
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 12, No. 3, June 2022, pp. 2867~2875

ISSN: 2088-8708, DOI: 10.11591/ijece.v12i3.pp2867-2875 2867

Journal homepage: http://ijece.iaescore.com

Validity of a graph-based automatic assessment system for

programming assignments: human versus automatic grading

Soundous Zougari, Mariam Tanana, Abdelouahid Lyhyaoui
LTI Laboratory, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco

Article Info ABSTRACT

Article history:

Received Dec 30, 2020

Revised Jan 3, 2022

Accepted Jan 23, 2022

 Programming is a very complex and challenging subject to teach and learn.

A strategy guaranteed to deliver proven results has been intensive and

continual training. However, this strategy holds an extra workload for the
teachers with huge numbers of programming assignments to evaluate in a

fair and timely manner. Furthermore, under the current coronavirus

(COVID-19) distance teaching circumstances, regular assessment is a

fundamental feedback mechanism. It ensures that students engage in
learning as well as determines the extent to which they reached the expected

learning goals, in this new learning reality. In sum, automating the

assessment process will be particularly appreciated by the instructors and

highly beneficial to the students. The purpose of this paper is to investigate
the feasibility of automatic assessment in the context of computer

programming courses. Thus, a prototype based on merging static and

dynamic analysis was developed. Empirical evaluation of the proposed

grading tool within an introductory C-language course has been presented

and compared to manually assigned marks. The outcomes of the

comparative analysis have shown the reliability of the proposed automatic

assessment prototype.

Keywords:

Automated grading

Automatic assessment

Computer aided education

Graph-based assessment system

Programming assignments

This is an open access article under the CC BY-SA license.

Corresponding Author:

Soundous Zougari

Innovative Technology Laboratory, National School of Applied Sciences of Tangier, Abdelmalek Essaadi

University

Route de Ziaten Km 10, Tanger Principale, BP: 1818 – Tanger, Tetouan 93000, Morocco

Email: soundous.zougari@gmail.com

1. INTRODUCTION

Stephen hawking once said "whether you want to uncover the secrets of the universe, or you want to

pursue a career in the 21st century, basic computer programming is an essential skill to learn". Indeed, in

an era marked by rapid advances in our technologies, manipulating those technologies has emerged as a key

skill integral to many jobs in the present time and in the near future. However, learning programming is

challenging: high failure and dropout rates are common in those courses. A strategy guaranteed to deliver

proven results, for students as well as teachers, has been intensive and continuous practice on solving

programming exercises [1], [2]. For students it helps them to understand their learning progression and

difficulties. Whereas, for teachers, it enables them to see students’ learning progressions and eventually to

give personalized support and adjust the teaching materials accordingly.

This is a strategy that holds an extra workload for the teachers with huge numbers of programming

assignments to evaluate and provide with feedback in a timely manner. Apart from being time-consuming for

the teacher, manual assessment hinders the consistency and accuracy of assessment results as well as it

allows "unintended biases and a diverse standard of marking schemes" [3]. All of these issues called for the

automation of the assessment process.

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 2867-2875

2868

Furthermore, in recent years, massive open online courses (MOOCs) have become a significant

force within higher education. They have quickly gained popularity, expanded, and evolved as they bear a

tremendous potential for teaching programming to a large and diverse audience [4]–[6]. A potential put to the

test in this difficult time with the coronavirus (COVID-19) pandemic [7]. We are witnessing the world’s

largest distance learning experiment, since schools and universities worldwide were forced to shift rapidly

from presential to online learning in the midst of this global health crisis. Unfortunately, for programming

assignments, MOOCs remain limited in their ability to evaluate and give feedback. In fact, the learning

platform would be reduced to merely offering optional ungraded exercises if there was no method for

automatic assessment of programming assignments [4], [8].

In the light of this, numerous automatic assessment tools have been developed by various

researchers and academicians. However, these systems are neither generic nor configurable and most of them

are not available to the general public, which is why we have developed our own assessment system.

Although the automatic approach theoretically overcomes all the drawbacks of the manual approach, the

quality of the provided assessment requires some investigation.

The remainder of this paper is structured as follows: section 2 explores some of the work that has

been done in the automated programming assessment area. Section 3 describes the proposed system approach

before putting the prototype system to the test and analyzing the results in detail in section 4. Last, section 5

ends with some reflections on the produced research and suggestions for further work.

2. REVIEW OF RELATED WORK

Several approaches to tackle automatic programming assessment (APA) are reported in the

literature, such as journals, conference articles and online resources. A systematic literature review can be

useful in providing a wide view of the existing tools, the identification of research needs and guiding the

development of new tools. Our focus is solely on the automatic assessment tools applied to programming

assignments.

This topic has been of interest to computer science educators from 1960s [9] and has continued to

gain vast attention till present [10]-[23]. Indeed, a variety of systems have been developed to address the

problem of automatic and semi-automatic evaluation of programming assignments. To see an evolution, it is

necessary to take a temporal perspective.

Douce et al. [10] provide a systematic review of the literature on the automatic programming

assessment systems developed from their inception up to 2005 and categorize them according to age into

three broad generations. In each of the three identified generations, these systems adopted more advanced

technologies correlating with cutting-edge technologies used for program development in each time frame:

- The first-generation systems represent the earliest attempts to automate testing and were considered

genuine advancements at the time [10]. The assessment was only made considering a right or a wrong

answer. However, their usability was restricted to their specific computing research facilities.

- The second-generation systems are characterized by command-line-based tools, sometimes used in

association with locally built and maintained Graphical user interfaces (GUI).

- The third-generation systems utilize web-based technologies, and sometimes provided additional support

for educators in the form of assessment management and reporting facilities.

Ihantola et al. [12] complemented this review with APA systems developed during the 2006 to 2010

period. They divided APAs in two main categories: automatic assessment systems for programming contests

and automatic assessment systems for computer programming education [13]. Moreover, the authors

systematically collected and grouped the features and improvements in APA systems from the selected

review period. Some of the reported features are programming languages, learning management systems,

defining tests and resubmissions.

Over the last few years, and with the proliferation of new assessment tools, studies have put their

focus on identifying and classifying them. This has eased the process when reviewing approaches and

features provided by each tool. For instance, Souza et al. [14] have proposed three classification schemes for

the reviewed tools: by assessment type, by approach, and by specialty. Besides, they have identified the main

characteristics of the assessment tools such as:

- Main Features: electronic submission, automated checking, instant feedback, automated marking,

- Types of verification: dynamic verifications and static verifications.

- Interfaces: command line interface (CLI), graphical user interface (GUI), web user interface (WUI).

- Supported programming languages.

Although we believe a lot has been done since 2016, recent surveys from 2018 by Lajis et al. [18]

and by Ullah et al. [19] provide little new to the work of Souza et al. [14]. The former classified several

automated assessment systems under the same main approaches, while the latter discussed the strengths and

Int J Elec & Comp Eng ISSN:2088-8708

Validity of a graph-based automatic assessment system for programming … (Soundous Zougari)

2869

limitations of 17 automated assessment tools. Among the most popular reviewed tools we find, AutoLEP

[22], Web-CAT [23], BOSS [24], Quimera [25], DOMjudge [26], and Automata [27].

This research has helped us to understand the current state-of-the-art in assessment tools for

programming assignments, and also to identify important features of already built tools and some future

directions. First, a foregone conclusion is the plethora of existing automatic programming assessment

systems and still growing. However, these tools are rarely used beyond the institutions in which they were

created. The main reason for this is related to availability and adaptation issues. Only few systems are open-

source, or even freely available. Other prototypes were designed in the context of a doctoral research but

were no further developed. Another obstacle for an APA tool broad adoption is that instructors have

difficulty integrating systems built for specific requirements, especially when the notation and methodology

of such systems does not precisely fit into their courses. Developing a new assessment tool for each

programming language and instructor’s assessment objectives is not plausible. We, therefore, suggest

developing a flexible and parameterizable tool that will not only be able to automatically assess a variety of

programming languages but also adapt to each instructors need and a course’s main target group.

Another interesting conclusion of this work is that in general the APA features can be organized

according to whether they need execution of the program; dynamic analysis or can be statically evaluated

from the program code; static analysis. Both of these approaches present undeniable advantages [18], [28],

but also some major drawbacks. Therefore, our approach falls within a third kind of automatic assessment

tool that has been less investigated: hybrid analysis. The general idea is to merge results from the static and

dynamic analysis. Thus, the student’s program output is not only analyzed but also its source code. This

approach overcomes the limitation of static and dynamic approaches. Further information will be given in the

next section.

3. THE PROPOSED SYSTEM

Our proposed system combines results from dynamic and static analysis to improve the quality and

precision of the automated assessment and overcomes the individual weaknesses of these approaches [29],

[30]. The dynamic analysis is carried out using unit testing framework making the process flexible and

reusable. In fact, students’ programs are run through a predefined set of data, and afterwards their outputs are

compared to the expected answers. The approach is described in more detail in a previous paper where it was

suggested the use of XUnit, a dedicated framework to automate and conduct tests in a given language [31].

XUnit is additionally used to supply significant and comprehensible feedback. Generated feedback follows

directly from the detected failed dynamic tests. Information like the line number, the error type, program

trace that introduces the error, and values of variables along this trace can help the student refine its proposed

solution.

On the other hand, static analysis helps us evaluate the structural properties of the programs. The

idea is to measure the similarity degree by comparing the assessed program to programs belonging to the

solution space. A solution space is a set of programs, provided by the teacher, representing the different

possible solutions for the same exercise. The main problem of this approach is the diversity of the solutions.

To tackle this problem, semantic preserving transformations are performed on the student program and the

solution space. Through this process we try to eliminate syntactic variations and represent in a uniform way,

semantic equivalent programs that use the same algorithm. However, there are cases where a given student

proposes a solution that was not foreseen in the solution space. Then, the assessor's intervention is required to

analyze it and add it to the solution space if it found pedagogically relevant. These interventions should be

rare in the context of introductory programming courses and will decrease in time, once the solution space

has reached a satisfactory level of maturity. Figure 1 resumes the assessment approach. The student’

proposed solution go through all the process even if it generates errors from the start.

In order to facilitate the program matching, the student program and the instructor program are

firstly transformed into an intermediate representation. We opted for control flow graph (CFG) which is a

graph-based representation where nodes represent blocks of code and edges represent transfers of control

between blocks. In order to measure similarity of the programs, we adopt the concept of merging node

content similarity with graph nodes topological similarity. Our similarity is based on a particular graph node

similarity measure called neighbor matching. This measure is based on iterative calculation of similarity and

the principle that two nodes are as similar as their neighbors are [32]. The calculation of similarity is detailed

in a previous work [31] and given by (1).

𝑥𝑖𝑗
𝑘+1 ← √𝑦𝑖𝑗 .

𝑆𝑖𝑛
𝑘+1(𝑖,𝑗)+ 𝑆𝑜𝑢𝑡

𝑘+1(𝑖,𝑗)

2
 (1)

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 2867-2875

2870

where 𝑥𝑖𝑗 is the calculation of nodes i and j similarity in (k+1) iterations. yij is the similarity of nodes i and j

contents. 𝑆𝑖𝑛
𝑘+1(𝑖, 𝑗)and 𝑆𝑜𝑢𝑡

𝑘+1(𝑖, 𝑗) are respectively, the in-neighbors and the out-neighbors similarity of nodes

i in G1 and j in G2 in (k+1) iterations. Also, we set 𝑥𝑖𝑗
0 = 𝑦𝑖𝑗 . Both the similarity of nodes and the similarity

of CFGs take values in the [0, 1] interval. More details were given in a previous paper [31].

Regarding the grading step, unlike many other systems, our tool has not been developed for a

predefined grading style. We have used the similarity information and introduced two penalty parameters 𝑃1

and 𝑃2. The first grading penalty is used when the teacher wants to evaluate if a program is working

(compiling, running or test cases). Whereas the second penalty parameter calculates how close is a solution to

the teacher’s solution. This practice of grade calculation weighting is an important technique used to make

program grading more parameterized and personal to the evaluator [23]. In sum, the grade equation is a linear

combination of various scores, calculated for the student’s solution in (2):

𝐺 = 𝑃1. 𝑥1 + 𝑃2. 𝑥2 (2)

where 𝐺 is the automated grade of 0 to 10; 𝑥1 is a value retrieved at the end of the dynamic analysis and it

represents the weighted sum of the automated testing cases passed (It is expressed in the interval [0, 1], “1”

meaning all tests were passed successfully); 𝑥2 is the maximal similarity value between the student’s solution

and the teacher proposed solutions (also in the [0, 1] range); 𝑃1 and 𝑃2 are the dynamic and the static

assessment penalty parameters, respectively. It should be noted that different choices for the coefficients 𝑃1

and 𝑃2 could be proposed as long as 𝑃1+𝑃2=10. However, we prefer to let the teacher tune the coefficients 𝑃1

and 𝑃2 so that the behavior of the predictive model corresponds to the teacher grading style and the exercise

goals.

Figure 1. Proposed automatic assessment system

4. RESULTS AND DISCUSSION
To have a real estimation of the proposed system efficiency and reliability, we have carried out an

experiment with some exams of real university programming courses. Through this experiment, we collected

the teacher’s manually graded exercises. Then we marked them automatically with our tool to evaluate the

closeness of the proposed automated assessment system to the human rater method.

Int J Elec & Comp Eng ISSN:2088-8708

Validity of a graph-based automatic assessment system for programming … (Soundous Zougari)

2871

4.1. Method

The participants were 50 first-year, randomly selected, engineering students of a C programming

module in their second year at the National School of Applied Sciences of Tangier, Morocco. The used

probability sampling technique is the simplest of all; however, its simplicity is also its strength. The sample is

non-biased, and the findings are most generalizable among all probability sampling approaches since the

sampling frame is not subdivided or partitioned.

We have chosen the C-language for our tests because it is a flexible and strong general-purpose

programming language. It is efficient, portable, and operates on any platform. Moreover, it is still considered

in 2020, in the top 5 best programming languages to learn and more importantly, it is a great way to begin a

programming career [33]. We have retrieved three exercises of escalating difficulty from the C-language

introductory course. Here are their contents:

- Exercise no 1: write a C program that get two integer numbers, multiply both of the integers and display

the product.

- Exercise no 2: program that asks the user to enter two strings as operands and then displays a list of the

common letters (characters) of the two strings.

- Exercise no 3: program that implements the Ackermann function (function which returns the value of

A(m, n) using recursion). The Ackermann function is defined as (3).

𝐴(𝑚, 𝑛) = {

𝑛 + 1 𝑖𝑓 𝑚 = 0

𝐴(𝑚 − 1, 1) 𝑖𝑓 𝑚 > 0 𝑎𝑛𝑑 𝑛 = 0

𝐴(𝑚 − 1, 𝐴(𝑚, 𝑛 − 1)) 𝑖𝑓 𝑚 > 0 𝑎𝑛𝑑 𝑛 > 0
} (3)

In order to use our proposed system, we have prepared adequate test-cases for every exercise and

provided each exercise with related instructor solutions. Concerning the grading penalty parameters, we

preferred to assign the same weight to the 2 penalty parameters. That is to say, both the static and dynamic

analysis will have the same impact on the grade. This decision was motivated by the fact that there are

divided opinions when awarding points based on a working program or a used knowledge or skill. It is also a

good opportunity to measure the proposed system efficiency and objectivity with the minimum required

resources for scoring.

4.2. Results

The automatic assessment has worked quite well and we have been able to assess all the students’

submissions automatically. Table 1 shows some descriptive statistics of the 50 submissions that were

assessed manually as well as automatically, with the purpose of having a broad understanding of both

assessments’ behavior first. First thing we noticed is that there is a good correlation between manual and

automatic grading. Besides, the displayed results showed that the average grade for assessments manually

marked are slightly higher than those graded automatically. To further examine this phenomenon, we have

compared each pair of assessment (manual and automatic), individually as well as performed a detailed code

analysis for each submission when there is a notable difference between the obtained marks.

Table 1. Comparison of automatic assessment and manual assessment results
 Manual Assessment Automatic Assessment

 Average Mark Median Standard Deviation Average Mark Median Standard Deviation

Exercise 1 7.21 8 2.37 6.88 8 2.53

Exercise 2 6.84 7 2.23 6.29 7 2.85

Exercise 3 5.14 5.75 2.91 3.67 3.5 3.25

The following graphs summarize the grades of the three exercises both manually and automatically.

In Figures 2, 3 and 4 student’s submissions are presented in horizontal axis and grades (0–10) in vertical. The

line graph in blue (with circular dots) displays the submissions’ manually assessed grades whereas the red

line graph (with square dots) represents the corresponding automatic assessment grades.

Although the similarities are much more present than the dissimilarities between the two assessment

approaches, this section will explore factors that may contribute to grading discrepancies. First, we call a

grading discrepancy a difference by at least 2 points between the manual and the automatic grade. In these

cases, we have found that the program doesn’t run correctly; do not provide the expected results in the

dynamic analysis phase but found an approximate match in the solution space because close enough to a

working solution. That confirms our hypothesis of not to be limited to the dynamic analysis alone in our

grading system.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 2867-2875

2872

Figure 2. Exercise 1, manual versus automatic grades

Figure 3. Exercise 2, manual versus automatic grades

Figure 4. Exercise 3, manual versus automatic grades

Reviewing meticulously these cases, we have elaborated a list of the reasons why the programs

failed during automated testing. One typical mistake we have encountered is buffer overflow errors. Another

common mistake leading to a difference between the two grades was that the student program doesn’t return a

value. Another group of mistakes are programs with errors which occurred due to students’ carelessness and rush:

i) missing semicolon, ii) misspelled keywords or standard functions, iii) variables that are left uninitialized,

and iv) missing case in a switch/case selection control, and v) undeclared variables.

As a matter of fact, these cases did not occur frequently in our three introductory C programming

exercises. Even if the mistakes list seems large, it is due to the fact that some students' code displayed

multiple errors. Another source of grades discrepancies is that some students’ have handed uncompleted

programs. These programs are given close to 0 points by the automated system. However, the teacher has

decided to award them some intermediate mark, based on the knowledge and skills they demonstrated,

instead of marking their copies 0.

Last, we have noticed some values in the three graphs where the instructor grade is way less than the

system’s and that’s because the submitted programs even if correct didn’t meet the functional requirement of

the assignment. We could say that in general, when a program contains errors, the manual marking in this

study appears to be much more permissive than the automatic marking.

Int J Elec & Comp Eng ISSN:2088-8708

Validity of a graph-based automatic assessment system for programming … (Soundous Zougari)

2873

In order to statistically validate the upper mentioned observations, we have performed a

correlational analysis, which is a statistical technique that can show whether and how strongly the pairs of

grades are close. Since the human and the automatic grades are not normally distributed, we opted for the

Spearman’s rank correlation coefficient on all three exercises. The result of computing this statistic will give

a value that varies from +1 through 0 to –1, with 1 and −1 being the strongest positive and negative correlation,

respectively. A value of 0 indicates that the values are not correlated at all. In addition, we measured the probability

(p) of how likely or probable it is that any observed correlation is due to chance. These correlations, presented in

Table 2, proved a strong significant relationship between both assessment methods:

We noticed some pronounced differences in the third exercise but without falling from the strong

correlation range. This is, in part, explained by the increased difficulty of the third exercise compared with

the first two. While analyzing out-of-range cases, we found that the main reason for the low precision was

lacking tuned parameters. In fact, the teacher has been more lenient on some aspect of the third exercise

probably due to the fact that fewer students were able to code it correctly. We can deal with these cases by

providing the human assessor with access to the parameters. We remind that we didn’t tune them,

deliberately, to study their impact on the system scoring efficiency. Probably a stricter instructor would have

met better the systems grading.

Table 2. Spearman’s rank correlation coefficient
 Spearman coefficient (rs) probability (p)

Exercise 1 0.94 < 0.001

Exercise 2 0.91 < 0.001

Exercise 3 0.72 < 0.001

5. CONCLUSION

The here presented system has been designed to be part of a submission environment with a goal to

provide great benefits for both the student and the instructor. The main motivation was to obtain objective,

efficient and fast assessment of programming assignments, in circumstances as plausible as increased

students-instructor ratios and not so plausible as a pandemic forcing educators and students to shift to online

learning and assessment. This system has the potential to improve the learning in the field of programming

courses by making the assessment mechanism fast and simple to use. The general idea is first, to execute the

student’s code with a predetermined set of inputs then compare the outputs with the expected results.

Afterwards, we measure the similarity of the student’s program with a set of solutions predefined by the

teacher for each exercise. Program graph representation, semantic-preserving transformations and program

matching are used in this approach. Finally, we obtain a grade that reflects the dynamic and the static

assessment results combined with two penalty parameters so that the predictive model's behavior matches the

teacher's marking style and the exercise objectives.

To have a real estimation of the proposed system efficiency and reliability, an experimental study

was carried out with some exams of a C-language introductory course. Through this experiment, two data

sources were collected: the grades obtained by manually assessing students’ programming assignments, and

the grades marked automatically with our tool, for the same students’ submissions. The reported results

showed a strong correlation between the two sets of grades, validating our assessment system results.

Nevertheless, there are a number of errors that students made, although minor, that caused the automated

assessment system to be more severe in grading than the manual assessment. A measure that teachers can use

to enhance students’ understanding toward the grades awarded by these systems is to clarify how the

assessment system works and urge the students to pay special attention to these types of mistakes. Another

measure that could reduce the number of out-of-range cases is the tuning of the grading function parameters

according to the teachers’ goals and assessment styles.

In sum, the results revealed that the system had a normal grading behavior compared with grades

awarded by instructors. However, our approach still has limitations. At present, it is only applied to simple

introductory programs. Our current work includes improving the similarity-based grading approach, such as

adding more standardization rules and dealing with complex programming exercises, such as structures and

pointers. At the moment, we have limited the aforementioned system to work with a single programming

language i.e., the C-language. This is done in order to detect eventual flaws and refine it as a first step.

However, implementation doors have been kept open, so that we can extend the system to include

programming assignments in other popular languages such as C++, Java, by making small changes like

defining the compiler and the testing framework as arguments. In our future work we plan to study our

system behavior compared with another automatic assessment tool for computer programs. This study should

explore the utility and limitations of each approach, assess which one can improve students’ achievement in

programming and provide a considerable benefit in the field of automatic grading assessment of programs.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 3, June 2022: 2867-2875

2874

REFERENCES
[1] W. Pullan, S. Drew, and S. Tucker, “A problem based approach to teaching programming,” in Proceedings of the International

Conference on Frontiers in Education: Computer Science and Computer Engineering FECS’13, 2013, pp. 1–4.

[2] N. C. C. Brown and G. Wilson, “Ten quick tips for teaching programming,” PLOS Computational Biology, vol. 14, no. 4, Apr.

2018, doi: 10.1371/journal.pcbi.1006023.

[3] R. Romli, S. Sulaiman, and K. Z. Zamli, “Automatic programming assessment and test data generation a review on its

approaches,” in 2010 International Symposium on Information Technology, Jun. 2010, pp. 1186–1192, doi:

10.1109/ITSIM.2010.5561488.

[4] T. Staubitz, H. Klement, J. Renz, R. Teusner, and C. Meinel, “Towards practical programming exercises and automated

assessment in massive open online courses,” in 2015 IEEE International Conference on Teaching, Assessment, and Learning for

Engineering (TALE), Dec. 2015, pp. 23–30, doi: 10.1109/TALE.2015.7386010.

[5] C. Lee and W. T. de Vries, “Sustaining a culture of excellence: massive open online course (MOOC) on land management,”

Sustainability, vol. 11, no. 12, Jun. 2019, doi: 10.3390/su11123280.

[6] E. Wetzinger, B. Standl, and G. Futschek, “Developing a MOOC on introductory programming as additional preparation course

for CS freshmen,” in Proceeding of EdMedia + Innovate Learning, 2018, pp. 1–10.

[7] S. Pokhrel and R. Chhetri, “A literature review on impact of COVID-19 pandemic on teaching and learning,” Higher Education

for the Future, vol. 8, no. 1, pp. 133–141, Jan. 2021, doi: 10.1177/2347631120983481.

[8] W. Admiraal, B. Huisman, and O. Pilli, “Assessment in massive open online courses,” Electronic Journal of e-Learning, vol. 13,

no. 4, pp. 207–216, 2015.

[9] J. Hollingsworth, “Automatic graders for programming classes,” Communications of the ACM, vol. 3, no. 10, pp. 528–529, Oct.

1960, doi: 10.1145/367415.367422.

[10] C. Douce, D. Livingstone, and J. Orwell, “Automatic test-based assessment of programming,” Journal on Educational Resources

in Computing, vol. 5, no. 3, Sep. 2005, doi: 10.1145/1163405.1163409.

[11] K. M. Ala-Mutka, “A survey of automated assessment approaches for programming assignments,” Computer Science Education,

vol. 15, no. 2, pp. 83–102, Jun. 2005, doi: 10.1080/08993400500150747.

[12] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, “Review of recent systems for automatic assessment of programming

assignments,” in Proceedings of the 10th Koli Calling International Conference on Computing Education Research - Koli Calling

’10, 2010, pp. 86–93, doi: 10.1145/1930464.1930480.

[13] F. Restrepo-Calle, J. J. Ramírez Echeverry, and F. A. González, “Continuous assessment in a computer programming course

supported by a software tool,” Computer Applications in Engineering Education, vol. 27, no. 1, pp. 80–89, Jan. 2019, doi:

10.1002/cae.22058.

[14] D. M. Souza, K. R. Felizardo, and E. F. Barbosa, “A systematic literature review of assessment tools for programming

assignments,” in 2016 IEEE 29th International Conference on Software Engineering Education and Training (CSEET), Apr.

2016, pp. 147–156, doi: 10.1109/CSEET.2016.48.

[15] J. Caiza and J. Del Alamo, “Programming assignments automatic grading: review of tools and implementations,” in 7th

International Technology, Education and Development Conference (INTED2013), 2013, pp. 5691–5700.

[16] H. Keuning, J. Jeuring, and B. Heeren, “Towards a Systematic Review of Automated Feedback Generation for Programming

Exercises,” in Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education, Jul.

2016, pp. 41–46, doi: 10.1145/2899415.2899422.

[17] P. Maguire, R. Maguire, and R. Kelly, “Using automatic machine assessment to teach computer programming,” Computer

Science Education, vol. 27, no. 3–4, pp. 197–214, Oct. 2017, doi: 10.1080/08993408.2018.1435113.

[18] A. Lajis, S. A. Baharudin, D. A. Kadir, N. M. Ralim, H. M. Nasir, and Normaziah Abdul Aziz, “A review of techniques in

automatic programming assessment for practical skill test,” Journal of Telecommunication, Electronic and Computer Engineering

(JTEC), vol. 10, no. 2–5, pp. 109–113, 2018.

[19] Z. Ullah, A. Lajis, M. Jamjoom, A. Altalhi, A. Al-Ghamdi, and F. Saleem, “The effect of automatic assessment on novice

programming: Strengths and limitations of existing systems,” Computer Applications in Engineering Education, vol. 26, no. 6,

pp. 2328–2341, Nov. 2018, doi: 10.1002/cae.21974.

[20] F. A. D. O. Santos, “A tool for assisted correction of programming exercises in Java based in computational reflection,” Journal

on Computational Thinking (JCThink), vol. 2, no. 1, Nov. 2018, doi: 10.14210/jcthink.v2.n1.p51.

[21] D. Galan, R. Heradio, H. Vargas, I. Abad, and J. A. Cerrada, “Automated assessment of computer programming practices: the 8-

Years UNED experience,” IEEE Access, vol. 7, pp. 130113–130119, 2019, doi: 10.1109/ACCESS.2019.2938391.

[22] T. Wang, X. Su, P. Ma, Y. Wang, and K. Wang, “Ability-training-oriented automated assessment in introductory programming

course,” Computers & Education, vol. 56, no. 1, pp. 220–226, Jan. 2011, doi: 10.1016/j.compedu.2010.08.003.

[23] S. H. Edwards and M. A. Perez-Quinones, “Web-CAT: automatically grading programming assignments,” ACM SIGCSE

Bulletin, vol. 40, no. 3, pp. 328–328, Aug. 2008, doi: 10.1145/1597849.1384371.

[24] M. Joy, N. Griffiths, and R. Boyatt, “The boss online submission and assessment system,” Journal on Educational Resources in

Computing, vol. 5, no. 3, Sep. 2005, doi: 10.1145/1163405.1163407.

[25] D. Fonte, I. V. Boas, D. da Cruz, A. L. Gancarski, and P. R. Henriques, “Program analysis and evaluation using quimera,” in

Proceedings of the 14th International Conference on Enterprise Information Systems, 2012, pp. 209–219, doi:

10.5220/0004001702090219.

[26] M. T. Pham and T. B. Nguyen, “The DOMjudge based online judge system with plagiarism detection,” in 2019 IEEE-RIVF

International Conference on Computing and Communication Technologies (RIVF), Mar. 2019, pp. 1–6, doi:

10.1109/RIVF.2019.8713763.

[27] S. Srikant and V. Aggarwal, “A system to grade computer programming skills using machine learning,” in Proceedings of the

20th ACM SIGKDD international conference on Knowledge discovery and data mining, Aug. 2014, pp. 1887–1896, doi:

10.1145/2623330.2623377.

[28] A. Rump, A. Fehnker, and A. Mader, “Automated assessment of learning objectives in programming assignments,” in

International Conference on Intelligent Tutoring Systems, 2021, pp. 299–309, doi: 10.1007/978-3-030-80421-3_33.

[29] S. Zougari, M. Tanana, and A. Lyhyaoui, “Towards an automatic assessment system in introductory programming courses,” in

2016 International Conference on Electrical and Information Technologies (ICEIT), May 2016, pp. 496–499, doi:

10.1109/EITech.2016.7519649.

[30] S. Gupta, “Automatic assessment of programming assignment,” in Computer Science & Engineering, Jan. 2012, pp. 315–323,

doi: 10.5121/csit.2012.2129.

Int J Elec & Comp Eng ISSN:2088-8708

Validity of a graph-based automatic assessment system for programming … (Soundous Zougari)

2875

[31] S. Zougari, M. Tanana, and A. Lyhyaoui, “Graph based hybrid assessment system for programming assignments,” International

Journal of Computer Applications, vol. 178, no. 14, pp. 56–60, May 2019, doi: 10.5120/ijca2019918929.

[32] M. Nikolić, “Measuring similarity of graph nodes by neighbor matching,” Intelligent Data Analysis, vol. 16, no. 6, pp. 865–878,

Nov. 2012, doi: 10.3233/IDA-2012-00556.

[33] G. Aman, “Best programming languages to learn in 2021 (for job & future),” Hackr.io, 2021.

BIOGRAPHIES OF AUTHORS

Soundous Zougari received her computer science engineering degree from the

National School of Applied Sciences of Tangier (ENSA Tangier), University of Abdelmalek

Essadi, Morocco and Ph.D. degree in computer science from University of Abdelmalek Essadi,

Tetouan, Morocco, in 2021. Her research interests are in the areas of: learner’s assessment in
eLearning, Intelligent Tutoring Systems for learning to program, heterogeneous distributed

eLearning systems, eLearning standards and computer supported collaborative environments,

and data structures. She can be contacted at email: soundous.zougari@gmail.com.

Mariam Tanana received the engineering degree in computer science from the

National Graduate School of Engineering of Caen, France (ENSI), in 1990. She received her

Ph.D. in computer science from the National Institute of Applied Sciences of Rouen, France

(INSA), in 2009. Currently, she is a professor authorized to conduct research at the National
School of Applied Sciences of Tangier (ENSA Tangier), University of Abdelmalek Essadi,

Morocco. Her research interests include the learner’s assessment in e-Learning. She can be

contacted at email: mtanana@uae.ac.ma.

Abdelouahid Lyhyaoui received the bachelor's degree in electrical engineering

from University of Abdelmalek Essaadi, Tetouan, Morocco, in 1992, the M.S. signal system
and radio communication degree from Escuela Técnica Superior de Telecomunicaciones,

Universidad Politécnica of Madrid, in 1996, and the Ph.D. degree from Universidad Carlos III

de Madrid, Spain, in 1999. Between 2000 and 2003 he was a Visiting Professor in Signal

Theory and Communications at Universidad Carlos III de Madrid, Spain. Currently, he is a
professor at National School of Applied Sciences of Tangier, Abdelmalek Essaadi University.

His main research interests include statistical learning theory, neural networks and their

applications in multimedia signal processing and education. He can be contacted at email:

a.lyhyaoui@uae.ac.ma.

mailto:mtanana@uae.ac.ma
https://orcid.org/0000-0002-5551-6667
https://orcid.org/0000-0003-3310-6138
https://orcid.org/0000-0002-4596-9072

