The makespan of the three proposed algorithms was observed to
be better than the PSO and FCFS algorithms, with MBPTS-2 taking the lead. The MBPTS-2 also had a near-
perfect makespan. Taking the makespan as an objective of our proposed work helped us in the improvement of
other metrics such as the average waiting time, the average resource utilisation, and the DI:

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 3226–3237

Int J Elec & Comp Eng ISSN: 2088-8708 ❒ 3233

Figure 8. Makespan in seconds with a different number of cloudlets

3.2.1. Average waiting time of tasks
The cloudlets were queued and executed based on scheduling algorithms, in which the waiting time

algorithm was used to calculate all cloudlet sequences’ waiting times and the average waiting time as seen in
(5), where WTi is the waiting time of the cloudlet i, and n is the queue’s length.

WTavg =

∑n
i=1 WTi

n
(5)

The outcomes of executing the three suggested algorithms, PSO and FCFS, in terms of the average waiting
period are seen in Figure 9. As shown in Figure 9, the proposed algorithms provide optimised solutions that
can increase the speed and efficiency in managing the cloudlets’ queue by reducing waiting time and queue
length, with MBPTS-2 taking the lead in waiting time.

Figure 9. Average waiting time in seconds with a different number of cloudlets

3.2.2. Average degree of imbalance (DI)
The degree of imbalance calculates the imbalance among VMs and is an essential QoS metric in

proving task allocation efficiency and load balancing between VMs. In this study, it is calculated using (6),

DI =
ETmax − ETmin

ETavg
(6)

where, ETmin, ETmax, ETavg correspond to the minimum, maximum, and average execution times of all
VMs, respectively. The scheduling issue’s objective aims to reduce DI as a low DI represents a more balanced
system [34].

The results of implementing the three suggested algorithms, FCFS, and PSO, in terms of DI are seen
in Figure 10. As shown in Figure 10, the proposed modified bin packing algorithms can achieve good load
balance and reduce the time to execute tasks, making them superior to the PSO and FCFS algorithms. It is also
observed that MBPTS-2 has the best average DI.

3.2.3. Average resource utilisation (ARU)
The average resource utilisation (ARU) is essential in task scheduling as high utilisation of resources

is desirable. It is calculated using 7 [23],

ARU =

∑n
i=1 ExVMi

Makespan×N
(7)

An efficient cloudlet scheduling via bin packing in cloud computing (Amine Chraibi)

3234 ❒ ISSN: 2088-8708

where, ExVMi is the duration taken by the VMi to complete every given cloudlet, and N is the total number
of VMs. Figure 11 demonstrates the execution of the three proposed algorithms against the PSO and the FCFS
algorithms regarding resource utilisation.

Figure 10. Average DI with a different number of cloudlets

Figure 11. Average resource utilisation with a different number of cloudlets

Figure 11 demonstrates that the proposed algorithms outperform PSO and FCFS algorithms in terms
of resource utilisation as the resources are occupied while scheduling tasks. Such quality is valuable for service
providers in acquiring maximum profit by renting limited resources. It is also observed that MBPTS-2 has the
best average resource utilisation.

To monitor the efficiency of our proposed work much more, especially MBPTS-2, which is taking the
lead, we calculate the percentage improvement of each set of tasks for the proposed MBPTS-2 versus PSO and
FCFS in terms of makespan, DI, RU, and waiting time. The results are presented in Table 3. We notice that the
proposed MBPTS-2 has shown a decrease in the makespan, DI and waiting time and an increase in resource
utilisation metric, proving that the proposed MBPTS-2 is successful. We can also see the difference between
every percentage in each set of tasks due to the variation of the task lengths. To summarise, the three proposed
algorithms outperformed the PSO and the FCFS in terms of makespan, our primary objective, and optimised
better the others metrics such as the waiting time, resource utilisation, and degree of imbalance. Furthermore,
unlike the method presented in paper [33], where Al-Olimat et al. run the simulation 100 times and report the
average makespans, our proposed method only needs to be run one time.

Table 3. Percentage improvement (+: increase, -: decrease)
MPBTS-2 vs PSO (%) MPBTS-2 vs FCFS (%)

Cloudlets 20 60 100 140 180 200 20 60 100 140 180 200
Makepsan - 20.97 - 25.98 - 30.11 - 32.24 - 36.10 - 36.24 - 51.75 - 43.25 - 37.66 - 43.47 - 35.87 - 31.78
WTavg - 78.77 - 83.67 - 83.74 - 87.16 - 85.45 - 85.91 - 71.38 - 80.26 - 76.19 - 83.37 - 79.60 - 80.74

DI - 86.70 - 94.44 - 95.05 - 98.30 - 98.07 - 97.51 - 90.44 - 94.23 - 93.20 - 97.95 - 97.10 - 95.50
ARU + 27.6 + 33.22 + 52.97 + 53.29 + 59.93 + 56.77 + 107.27 + 76.22 + 60.41 + 76.9 + 55.94 + 46.58

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 3226–3237

Int J Elec & Comp Eng ISSN: 2088-8708 ❒ 3235

4. CONCLUSION
Efficient task scheduling is considered one of the major cloud services concerns. An effective sched-

uler is needed to improve the task scheduling metrics when it comes to larger tasks size. A Better task schedul-
ing ameliorates response time, minimises power consumption and processing time, enhances makespan and
throughput, and increases profit by reducing operating costs and raising system reliability. This research
presents an efficient task scheduling implementation via the bin packing problem in cloud computing by propos-
ing three modified bin packing algorithms proposed to improve the task scheduling problem and its optimisation
metrics. The simulations results demonstrate that the proposed algorithms can minimise waiting time, reduce
makespan, and increase resource utilisation. The proposed algorithms also consider load balancing while dis-
tributing cloudlets to available resources, an added advantage compared to PSO and FCFS algorithms. As a
limitation, this work focused only on makespan, waiting time, resource utilisation and degree of imbalance
metrics. Future works may integrate other optimisation methods and consider more quality metrics, such as the
migration of tasks between queues, the VM migration concept, and energy consumption.

APPENDIX

Algorithm 3 Pseudo-code of MBPTS-3
Input: ET // List of tasks’ execution times
Input: B // List of bins, each bin with a max capacity calculated in (4)
Output: makespan // The makespan
Function MBPTS3(ET,B):

ET ← descSort(ET) // Sort execution times in descending order
binsData← (0, . . . , 0) // List of bins size initialised with zeros
for i = 0; i < size(ET); i = i+ 1 // Iterate over execution times
do

maxSizeIndex← −1 // Index of the large bin
maxTarget← −1 // Max Remaining space of all bins
for j = 0; j < size(B); j = j + 1 // Iterate over bins
do

binSize = B[j]
availableTarget = binSize− binsData[j]
if ET [i] ≤ availableTarget // Check if space available
then

maxSizeIndex← −1
binsData[j]← binsData[j] + ET [i]

else
if availableTarget > maxTarget // Find max available space
then

maxTarget← availableTarget
maxSizeIndex← j

end
end

end
if maxSizeIndex ̸= −1 // Assign the task to a more available VM
then

maxTarget← availableTarget
binsData[maxSizeIndex]← binsData[maxSizeIndex] + ET [i]

end
end
makespan← max(binsData) // Find the biggest value in binsData
return makespan

End Function

REFERENCES
[1] P. Mell and T. Grance, “The nist definition of cloud computing,” National Institute of Standards and Technology,

2011, doi: 10.6028/nist.sp.800-145.
[2] H. B. Alla, S. B. Alla, and A. Ezzati, “A novel architecture for task scheduling based on dynamic queues and particle

swarm optimization in cloud computing,” in 2016 2nd International Conference on Cloud Computing Technologies
and Applications (CloudTech), 2016, pp. 108–114, doi: 10.1109/CloudTech.2016.7847686.

[3] A. Kumar and B. Alam, “Energy harvesting earliest deadline first scheduling algorithm for increasing lifetime of real

An efficient cloudlet scheduling via bin packing in cloud computing (Amine Chraibi)

3236 ❒ ISSN: 2088-8708

time systems,” International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 1, pp. 539-545,
2019, doi: 10.11591/ijece.v9i1.pp539-545.

[4] S. Ouhame and Y. Hadi, “Enhancement in resource allocation system for cloud environment using modified grey
wolf technique,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 20, no. 3,
pp. 1530–1537, 2020, doi:10.11591/ijeecs.v20.i3.pp1530-1537.

[5] M. A. Aziz and I. H. Ninggal, “Scalable workflow scheduling algorithm for minimizing makespan
and failure probability,” Bulletin of Electrical Engineering and Informatics (BEEI), vol. 8, no. 1,
pp. 283–290, 2019, doi: 10.11591/eei.v8i1.1436.

[6] M. A. Aziz, J. H. Abawajy, and M. Chowdhury, “Scheduling workflow applications with makespan and reliabil-
ity constraints,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 12, no. 2,
pp. 482–488, 2018, doi: 10.11591/ijeecs.v12.i2.pp482-488.

[7] Z. Zhou, J. Chang, Z. Hu, J. Yu, and F. Li, “A modified PSO algorithm for task scheduling optimization in cloud
computing,” Concurrency and Computation: Practice and Experience, vol. 30, no. 24, 2018, doi: 10.1002/cpe.4970.

[8] W. Saber, W. Moussa, A. M. Ghuniem, and R. Rizk, “Hybrid load balance based on genetic algorithm in cloud
environment,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 3, pp. 2477-2489,
2021, doi:10.11591/ijece.v11i3.pp2477-2489.

[9] S. Harun and M. F. Ibrahim, “A genetic algorithm based task scheduling system for logistics service robots,” Bulletin
of Electrical Engineering and Informatics (BEEI), vol. 8, no. 1, pp. 206–213, 2019, doi:10.11591/eei.v8i1.1437.

[10] J. Ma, W. Li, T. Fu, L. Yan, and G. Hu, “A novel dynamic task scheduling algorithm based on improved genetic algo-
rithm in cloud computing,” in Wireless Communications, Networking and Applications, Springer, 2016, pp. 829–835.

[11] D. Gabi, A. S. Ismail, A. Zainal, and Z. Zakaria, “Solving task scheduling problem in cloud computing environment
using orthogonal taguchi-cat algorithm,” International Journal of Electrical and Computer Engineering (IJECE),
vol. 7, no. 3, pp. 1489-1497, 2017, doi: 10.11591/ijece.v7i3.pp1489-1497.

[12] H. B. Alla, S. B. Alla, A. Touhafi, and A. Ezzati, “A novel task scheduling approach based on dynamic queues
and hybrid meta-heuristic algorithms for cloud computing environment,” Cluster Computing, vol. 21, no. 4,
pp. 1797–1820, 2018, doi: 10.1007/s10586-018-2811-x.

[13] A. S. Abdalkafor and K. M. A. Alheeti, “A hybrid approach for scheduling applications in cloud com-
puting environment,” International Journal of Electrical and Computer Engineering (IJECE), vol. 1, no. 2,
pp. 1387–1397, 2020, doi: 10.11591/ijece.v10i2.pp1387-1397.

[14] A. M. Alsmadi et al., “Fog computing scheduling algorithm for smart city,” International Journal of Electrical and
Computer Engineering (IJECE), vol. 11, no. 3, pp. 2219-2228, 2021, doi: 10.11591/ijece.v11i3.pp2219-2228.

[15] N. Edward and J. Elcock, “Task scheduling in heterogeneous multiprocessor environmentsan efficient aco-based ap-
proach,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 10, no. 1, pp. 320–329,
2018, doi: 10.11591/ijeecs.v10.i1.pp320-329.

[16] P. Krishnadoss and P. Jacob, “Ocsa: task scheduling algorithm in cloud computing environment,” International Jour-
nal of Intelligent Engineering and Systems, vol. 11, no. 3, pp. 271–279, 2018, doi: 10.22266/ijies2018.0630.29.

[17] R. Khorsand and M. Ramezanpour, “An energy-efficient task-scheduling algorithm based on a multi-criteria decision-
making method in cloud computing,” International Journal of Communication Systems, vol. 33, no. 9, 2020,
doi: 10.1002/dac.4379.

[18] S. Potluri and K. S. Rao, “Optimization model for qos based task scheduling in cloud computing environment,”
International Journal of Electrical Engineeering and Computer Science (IJEECS), vol. 18, no. 2, pp. 1081–1088,
2020, doi: 10.11591/ijeecs.v18.i2.pp1081-1088.

[19] Y. A. G. Alyouzbaki and M. F. Al-Rawi, “Novel load balancing approach based on ant colony optimization technique
in cloud computing,” Bulletin of Electrical Engineering and Informatics (BEEI), vol. 10, no. 4, pp. 2320–2326, 2021,
doi: 10.11591/eei.v10i4.2947.

[20] A. Chraibi, S. B. Alla, and A. Ezzati, “A novel artificial intelligence technique for cloud computing using a new
heuristic initialisation and PSO-parallel execution,” Proceedings of the Future Technologies Conference (FTC) 2021,
vol. 3, oct 2021, pp. 362–376, doi: 10.1007/978-3-030-89912-7_28

[21] A. Chraibi, S. Ben Alla, and A. Ezzati, “Makespan optimisation in cloudlet scheduling with improved dqn algorithm
in cloud computing,” Scientific Programming, vol. 2021, 2021, doi: 10.1155/2021/7216795.

[22] A. Karthick, E. Ramaraj, and R. G. Subramanian, “An efficient multi queue job scheduling for cloud computing,”
in 2014 World Congress on Computing and Communication Technologies, 2014, pp. 164–166, doi: 10.1109/WC-
CCT.2014.8.

[23] M. Kalra and S. Singh, “A review of metaheuristic scheduling techniques in cloud computing,” Egyptian Informatics
Journal, vol. 16, no. 3, pp. 275–295, 2015, doi: 10.1016/j.eij.2015.07.001.

[24] A. R. Brown, Optimum packing and depletion, Macdonald, 1971.
[25] M. R. Garey and D. S. Johnson, Computers and intractability, W. H. Freeman and Company, 1979, vol. 174.
[26] S. Martello and P. Toth, Knapsack problems: algorithms and computer implementations, John Wiley and Sons, 1990.
[27] D. Du and P. M. Pardalos, Handbook of combinatorial optimization, Springer Science and Business Media, 1998,

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 3226–3237

Int J Elec & Comp Eng ISSN: 2088-8708 ❒ 3237

vol. 4.
[28] R. Yesodha and T. Amudha, “A comparative study on heuristic procedures to solve bin packing problems,”

International Journal in Foundations of Computer Science and Technology, vol. 2, no. 6, pp. 37–49, 2012,
doi: 10.5121/ijfcst.2012.2603.

[29] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya, “Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource provisioning algorithms,” Software: Practice
and Experience, vol. 41, no. 1, pp. 23–50, 2011, doi: doi.org/10.1002/spe.995.

[30] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with using the parallel workloads archive,” Journal of Parallel
and Distributed Computing, vol. 74, no. 10, pp. 2967–2982, 2014, doi: 10.1016/j.jpdc.2014.06.013.

[31] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex
space,” in IEEE transactions on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002, doi: 10.1109/4235.985692.

[32] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm algorithm,” 1997 IEEE International
Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, 1997, pp. 4104-4108,
vol. 5, doi: 10.1109/ICSMC.1997.637339.

[33] H. S. Al-Olimat, M. Alam, R. Green and J. K. Lee, "Cloudlet scheduling with particle swarm optimization,"
2015 Fifth International Conference on Communication Systems and Network Technologies, 2015, pp. 991-995,
doi: 10.1109/CSNT.2015.252.

[34] K. Li, G. Xu, G. Zhao, Y. Dong and D. Wang, "Cloud task scheduling based on load balancing ant colony optimiza-
tion," 2011 Sixth Annual Chinagrid Conference, 2011, pp. 3-9, doi: 10.1109/ChinaGrid.2011.1

BIOGRAPHIES OF AUTHORS
Amine Chraibi is a Ph.D. student at the Faculty of Science and Technology, Department of
Mathematics and Computer Science, Hassan First University, Settat, Morocco. He obtained his Mas-
ter of Science and Technology degree in Networks and Computer Systems from Faculty of Science
and Technology in 2016. His researches are in Task scheduling in cloud computing, heterogeneous
computing and artificial intelligence. He can be contacted at email: a.chraibi@uhp.ac.ma.

Said Ben Alla is a Professor at ENSA Berrechid, Department of Mathematics and Com-
puter Science, Hassan First University, Settat, Morocco. He received his Master of Science degree
in Telecommunications and Networks in 2009 from the University of Cadi Ayyad, Morocco and his
Ph.D. from Faculty of Sciences and Techniques (FSTS), Hassan First University of Settat, Morocco
in 2013. His researches are in cloud computing, wireless ad hoc, wireless sensor networks (WSNs),
and embedded real-time systems. He can be contacted at email: saidb_05@hotmail.com.

Abdellah Ezzati is a Professor at the Faculty of Sciences and Techniques, Department
of Mathematics and Computer Science, Hassan First University, Settat, Morocco. In 2012 he was
awarded a Research Habilitation degree from the First University of Hassan, Faculty of Science and
Technology (FSTS), Settat, Morocco. His researches are in protocol specifications, mobility Man-
agement, distributed systems, cloud computing, and wireless sensor network (WSN) management.
He can be contacted at email: abdezzati@gmail.com.

An efficient cloudlet scheduling via bin packing in cloud computing (Amine Chraibi)

https://orcid.org/0000-0003-1332-7742
https://scholar.google.com/citations?user=qcyiiIIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57222404253
https://publons.com/researcher/4790064/amine-chraibi/
https://orcid.org/0000-0003-1089-9948
https://scholar.google.com/citations?user=JPwK_xUAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=46160945700
https://publons.com/researcher/4856444/said-ben-alla/
https://orcid.org/0000-0002-1456-0661
https://scholar.google.com/citations?hl=fr&user=zqY_VlwAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=46161022900
https://publons.com/researcher/1544925/abdellah-ezzati/

	Introduction
	Proposed Task Scheduling Algorithms
	Task scheduling problem
	Bin packing
	Proposed algorithms
	First proposed algorithm
	Second proposed algorithm
	Third proposed algorithm

	RESULTS AND DISCUSSION
	Experimental setup
	Experiments and results analysis
	Average waiting time of tasks
	Average degree of imbalance (DI)
	Average resource utilisation (ARU)

	Conclusion

