
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 13, No. 2, April 2023, pp. 2142∼2155
ISSN: 2088-8708, DOI: 10.11591/ijece.v13i2.pp2142-2155 ❒ 2142

Self-admitted technical debt classification using natural
language processing word embeddings

Ahmed F. Sabbah1, Abualsoud A. Hanani2
1Software Engineering Department, Faculty of Engineering and Technology, Birzeit University, Birzeit, Palestine

2Electrical and Computer Engineering Department, Faculty of Engineering and Technology, Birzeit University, Birzeit, Palestine

Article Info

Article history:

Received Sep 3, 2021
Revised Sep 30, 2022
Accepted Oct 24, 2022

Keywords:

Bidirectional encoder
representations from transformers
Convolutional neural network
FastText
Self-admitted technical dept
Software engineering
Technical dept Word2Vec

ABSTRACT

Recent studies show that it is possible to detect technical dept automatically
from source code comments intentionally created by developers, a phenomenon
known as self-admitted technical debt. This study proposes a system by which
a comment or commit is classified as one of five dept types, namely, require-
ment, design, defect, test, and documentation. In addition to the traditional
term frequency-inverse document frequency (TF-IDF), several word embed-
dings methods produced by different pre-trained language models were used for
feature extraction, such as Word2Vec, GolVe, bidirectional encoder represen-
tations from transformers (BERT), and FastText. The generated features were
used to train a set of classifiers including naive Bayes (NB), random forest (RF),
support vector machines (SVM), and two configurations of convolutional neu-
ral network (CNN). Two datasets were used to train and test the proposed sys-
tems. Our collected dataset (A-dataset) includes a total of 1,513 comments and
commits manually labeled. Additionally, a dataset, consisting of 4,071 labeled
comments, used in previous studies (M-dataset) was also used in this study. The
RF classifier achieved an accuracy of 0.822 with A-dataset and 0.820 with the
M-dataset. CNN with A-dataset achieved an accuracy of 0.838 using BERT fea-
tures. With M-dataset, the CNN achieves an accuracy of 0.809 and 0.812 with
BERT and Word2Vec, respectively.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Abualsoud A. Hanani
Department of Electrical and Computer Engineering, Birzeit University
Birzeit, Palestine
Email: ahanani@birzeit.edu

1. INTRODUCTION
Technical debt (TD) is a metaphor, coined by Cunningham [1]. It reflects the additional cost that

is implied by rework caused by a sub-optimal solution instead of using the better approach in the software
development life cycle. The concept of TD is derived from financial debt, as the interest results from the
late payment. TD has an interest rate, and the cost increases if the developer does not pay the debt early, by
refactoring the code at a suitable time, to avoid interest in the future.

Technical debt is extremely correlated with immature software and issues in software development,
such as requirement debt, which measures the difference between the requirement specification and the actual
software implementation [2]. Design debt refers to the violation of the good design principle, where code debt
includes poor maintenance and readability, and it needs to be refactored. The documentation debt expresses the
lack of information that describes the code, and the testing debt describes the shortage of accepted testing [1].

Journal homepage: http://ijece.iaescore.com



Int J Elec & Comp Eng ISSN: 2088-8708 ❒ 2143

Some previous studies have shown that technical debt is spreading widely in software, which is inevitable and
may have an effect on software quality [3].

The developers’ accumulation of technical debt may be deliberately or inadvertently; often it is inad-
vertently [4]. Inadvertently, TD occurs when the developers afford the debt without intentionality. For example,
when the developer writes low-quality code because of insufficiency of experience. Furthermore, deliberately
TD occurs with the intention of developers, in a particular situation when the project manager decides to release
the software early. When the developers admit these issues and these are documented, often by comments in
the source code files, technical debt takes the name self-admitted technical debt (SATD). This term was first
coined by Potdar and Shihab [5]. It is a technical debt that is created by the developers deliberately, through
comments or commits messages, with the knowledge that the implementation is not an optimal solution for this
part of the code [6].

Recently, and following the introduction of the self-admitted technical debt term [6], research has
focused more on this direction. The majority of the directions, as introduced in [7], can be divided into three
categories. The first direction is detection: that focuses on identifying or detecting the SATD in source code
comments. The second is comprehension: those studies focus on the relation of SATD with different aspects
of the software process; and the third is repayment, which includes studies with the aim of investigating tools
and techniques to remove the TD by “fully repaying” or mitigating “partially repaying”. Wehaibi et al. [8]
assert that the proportion of SATD in the project may have a negative effect on the complexity of software. In
addition, they discovered that files of the source code that included self-admitted technical debt had more bug
fixing changes, whereas files that did not contain SATD had more defects.

For any purpose involving the treatment of self-admitted technical debt, identification is imperative
as the first step. When the type of TD is known, the problem can be handled quickly and with less interest.
Three areas of research found in the literature include pattern-based approaches that depend on identifying
textual patterns in comments. The machine-learning approach with natural language processing finally, deep
learning and natural language processing (NLP) approaches are based on more advanced techniques such as
neural networks.

In this paper, we propose an automatic system for classifying the SATD comments and commits writ-
ten in the source code into five SATD classes, namely, defect, design, documentation, requirement, and test.
Some of the NLP techniques are investigated for the SATD classification task, such as term frequency-inverse
document frequency (TF-IDF), Word2Vec, GolVe, bidirectional encoder representations from transformers
(BERT), and FastText. In conjunction with the NLP techniques, several machine learning techniques are in-
vestigated for the SATD classification task, such as naive Bayes (NB), random forest (RF), support-vector
machines (SVM), and convolutional neural network (CNN).

Two datasets were used to train and test the proposed systems. Our collected dataset (referred to as
A-dataset hereafter) includes a total of 1,513 comments and commits, each manually labeled as one of the five
self-admitted technical debt classes. Additionally, an existing dataset, consisting of 4,071 labeled comments,
which was used in some previous studies (referred to as the M-dataset hereafter), was also used in this study.
By evaluating our proposed systems with an existing dataset, the obtained results can be directly compared
with the published results of similar studies.

The main contribution of this paper can be summarized in three folds. First, most of the previous
studies applied a binary classification technique to predict whether or not a comment contains SATD. How-
ever, the proposed system used multi-classification techniques to identify the SATD categories. Second, to
our knowledge, none of the previous studies investigated the effectiveness of the pre-trained and fine-tuned
language model transformers such as BERT, Word2Vec, and FastText. Third, to our knowledge, this is the first
study that applied the NLP and machine learning (ML) techniques for detecting the SATD classes from the
commits as well as the source code comments.

This paper is structured as: section 2 presents related works. Section 3 discusses the research method
which includes the proposed system overview, dataset description, feature engineering, and machine learning
classifiers. Section 4 presents results and discussion for all experiments. The last section shows the conclusion.

2. RELATED WORK
Potdar and Shihab [5] were the first to analyse the comments in the source code in order to identify the

technical debt and introduced the concept of “self-admitted technical debt”. Differently from common static

Self-admitted technical debt classification using natural language processing ... (Ahmed F. Sabbah)



2144 ❒ ISSN: 2088-8708

analysis code-based tools, which depend on predefined rules, metrics, and thresholds to expect debt, technical
debt refers to the code defective, incomplete, smelly, or temporary, and is written by the developers intentionally
(self-admitted), with an obvious recognition that the implementation is not optimal. Those developers admitted
that a piece of code is technical debt, and they documented it through comments. The authors explore source
code comments in four open-source projects, to study the amount of SATD used in these projects. They also
investigated why the developers used this debt in the projects, and how the SATD was removed from the
projects. The result was that SATD exists in 2.4%-31% of the files. The majority of SATD were introduced
by more experienced developers, and there is no relationship between SATD and time constraints or code
complexity. Finally, 26.3%-63.5% of SATD is removed from projects after being presented. Moreover, in
this study, Potdar and Shihab introduced 62 patterns to indicate the SATD, through manually reading 101,762
comments to define patterns that indicate SATD [5].

Farias et al. [9] presented the contextualized vocabulary model (CVM-TD) to identify the different
types of SATD in source code comments. The evaluation of the model showed that comments that were
returned by the model were different from the comments that were evaluated to contain the SATD. This results
in low-performance detection and the model needs to be enhanced in how word classes are mapped to various
SATD types to enhance the model.

Maldonado et al. [10] used the NLP maximum entropy classifier (Stanford Classifier) approach to
automatically identify SATD from the comments, including design and requirement TD. The authors used 10
open source projects, extracted 62,566 comments, and classified them manually to create a dataset with five
types of TD: requirement, design, defect, documentation, and test debt. The experiment used 10-fold cross-
project validation, nine open-source projects for training, and one project for validation. The results showed that
the NLP improved the identification accuracy compared with previous pattern-based detection. The classifier
scored an average F1-measure of 0.620 for design debt, 0.403 for requirement debt, and 0.636 for technical
debt without types. Additionally, the study also provided top-10 lists of textual features that the developers
used as SATD, which means there is a variety of styles of expression for the SATD.

Bavota and Russo [11] introduced differentiated replication of the work by Potdar and Shihab in [5]
on a large scale. The study was run on 195 software projects, with 600K commits and 2 billion comments, to
investigate the spread and evolution of SATD and the relationship between these debts and software quality.
The main results showed that SATD is distributed in an average of 51 instances for each system. Moreover,
even when this debt is fixed, it survives for a long time, on average more than 1,000 commits. Additionally,
there are other studies examining the relationship between the SATD and the quality of software. Wehaibi
et al. have been investigating whether the files that include SATD have a greater chance of including defects
in comparison to the files that do not include SATD. Additionally, the changes in the SATD introduce defects
in the future. The result of this study showed that the self-admitted technical debt, in addition to the negative
impact on the system, is related to defects, and it makes the change more complicated in the future [8].

Farias et al. [12] proposed the work that applies, evaluates, and improves previous work of contex-
tualized patterns to detect self-admitted technical debt using source code comment analysis in the studies [9],
[13]. The results of empirical studies show that more than 0.50 of the new patterns are critical to technical debt
detection. The new vocabulary succeeded in finding items related to code, design, defect, documentation, and
requirement debt. The main contribution of this study was to identify self-admitted technical debt depending
on the knowledge embedded in the vocabulary [12].

Wattanakriengkrai et al. [14] introduced an approach using N-gram IDF, with multi-classification
techniques, and built a model that can identify a comment as design debt, requirements debt, or non-SATD.
The dataset’s Maldonado et al. [10] that contains 62K Java source code comments used. A RF machine
learning algorithm was applied to classify target comments. The result of the experiment was that N-gram IDF
outperformed traditional techniques like bag of words (BoW) and TF-IDF, with an average F1-score value of
0.6474.

Yu et al. [15] proposed a Jitterbug framework with two methods for identifying SATD. The dataset
proposed by Maldonado et al. [10] used. The first type, “easy to find”, can be detected automatically without
human intervention because the comment has explicitly denoted that it includes the keywords or patterns that
relate to the type of SATD such as “Todo”, “Fixme”. This approach can find 0.20-0.90 of SATD automatically.
The precision of identifying SATD close to 0.100, when using a pattern recognition technique. On average,
those comments cover 0.53 of the total SATD. The second type: “hard to find” is not easy to classify and needs
experts to accurately decide. Only humans can make the final decisions, and it is still hard for algorithms. In

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 2142-2155



Int J Elec & Comp Eng ISSN: 2088-8708 ❒ 2145

this approach, supervised machine learning is used to present the comment to the experts for identifying SATD
that is not identified automatically. After that, the comments identified by the experts are reused by updating
the model and through continuous training.

Some studies examine the commit messages to determine the effect and relationship with SATD.
Yan et al. [16] introduced the level of change in self-admitted technical debt determination. This model
determines whether the change introduces SATD by using the versions of the code comments, identifying the
SATD at the file level for each version, and analyzing and extracting information from a message in commits
that were written by the developers, to predict if the commit is related to SATD. Maipradit et al. [17] introduced
“on-hold self-admitted technical debt”, to identify the on-hold instance debt, that makes the developer wait for
other events or functionality elsewhere to fix this on-hold instance.

Rantala and Mäntylä [18] replicating and extending the work introduced by Yan et al. [16], they
used 1876 commits messages extracted from five repositories (Camel, Log4J, Hadoop, Gerrit, and Tomcat)
that were pre-labeled as SATD, and three techniques of NLP (bag-of-words, latent Dirichl et al. location, and
word embedding), to predict self-admitted technical debt from commit messages. The main contribution of this
study, the bag-of-words technique, is the best performance with a median (AUC 0.7411). Automatic feature
selection from the commit message improved the prediction performance for SATD.

3. RESEARCH METHOD
The main goal of this study is to identify the types of TD based on the comments and commits written

by the developers. An empirical study has been conducted to measure the relationship between dependent
and independent variables in order to satisfy the research goal. Two independent variables are considered pre-
trained models and machine learning algorithms, and one dependent variable is the classification accuracy. The
proposed approach consists of three main phases: preparing the comments or commits by pre-processing the
text using NLP techniques. The aim of the pre-processing phase is to focus more on the words of a sentence
that give meaning. Usually, the comments and commits are written in natural language, and they include noises
that donnot affect the semantic meaning of the sentence. These sentences need to be handled through pipeline
processes to keep the important words and remove the noise. We used some of the NLP techniques [19], [20] to
perform this phase,such as tokenization, text cleaning, normalization, and lemmatization. The second phase is
features engineering, which converts tokens of text into features. In the final phase, different machine learning
techniques are used to classify the SATD into one of five classes. Figure 1 shows the system design diagram.

Figure 1. System design block diagram

3.1. Dataset description
To perform our study, we used two datasets. One is publicly available and used in many previous stud-

ies (referred to as the M-dataset throughout this paper), and one is manually collected and annotated specifically

Self-admitted technical debt classification using natural language processing ... (Ahmed F. Sabbah)



2146 ❒ ISSN: 2088-8708

for this study (referred to as the A-dataset throughout this paper). We collected two types of expression that
the developers write, which can be considered as SATD: source code comments and commit messages. Most
of the sentences are comments, and the commits are used to add more variety to the sentences that are used in
the A-dataset, with the aim of generalising the results of the proposed approach.

3.1.1. Source code comments
The first dataset used in this study is the dataset (M-dataset) of source comments that is publicly

available and introduced by Maldonado et al. [10]. This dataset consists of 62k comments extracted from
10 open-source projects (Ant, ArgoUML, Columba, EMF, Hibernate, JEdit, JFreeChart, JMeter, JRuby, and
SQuirrel SQL). Each comment is manually classified into one of five types of SATD: requirement: 757, design:
2,703, defect: 472, test: 85, documentation: 54, and other comments, which are unclassified. Most of the
reviewed studies in this field adopted this dataset, which was introduced by Maldonado et al. [10] for SATD
identification.

To make the identification of SATD more general with a large variety of sentences and to investi-
gate the accuracy of our methods for classifying SATD, we collected a new dataset from various projects.
We extracted 222 source code comments from two open-source Android mobile applications, namely K9 and
WordPress (WP). To extract the comments, a SATD detector was used, which automatically detects SATD
using text mining-based algorithms described in [21]. In the K9 app, there are 339 comments extracted by this
tool, 170 of which are classified as SATD. After removing the duplicated comments, we used 145 comments
classified as SATD. In the WordPress app, 94 comments are extracted as SATD and reduced to 77 after remov-
ing the duplicate comments. Additionally, 3,102 comments were taken from five open source code projects
(Gerrit, Camel, log4j, Tomcat, Hadoop ) that were used by Maldonado et al. in [22], and they are classified as
SATD. We manually labeled these comments into the main five types of SATD, including requirement, design,
defect, documentation, and test. Table 1 summarizes the details of the A-dataset comments.

Table 1. Number of new collected comments
Project Name No. of comments Removed duplicate comments

Gerrit 272 172
Camel 4,332 1,162
Log4j 136 91

Tomcat 1,318 1,052
Hadoop 1,165 625
K9 App 339 145

WordPress App 94 77
Total 7,317 3,324

3.1.2. Commits messages
For the commit messages, we used the same dataset that was used in the study described in [18]. This

dataset consists of 73,625 messages, of which 1,876 are classified as SATD. After removing the duplicated
commits and the URL of conduit for change sets between subversion and Git for most of the commits, we get
1758 commits classified as SATD.

3.1.3. Manual annotation
The manual annotation process was performed in two phases. In phase 1, we follow the same classi-

fication method described by Yikun et al. [23] and Deng [24]. Both are based on a framework proposed by
Alves et al. [2]. Additionally, Alves et al. in [25] conducted systematic mapping in around 100 studies, dated
from 2010 to 2014. In our study, we followed the same taxonomy and definitions, at least for the five types of
SATD that we used.

Alves et al. [2] proposed an ontology for the definitions and indicators of technical debt that were
spread across the literature. In other words, the factor that leads to introducing technical debt. Alves et al.
provide 13 different types of TD with definitions that include: architecture, build, code, defect, design, docu-
mentation, infrastructure, people, process, requirement, service, test automation, and test debt. In the case of
self-admitted technical debt, Maldonado and Shihab in [26] manually analyzed 33,093 comments and classi-
fied them. The main finding was that most of the technical debt types that are self-admitted in source code are
requirement, design, defect, test, and documentation debt. The other 8 types were not found in this approach,

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 2142-2155



Int J Elec & Comp Eng ISSN: 2088-8708 ❒ 2147

since the developers do not like to express them in the comments, i.e., infrastructure, people, and process.
Additionally, some of the TD may overlap, such as design and architecture.

After preparing a sufficient number of comments and commits, a website [27] is created to simplify
the annotation process and, hence, get the maximum number of annotations by a maximum number of ex-
pert annotators. The website includes three pages (home, registration, and classification). On the home page,
we provide a set of guidelines to help the participants complete the task and a set of definitions related to
the technical debt of the target categories of the SATD. Before starting the manual annotation process, each
participant needs to provide some details about him/herself, such as email address, the years of experience
(1–5 years, 5–10 years, and more than 10 years), and a job description that includes: software engineer, pro-
grammer, software architect, QA-testing, project manager, team lead, academic student, and academic teacher.
On the classification page, a set of randomly selected comments appear to the participant one at a time. The
participant is asked to read carefully the presented comment and then select the appropriate SATD category
that best matches the comment. A criterion is applied to the comment selection to guarantee that no comment
is repeated for the same participant twice and that the comment is not classified by more than two different
participants. The web application also provides the participants with a review summary of the definition of
each SATD category. By this, we make sure that each participant is confident about the types of debt that he
or she can choose from the list that embeds the five types of self-admitted technical debt. The participant has
an option to skip any “not sure” comments. The first author of this study, who has good experience in software
development and engineering, annotated a total of 1,513 comments and commits out of the available 5,082. To
improve the reliability of the annotations, the random selection of the comments for the other participants is
forced to be from the annotated subset by the author. Hence, each selected comment is annotated by the author
and by at least one other annotator. The source code of the website is found in [27].

The output of this process is that 1,147 out of 3,324 comments and 366 out of 1,758 commits are an-
notated. Some of the comments were simply names of functions or methods followed by “TODO” or “FixMe”
while others were longer and described more than one type of SATD. These kinds of comments are skipped.
Additionally, we skipped the comments that clearly do not belong to any of the considered five types of SATD.
Similarly, some commits describe some issues solved by a person; therefore, skipped. Tables 2 and 3 show
summaries of the author’s comments and commits annotations.

Table 2. Comments classification
Project No of comments Classified Requirement Design Defect Test Documentation
Camel 1,162 452 133 182 58 70 9
Gerrit 172 46 19 17 9 1 0
Log4j 91 23 6 11 6 0 0

Tomcat 1,052 334 66 163 77 23 5
Hadoop 625 182 28 81 44 29 0
K9 App 145 75 26 16 26 5 2
WP APP 77 35 14 10 10 1 0

Total 3,324 1,147 292 480 230 129 16

Table 3. Commits classification
Project No of commits Classified Requirement Design Defect Test Documentation
Camel 739 193 20 34 25 105 9
Gerrit 145 13 4 4 5 0 0
Log4j 74 14 1 8 2 1 2

Tomcat 485 115 10 37 17 45 6
Hadoop 315 31 6 8 5 12 0

Total 1,758 366 41 91 54 163 17

3.1.4. Kappa test
A Kappa statistical test [28] was conducted to measure the reliability of our new dataset. We used

Cohen’s kappa coefficient [29] that was used in other studies with the same labelling method [10], [23]. To
mitigate the chance of creating a biassed annotated dataset, a group session of three experts with various expe-
rience in software development participated in the annotation process. One of the participants has a master’s

Self-admitted technical debt classification using natural language processing ... (Ahmed F. Sabbah)



2148 ❒ ISSN: 2088-8708

degree in software engineering and is working as a team leader with 10 years of experience in software de-
velopment. Two participants are MSc software engineering students at Birzeit University and are working as
software developers with 6 and 8 years of experience.

The group session took three hours. In the first hour, we give a short review of the self-admitted
technical debt and present the five SATD types with, at least, three examples for each type. In the second
hour, we conducted a discussion among the group of participants with questions and answers to make sure
that everyone understood the task. Lastly, we view the website and explain the steps for annotation. The three
participants interacted with the topic and classified 260 comments and commits selected randomly from the
comments and commits that were classified before by the first author. The first expert classified 121 comments
and 28 commits. The second expert classified 35 comments and 15 commits, and the third expert classified
49 comments and 12 commits. The majority of the disagreements between the author and the experts concerned
the requirements and design types.

We evaluate the level of agreement between the expert’s classifications and the author’s classifications
by calculating Cohen’s kappa coefficient [29]. The Cohen’s Kappa coefficient is a widely used method to
evaluate inter-rater agreement levels for categorical scales, and it calculates the proportion of agreement that is
chance-corrected. The result of the coefficient is scaled from -1 to +1, with a negative value indicating worse
than chance agreement, zero means exactly chance agreement, and a positive value indicates better than chance
agreement [30]. Whenever the value is close to +1, the agreement is stronger. The level of agreement was
calculated between two observers (author and experts), and five categories (requirement, design, defect, test,
and documentation). We used an online kappa calculator [31]. We achieved a level of agreement measured
between the author and the experts +0.82 based on a sample including 17% of all technical debt types, which
is considered almost perfect agreement according to Fleiss [28] values larger than +0.75 are characterized as
excellent agreement. Table 4 presents the input data for the Kappa test. Each cell in the table is defined by its
row and column. The rows specify how each SATD type was classified by the author. The columns specify
how the experts classified the subjects. For example, in the second row of the first column, 10 comments
were classified by the author as “design” whereas the experts classified them as “requirements”. In the second
column of the second row, 89 comments were classified by both as design.

Table 4. Input data for Kappa test
Experts

Requirement Design Defect Test Documentation Total

Author

Requirement 43 12 2 0 0 57
Design 10 89 7 0 0 106
Defect 0 3 45 1 0 49

Test 1 0 1 36 0 38
Documentation 0 0 0 0 10 10

Total 54 104 55 37 10 260

3.2. Features engineering
The second phase of our approach is to extract useful information from the comments and commits

and represent them in a form suitable for machine learning. In our approach, we used different NLP methods
for transforming the words into numeric features. Some methods depend on syntax that defines the grammatical
structures or the set of rules defining a language, such as Bag-of-words and TF-IDF. Other methods focus on
the semantics of words, which takes care of the meaning, and how to combine the words together to make a
meaningful sentence with consideration of the syntactical rules. Those methods are also called word embedding
methods. In our experiments, we used five word-embedding pre-trained models; general Word2Vec, software
engineering Word2Vec, FastText, BERT, and GloVe. With these pre-trained models, each word is represented
by a high-dimensional vector. Additionally, we used the universal sentence encoder (USE) model, in which the
whole sentence is represented by one high-dimensional vector.

3.2.1. Term frequency-inverse document frequency
TF-IDF takes into consideration the weights of words in documents. We generally compute a weight

for each word, which signifies the importance of the word in the document and corpus. The most frequent
words across all documents don’t carry discriminating information, hence, multiplied by low weights. On the
other hand, words with low frequency get high weight. In our experiments, we used the TF-IDF representation

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 2142-2155



Int J Elec & Comp Eng ISSN: 2088-8708 ❒ 2149

method since it is an enhanced and weighted BoW representation. After the comments and commits pass
through the pre-processing pipeline, the resulted tokens are converted into numeric features representing the
frequencies of the unique words in the given text comment or commit. The number of unique words in the
M-dataset is 6,327 out of 44,895 words. For A-dataset, the dictionary size is 3,948 unique words out of 20,929
words. This means that for each comment, the feature vector size is equal to the length of the dictionary.

3.2.2. Word embedding methods
Although the syntactic-based feature representation methods are effective for extracting features from

comments, there is a loss of some important information such as semantics, structure, and context around
nearby words in each comment. This motivates us to explore state-of-the-art models to capture more useful
information than is embedded in the representation of words. In our experiments, we used the following
pre-trained models since they are the most common and most successfully used word embedding pre-trained
models:
− Word2Vec is the deep learning Google model to train word embedding or vector representation of words.

In our approach, we used three models belonging to the Word2Vec family. The first one is the Word2Vec
model [32] trained on part of the Google News dataset (about 100 billion words). The model contains 300-
dimensional vectors for 3 million words and phrases. The second one is a software engineering-specific
model [33]. It is a word2vec model trained over 15GB of textual data from Stack Overflow posts, with
over 6 billion words used for training tasks, and the output pre-trained. The output of the model is 200-
dimensional vectors for 1,787,145 keywords.

− GloVe is an extended Word2Vec model. The gloVe functions similarly to the Word2Vec. Word2Vec is a
“predictive” model that predicts the context given a word and learns its vectors to enhance its predictive
ability. GloVe [34] is a count-based model. It learns by building a co-occurrence matrix (words X con-
text) that essentially counts the number of times the word appears in the context, in order to reduce the
dimensionality of the co-occurrence matrix. We used the public domain model “glove.840B.300d”, which
includes 840B tokens, 2.2M vocabulary, and 300-dimensional vectors, and the model size is 2.03 GB.

− FastText is the state-of-the-art word embedding approach that works at the character level. FastText in-
troduced based on two studies [35], [36] which is essentially an extension of the Word2vec model, but
each word is broken down into character n-grams. As a result, a word’s vector is made up of the number
of this character’s n-grams. For example, the vector of the word “method” is a sum of the vectors of the
n-grams characters: “me”, “met”, ”meth”, ”metho”, ”method”, “eth”, “etho”, ”etho”, “hod”, ”hod”, ”od”.
The “crawl-300d-2M.vec” will be used: 2 million word vectors trained on Common Crawl (600B tokens)
with a 300-dimensional vector [37].

− BERT stands for bidirectional encoder representations from transformers. BERT [38] is introduced in two
variants, such as BERT-BASE and BERT-LARGE. The BERT-BASE has a number of transformer blocks of
12, hidden layer size of 768, attention heads of 12, and total parameters of 110M. The BERT-LARGE has a
number of transformer blocks of 24, a hidden layer size of 1024, attention heads of 16, and total parameters
of 340M. We followed the recommendation in [39] for tuning BERT parameters. The BERT-BASE model
is used. It has a number of transformer blocks (12), a hidden layer size of 768, and attention heads (12).
The TensorFlow hub was used to load the BERT pre-trained model.

− USE is a family of pre-trained sentence encoders introduced by Google. We used this method for embed-
ding sentences for classic machine learning, instead of using an average of word embedding calculated for
each sentence. The universal sentence encoder model is trained on huge data and supports more than 16
languages. The output of this model is 512-dimensional vectors for each sentence [40].

3.3. Machine learning classifiers
The last phase in our approach is classifying the comments into one of the considered five categories

(requirement, design, defect, test, and documentation). Various machine learning techniques are investigated
for this task including classical techniques; support vector machines classifier, NB, RF, and CNN which is
successfully used for similar tasks. For all experiments that used the classical ML algorithms, the default
setting parameters used, as the Scikit-learn library provided [41].

In most of the reviewed studies, the SVM was used as a binary classifier for the SATD identification
task [42]. In our study, we use the SVM as a multi-classifier with the features explained in the earlier sections.
We used the Scilkit-Learn [43] Python library, which includes an SVM implementation. The NB machine

Self-admitted technical debt classification using natural language processing ... (Ahmed F. Sabbah)



2150 ❒ ISSN: 2088-8708

learning algorithm is one of the most famous and successfully applied supervised machine learning classifiers
in NLP applications [6], [42].

A random forest is a meta estimator that uses averaging to increase predictive precision and control
over-fitting by fitting a range of decision tree classifiers on different sub-samples of the dataset. We use the
RF with default parameters as provided by Scilkit-Learn [44] The convolution neural network approach is
used by more complex and modern forms of artificial neural network (ANN). We used the CNN model for
the multi-classification task, where the CNN model takes an input comment and predicts the type of SATD
(requirement, design, defect, test, documentation). The architecture of our CNN includes an input layer, a
convolutional layer, a pooling layer, a fully connected layer, and finally an output layer. The implementation of
the CNN model and the hyperparameters are studied and described in detail in the next sections. For all CNN
experiments, we used the Keras TensorFlow library, which is an open source neural-network library written in
Python [45]. The embedding dimension parameter was fixed according to the pre-trained model used. In our
experiments, most of the pre-trained models produce 300 dimensions, except the software engineering and the
universal sentence encoder pre-trained models, which are 200 and 512 dimensions, respectively. The number
of target classes was set to five, which is equal to the number of SATD types considered in this study. We used
two architectural neural networks for CNN; simple CNN (single hidden layer), and complex CNN (multiple
hidden layers). The difference between the two networks is the number of layers. In the single-layer CNN,
we used one layer for both convolutional and pooling layers, whereas, for the complex CNN, three layers are
used. The reset of parameters was fixed as: Number of filters: 128, number of classes: 5, stride: 1, filter size
for layers in order: [2,3,4], dropout: 0.2, batch size: 32, number of max epochs: 20. To avoid the over-fitting
problem in the training and to get the optimal number of epochs. The model stops training when a monitored
metric has stopped improving. We used callbacks early stopping parameter in the fit model, the callback
will stop the training when there is no improvement in the validation loss for five consecutive epochs. The
activation functions: “ReLU” and “softmax”, optimizer: “adam”. Since we are not training depending on our
own embedding, and the pre-trained model used, the trainable parameter is set to false and our own embedding
matrix is passed in the weights parameter. The following Figure 2 summarizes the three main processes of
system design.

Figure 2. The three main processes in system design

4. RESULT AND DISCUSSION
This section presents all the conducted experiments and their results, with a discussion. In all of the

presented experiments, the accuracy and weighted average of precision, recall, and F1-score metrics are used
for the system performance. Each experiment is repeated 10 times, and the average performance is reported.

4.1. Experimental setup
To conduct our experiments, we used Google Colab, which is a cloud service that supports GPU

processors. Colab allows to write and execute Python in the browser. Table 5 shows the detailed specifications

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 2142-2155



Int J Elec & Comp Eng ISSN: 2088-8708 ❒ 2151

of the processing capability that we used in all of our experiments. In all of our experiments, the two datasets
(A-dataset and M-dataset) were split randomly into two subsets; 0.80 for training and 0.20 for testing.

4.2. Experiments on A-dataset
In this experiment set, each of the ML techniques described in section 3, is trained on the training data

and evaluated on the testing data of the A-dataset. Five classifiers are used. Three of them (RF, SVM, and NB)
are trained and evaluated with TF-IDF and USE features, and two classifiers (single-layer CNN (SLCNN) and
multiple-layer CNN (MLCNN)) are trained and evaluated using word embedding vectors extracted using the
five pre-trained models and the TF-IDF. The pre-trained models include Word2Vec, SE-W2v, GloVe, FastText,
and BERT. The results of these experiments are shown in Table 6.

Table 5. Environmental setup
Type Specification

CPU model Intel(R) Xeon(R) CPU @ 2.20 GHz
Cache size 56320 KB

Ram 13.3 GB
Disk 69 GB
GPU Tesla T4
OS Ubuntu 18.04.5 LTS

Table 6. Performance of all classifiers using A-dataset
NB Precision Recall F1-score Accuracy

TF-IDF 0.703 0.683 0.654 0.683
USE 0.746 0.723 0.726 0.723
RF

TF-IDF 0.836 0.822 0.810 0.822
USE 0.801 0.779 0.771 0.779
SVM

TF-IDF 0.826 0.812 0.816 0.812
USE 0.803 0.792 0.795 0.792

SL-CNN
TF-IDF 0.778 0.772 0.771 0.772
W2V 0.817 0.815 0.811 0.815

SE-W2V 0.793 0.785 0.786 0.785
GloVe 0.826 0.822 0.819 0.822

FastText 0.835 0.828 0.827 0.828
BERT 0.841 0.832 0.834 0.832

ML-CNN
TF-IDF 0.789 0.789 0.792 0.790
W2V 0.809 0.815 0.807 0.815

SE-W2V 0.813 0.822 0.814 0.822
GloVe 0.824 0.815 0.816 0.815

Fasttext 0.825 0.828 0.825 0.828
BERT 0.843 0.838 0.839 0.838

As shown in Table 6, the RF outperforms the NB and SVM classifiers with an accuracy of 0.822,
using the TF-IDF features. The TF-IDF vectorization method outperforms the USE features with the first
three classifiers (RF, SVM, and NB). The SVM works better than RF in terms of F1-score, whereas, the RF
works better in terms of precision and recall. Moreover, the accuracy of the 10 runs of the SVM classifier
ranges from 0.792 to 0.812, whereas, RF ranges from 0.802 to 0.822. In terms of F1-score, the RF and SVM
systems with the TF-IDF outperformed the baseline binary classifier system described in [6], by 0.105 and
0.113, respectively. When comparing with only requirement and design classes (baseline classes), the RF with
the TF-IDF outperforms the baseline by 0.144 in terms of the F1-score average.

For the CNN-based classifiers, the five pre-trained models and TF-IDF are used with A-dataset to
train and test SLCNN and MLCNN models. The results show that the CNN system with the Bert pre-trained
model outperforms the TF-IDF and the other pre-trained models. By comparing the results of the SLCNN and
MLCNN systems, the MLCNN outperforms the SLCNN in two models SE-W2V and BERT. For the W2V and

Self-admitted technical debt classification using natural language processing ... (Ahmed F. Sabbah)



2152 ❒ ISSN: 2088-8708

FastText models, the accuracy and recall are equal, but the F1-score and precision in SLCNN is better than
MLCNN. The Golve with SLCNN outperforms the MLCNN.

4.3. Experiments on the M-dataset
In this experiment set, the five described ML classifiers are trained and evaluated using the M-dataset.

All the configurations used in these experiments are kept the same as used in the previous experiments con-
ducted on the A-dataset. The main results of these experiments are shown in Table 7. As it is clear from the
presented results, the RF classifier outperforms NB and SVM classifiers. The two CNN-based systems take
the same parameters as mentioned in the experimental setup section 4.1. Each system is trained on the training
data and evaluated on the testing data of the M-dataset. The five pre-trained models (W2V, SEW2V, GloVe,
FastText, and BERT), and TF-IDF are all used for feature extraction in the CNN experiments.

Table 7. Performance of all classifiers using M-datase
NB Precision Recall F1-score Accuracy

TF-IDF 0.670 0.696 0.590 0.696
USE 0.664 0.639 0.646 0.639
RF

TF-IDF 0.826 0.820 0.801 0.820
USE 0.838 0.807 0.778 0.807
SVM

TF-IDF 0.774 0.783 0.775 0.783
USE 0.737 0.753 0.728 0.753

SL-CNN
TF-IDF 0.757 0.761 0.739 0.761
W2V 0.807 0.812 0.798 0.812

SE-W2V 0.783 0.791 0.783 0.791
GloVe 0.802 0.802 0.785 0.802

FastText 0.804 0.806 0.788 0.806
BERT 0.796 0.804 0.792 0.804

ML-CNN
TF-IDF 0.721 0.748 0.707 0.748
W2V 0.779 0.793 0.776 0.793

SE-W2V 0.797 0.805 0.794 0.805
GloVe 0.792 0.799 0.784 0.799

FastText 0.783 0.791 0.783 0.791
BERT 0.804 0.809 0.795 0.809

Similar to the experiments conducted on the A-dataset, the TF-IDF outperforms the USE vectorization
method. The RF system with the TF-IDF outperforms the baseline system described in [6] which uses the same
dataset (M-dataset) by 0.055 of average F1-score for two types of SATD (requirement and design). For the five
types of SATD, our approach achieves an average of F1-score 0.801, which outperforms the baseline by 0.092.
The RF with the TF-IDF achieves the best accuracy with the M-dataset.

With the CNN classifiers, the single-layer CNN with the Word2Vec outperforms the TF-IDF and the
other pre-trained models. Moreover, the accuracy of the five pre-trained models ranges from 0.791 to 0.812.
By comparing our system which classifies SATD into five classes with the result of the binary classification
study published in [46] that used CNN model and the M-dataset, our SLCNN system outperforms it in the five
pre-trained models and the TF-IDF.

The results of MLCNN show that the BERT model outperforms the TF-IDF and the other pre-trained
models. MLCNN with the M-dataset are improved in two models, BERT and SE-W2V. This result is the same
result of MLCNN with the A-dataset. The accuracy of the other three models (W2V, Glove, FastText) is better
with SLCNN for the two datasets.

These results indicate that the single-layer CNN performs better than the multi-layer CNN with three
pre-trained models. This suggests that no need for many layers in the neural network for this task, possibly
because the length of comments is considered short. The length of comments ranges from 1-500 words, mostly
falling between 1 and 50 words, with an average of 11 words. These results of the experiments agree with
the findings of the study [47] which found that for text with about 50 words, one convolution pooling layer is
suitable, and for text with around 500 words, two convolution pooling layers can be used. For the BERT model,

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 2142-2155



Int J Elec & Comp Eng ISSN: 2088-8708 ❒ 2153

the result is better than the MLCNN, because the architecture of BERT for word embedding is different from
the other models. The main diffidence between the SE-W2V model and the other models is the dimension of the
vector. The SE-W2V produces 200-dimensional vectors, whereas, the other models produce 300-dimensional
vectors.

4.4. Statistical test
In all of the experiments presented in this paper, each experiment is repeated 10 times to estimate the

variability of the results and to evaluate how close to each other. In addition, to increase the accuracy of the
estimate, assuming no bias or systematic error is present. The same classifier runs with two datasets, and the
best performance is recorded for each one. To conduct a suitable statistical test for our approach, we adopt
the method produced by [48], which performs the statistical tests for multi-classifiers over multiple datasets,
similar to our case.

This method compares the obtained results using Friedman’s non-parametric test. It ranks the clas-
sifiers for each dataset separately, then the Friedman test compares the average ranks of classifiers over all
datasets that are shown in Table 8. If Friedman’s test finds statistically significant at p <0.05, then the null
hypothesis is rejected, we can proceed with a post-hoc test. The Nemenyi test is used to compare all classifiers
to each other.

Table 8. Average ranking for all classifiers and language models
TFIDF USE W2V SW2V GloVe FastText BERT

NB 0.46 0.33 - - - - -
RF 4.17 1.92 - - - - -

SVM 2.19 1.13 - - - - -
SCNN 1.19 - 3.77 2.38 3.11 3.97 4.11
MCNN 1.26 - 2.38 3.08 2.45 3.01 4.37

The result of the Friedman test for null-hypothesis: the distributions of all samples are equal was
rejected with P=4.69E-09. Additionally, as the study in [48] recommends that Friedman chi-square is working
better with N and k are big enough (as a rule of a thumb, N >10 and k >5) where N is the number of datasets,
and K is the number of classifiers. We repeated the test with another non-parametric test that should be preferred
over the parametric ones [48]. We conduct Nemenyi to compare the accuracy of algorithms for each other which
showed there are statistically significant between the accuracy of algorithms.

5. CONCLUSION
In this study, we presented classical machine learning and convolutional neural network approaches

to identify and classify SATD from source code comments and commits. Furthermore, we investigated the
effectiveness of NLP feature engineering techniques for the SATD classification. Different NLP techniques
were used in this study, including TF-IDF and word embedding vectorization methods to feed in different
classifiers.

Two datasets were used in this study; the publicly available dataset used in previous studies (M-
dataset), and a manually collected and annotated dataset for this study (A-dataset). A Kappa statistical test was
applied to accept the label of each SATD comment to verify its authenticity. We achieved a level of agreement
measured between the author and experts of +0.82 based on a sample including 0.17 of all technical debt types,
which is considered almost perfect agreement.

The traditional and well-known TF-IDF NLP techniques and the state-of-the-art word embedding
techniques: USE, Word2Vec, Golve, FastText, and BERT were used for representing comments into a numeri-
cal feature vector. We evaluated the proposed approach by comparing the accuracy of the classifiers using the
two datasets. For classical machine learning, three types of classifiers are used (NB, RF, and SVM) with two
types of word representation methods (TF-IDF and USE). The classical machine learning techniques worked
better with the TF-IDF. This can be improved by comparing the best classifier accuracy (RF and TF-IDF) with
(RF and USE). The results for the A-dataset showed that TF-IDF achieved an accuracy of 0.822, while USE
achieved 0.771. For the M-dataset, TF-IDF achieved 0.820, and USE 0.807. For convolutional neural networks,
we used the CNN classifier with five NLP word embedding methods and the TF-IDF. The CNN with BERT
achieved the best accuracy for the A-dataset: 0.838. The Word2Vec is the best according to the M-dataset with

Self-admitted technical debt classification using natural language processing ... (Ahmed F. Sabbah)



2154 ❒ ISSN: 2088-8708

an accuracy of 0.812. In the future, we plan to increase the scale of our approach by adopting more projects
that are developed in different programming languages. Additionally, in different domains, for example, mo-
bile applications, commercial software, and medical and healthcare domains, more investigation into the other
types of neural networks, deep learning architectures, and pre-trained models, and fine-tuning the parameters
of models in order to improve the accuracy of classification SATD.

REFERENCES
[1] W. Cunningham, “The WyCash portfolio management system,” in Addendum to the proceedings on Object-oriented programming

systems, languages, and applications, 1992, pp. 29–30, doi: 10.1145/157709.157715.
[2] N. S. R. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O. Spinola, “Towards an ontology of terms on technical debt,” in Sixth

International Workshop on Managing Technical Debt, Sep. 2014, pp. 1–7, doi: 10.1109/MTD.2014.9.
[3] E. Lim, N. Taksande, and C. Seaman, “A balancing act: what software practitioners have to say about technical debt,” IEEE Software,

vol. 29, no. 6, pp. 22–27, 2012, doi: 10.1109/MS.2012.130.
[4] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In search of a metric for managing architectural technical debt,” in

Joint Working IEEE/IFIP Conference on Software Architecture and European Conference on Software Architecture, Aug. 2012, pp.
91–100, doi: 10.1109/WICSA-ECSA.212.17.

[5] A. Potdar and E. Shihab, “An exploratory study on self-admitted technical debt,” in IEEE International Conference on Software
Maintenance and Evolution, Sep. 2014, pp. 91–100, doi: 10.1109/ICSME.2014.31.

[6] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li, “Identifying self-admitted technical debt in open source projects using text mining,”
Empirical Software Engineering, vol. 23, no. 1, pp. 418–451, Feb. 2018, doi: 10.1007/s10664-017-9522-4.

[7] G. Sierra, E. Shihab, and Y. Kamei, “A survey of self-admitted technical debt,” Journal of Systems and Software, vol. 152, pp.
70–82, Jun. 2019, doi: 10.1016/j.jss.2019.02.056.

[8] S. Wehaibi, E. Shihab, and L. Guerrouj, “Examining the impact of self-admitted technical debt on software quality,” in IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), Mar. 2016, vol. 1, pp. 179–188, doi:
10.1109/SANER.2016.72.

[9] M. A. de F. Farias, M. G. de M. Neto, A. B. da Silva, and R. O. Spinola, “A contextualized vocabulary model for identifying
technical debt on code comments,” in IEEE 7th International Workshop on Managing Technical Debt (MTD), Oct. 2015, pp. 25–32,
doi: 10.1109/MTD.2015.7332621.

[10] E. D. S. Maldonado, E. Shihab, and N. Tsantalis, “Using natural language processing to automatically detect self-admitted technical
debt,” IEEE Transactions on Software Engineering, vol. 43, no. 11, pp. 1044–1062, Nov. 2017, doi: 10.1109/TSE.2017.2654244.

[11] G. Bavota and B. Russo, “A large-scale empirical study on self-admitted technical debt,” in Proceedings of the 13th International
Conference on Mining Software Repositories, May 2016, pp. 315–326, doi: 10.1145/2901739.2901742.

[12] M. A. de F. Farias, M. G. de M. Neto, M. Kalinowski, and R. O. Spı́nola, “Identifying self-admitted technical debt through
code comment analysis with a contextualized vocabulary,” Information and Software Technology, vol. 121, May 2020, doi:
10.1016/j.infsof.2020.106270.

[13] M. A. de F. Farias, J. A. Santos, M. Kalinowski, M. Mendonça, and R. O. Spı́nola, “Investigating the identification of technical debt
through code comment analysis,” in Enterprise Information Systems - 18th International Conference, 2017, vol. 291, pp. 284–309,
doi: 10.1007/978-3-319-62386-3 14.

[14] S. Wattanakriengkrai et al., “Automatic classifying self-admitted technical debt using N-gram IDF,” in 26th Asia-Pacific Software
Engineering Conference (APSEC), Dec. 2019, pp. 316–322, doi: 10.1109/APSEC48747.2019.00050.

[15] Z. Yu, F. M. Fahid, H. Tu, and T. Menzies, “Identifying self-admitted technical debts with jitterbug: a two-step approach,” IEEE
Transactions on Software Engineering, vol. 48, no. 5, pp. 1676–1691, May 2022, doi: 10.1109/TSE.2020.3031401.

[16] M. Yan, X. Xia, E. Shihab, D. Lo, J. Yin, and X. Yang, “Automating change-level self-admitted technical debt determination,” IEEE
Transactions on Software Engineering, vol. 45, no. 12, pp. 1211–1229, Dec. 2019, doi: 10.1109/TSE.2018.2831232.

[17] R. Maipradit, C. Treude, H. Hata, and K. Matsumoto, “Wait for it: identifying ‘on-hold’ self-admitted technical debt,” Empirical
Software Engineering, vol. 25, no. 5, pp. 3770–3798, 2020, doi: 10.1007/s10664-020-09854-3.

[18] L. Rantala and M. Mäntylä, “Predicting technical debt from commit contents: reproduction and extension with automated feature
selection,” Software Quality Journal, vol. 28, no. 4, pp. 1551–1579, Dec. 2020, doi: 10.1007/s11219-020-09520-3.

[19] “Natural language toolkit,” NLTK Project, 2022. https://www.nltk.org/ (accessed Jul. 21, 2022).
[20] “Industrial-strength natural language processing in Python,” spaCy. https://spacy.io/ (accessed Jul. 21, 2022).
[21] Z. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li, “SATD detector: A text-mining-based self-Admitted technical debt detection

tool,” in Proceedings - International Conference on Software Engineering, May 2018, pp. 9–12, doi: 10.1145/3183440.3183478.
[22] E. D. S. Maldonado, R. Abdalkareem, E. Shihab, and A. Serebrenik, “An empirical study on the removal of self-admitted tech-

nical debt,” in IEEE International Conference on Software Maintenance and Evolution (ICSME), Sep. 2017, pp. 238–248, doi:
10.1109/ICSME.2017.8.

[23] Y. Li, M. Soliman, and P. Avgeriou, “Identification and remediation of self-admitted technical debt in issue trackers,” in
46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Aug. 2020, pp. 495–503, doi:
10.1109/SEAA51224.2020.00083.

[24] A. Deng, “Mining technical debt in commit messages and commit linked issues,” Ph.D. dissertation, Faculty of Engineering and
Science, University of Groningen, 2020.

[25] N. S. R. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spı́nola, F. Shull, and C. Seaman, “Identification and management
of technical debt: a systematic mapping study,” Information and Software Technology, vol. 70, pp. 100–121, Feb. 2016, doi:
10.1016/j.infsof.2015.10.008.

[26] E. D. S. Maldonado and E. Shihab, “Detecting and quantifying different types of self-admitted technical Debt,” in IEEE 7th Inter-
national Workshop on Managing Technical Debt (MTD), Oct. 2015, pp. 9–15, doi: 10.1109/MTD.2015.7332619.

Int J Elec & Comp Eng, Vol. 13, No. 2, April 2023: 2142-2155



Int J Elec & Comp Eng ISSN: 2088-8708 ❒ 2155

[27] A. Sabbah, “Self admitted technical debt,” GitHub, 2021. https://github.com/asabbah44/SATD (accessed Jul. 07, 2021).
[28] J. L. Fleiss, B. Levin, M. C. Paik, and others, “The measurement of interrater agreement,” in Statistical Methods for Rates and

Proportions, vol. 2, no. 212–236, 2003, pp. 598–626.
[29] J. Cohen, “A coefficient of agreement for nominal scales,” Educational and Psychological Measurement, vol. 20, no. 1, pp. 37–46,

Apr. 1960, doi: 10.1177/001316446002000104.
[30] J. L. Fleiss and J. Cohen, “The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability,”

Educational and Psychological Measurement, vol. 33, no. 3, pp. 613–619, Oct. 1973, doi: 10.1177/001316447303300309.
[31] “Quantify interrater agreement with kappa,” GraphPad. https://www.graphpad.com/quickcalcs/kappa1/ (accessed Jul. 21, 2022).
[32] “Google code archive - long-term storage for google code project hosting,” Google. https://code.google.com/archive/p/word2vec/

(accessed Jul. 21, 2022).
[33] V. Efstathiou, C. Chatzilenas, and D. Spinellis, “Word embeddings for the software engineering domain,” in Proceedings of the 15th

International Conference on Mining Software Repositories, May 2018, pp. 38–41, doi: 10.1145/3196398.3196448.
[34] J. Pennington, R. Socher, C. D. Manning, “GloVe: global vectors for word representation.” stanford.edu.

https://nlp.stanford.edu/projects/glove/ (accessed Jul. 21, 2022).
[35] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient text classification,” in 15th Conference of the

European Chapter of the Association for Computational Linguistics, vol. 2, pp. 427–431, Jul. 2016, doi: 10.18653/v1/e17-2068.
[36] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with subword information,” Transactions of the

Association for Computational Linguistics, vol. 5, pp. 135–146, Dec. 2017, doi: 10.1162/tacl a 00051.
[37] “English word vectors,” Facebook Open Source. https://fasttext.cc/docs/en/english-vectors.html (accessed Jul. 21, 2022).
[38] J. Devlin, “Google-research/BERT,” GitHub. https://github.com/google-research/bert (accessed Jul. 07, 2022).
[39] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understand-

ing,” in Conference of the North American Chapter of the Association for Computational Linguistics: Human Language, Oct. 2019,
vol. 1, pp. 4171–4186, doi: 10.48550/arxiv.1810.04805.

[40] “Universal-sentence-encoder-multilingual,” TensorFlow Hub. https://tfhub.dev/google/universal-sentence-encoder-multilingual/3
(accessed Jul. 07, 2022).

[41] “Scikit-learn: machine learning in python — scikit-learn 1.1.1 documentation.” scikit-learn.org. https://scikit-learn.org/stable/ (ac-
cessed Jul. 07, 2022).

[42] J. Flisar and V. Podgorelec, “Identification of self-admitted technical debt using enhanced feature selection based on word embed-
ding,” IEEE Access, vol. 7, pp. 106475–106494, 2019, doi: 10.1109/ACCESS.2019.2933318.

[43] “1.4. support vector machines.” https://scikit-learn.org/stable/modules/svm.html (accessed Jul. 21, 2022).
[44] “Sklearn.ensemble.RandomForestClassifier.” https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClas

sifier.html (accessed Jul. 21, 2022).
[45] “TensorFlow.” https://www.tensorflow.org/ (accessed Jul. 21, 2022).
[46] X. Ren, Z. Xing, X. Xia, D. Lo, X. Wang, and J. Grundy, “Neural network-based detection of self-admitted technical debt,” ACM

Transactions on Software Engineering and Methodology, vol. 28, no. 3, pp. 1–45, Jul. 2019, doi: 10.1145/3324916.
[47] P. Ce and B. Tie, “An analysis method for interpretability of CNN text classification model,” Future Internet, vol. 12, no. 12, Dec.

2020, doi: 10.3390/fi12120228.
[48] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30,

2006.

BIOGRAPHIES OF AUTHORS

Ahmed F. Sabbah received a B.S. in computer science from an-Najah National University,
Palestine in 2008, and a master’s degree in software engineering from Birzeit University in 2021.
From 2008 to 2011, he worked as a software developer in a strategic planning department. From
2011 to 2017, he worked as the head of the section for programming departments in the ministry
of interior. From 2017 to 2019, he worked as an IT consultant for the Water Sector Regulation
Council. Afterward, he returned to the ministry of interiors with a software engineering position.
Ahmed Sabbah joined in 2022 as a Ph.D. student in computer science at Birzeit University. He was
interested in some fields of research, such as machine learning, deep learning, NLP, mobile testing,
and mobile malware. He can be contacted at email: asabbah44@gmail.com.

Abualsoud A. Hanani is an associate professor at Birzeit University, Palestine. He ob-
tained Ph.D. Degree in Computer Engineering from the University Birmingham (United Kingdom)
in 2012. His researches are in the fields of speech and image processing, signal processing, AI for
health and education, and AI for software requirement Engineering. He is affiliated with an IEEE
member. In IEEE Access journal, IJMI journal, Computer Speech, and Language Journal, IEEE
ICASSP conference, InterSpeech conference, and other scientific publications, he has served as an
invited reviewer. Besides, he is also involved in different management committees at Birzeit Univer-
sity. He can be contacted at email: abualsoudh@gmail.com.

Self-admitted technical debt classification using natural language processing ... (Ahmed F. Sabbah)

https://orcid.org/0000-0001-5034-8038
https://scholar.google.com/citations?user=ZJtGyBAAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=42061541700
https://www.webofscience.com/wos/author/rid/AFL-7420-2022
https://orcid.org/0000-0003-0075-1798
https://scholar.google.com/citations?user=ZJtGyBAAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=42061541700
https://www.webofscience.com/wos/author/rid/AAB-7344-2022

	Introduction
	 Related Work 
	Research Method
	Dataset description 
	Source code comments
	Commits messages
	Manual annotation 
	Kappa test

	Features engineering
	Term frequency-inverse document frequency
	Word embedding methods

	Machine learning classifiers

	Result and Discussion
	Experimental setup
	Experiments on A-dataset
	Experiments on the M-dataset
	Statistical test 

	Conclusion

