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 This paper proposes a method to estimate state of charge (SoC) for Lithium-

ion battery pack (LIB) with 𝑁 series-connected cells. The cell’s model is 

represented by a second-order equivalent circuit model taking into account 

the measurement disturbances and the current sensor bias. By using two 

sigma point Kalman filters (SPKF), the SoC of cells in the pack is calculated 

by the sum of the pack’s average SoC estimated by the first SPKF and SoC 

differences estimated by the second SPKF. The advantage of this method is 

the SoC estimation algorithm performed only two times instead of 𝑁 times 

in each sampling time interval, so the computational burden is reduced. The 

test of the proposed SoC estimation algorithm for 7 samsung ICR18650  

Lithium-ion battery cells connected in series is implemented in the 

continuous charge and discharge scenario in one hour time. The estimated 

SoCs of the cells in the pack are quite accurate, the 3-sigma criterion of 

estimated SoC error distributions is 0.5%. 
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1. INTRODUCTION  

Lithium-ion batteries pack (LIB) are so far known to be the most commonly used batteries with the 

following advantages: a higher energy density, voltage capacity; lower self-discharge rate than other 

rechargeable batteries; the price is much cheaper than the LiPo battery. LIBs power almost every portable 

devices such as smartphone, laptop, and tablet sold today across the world. Now, LIBs are applied to not only 

electric cars, electric motorcycles, buses, trucks but also large-scale electrical energy storage. LIB is formed 

by many cells connected in series and parallel in order to get the desired voltage and power [1] as shown in 

Figure 1. The largest market for LIBs has traditionally been portable electronic devices, but in the near future 

there is an extensive growth in the demand for LIBs in transportation and electrical energy storages [2]. The 

state of charge (SoC) is an important input for balancing, energy and power calculations of LIB. SoC 

depends on the open-circuit-voltage (OCV) with the nonlinear relationship affected by the temperature, 

aging, and charge/discharge mode, [3]–[5]. The OCV depends on temperature and electrode particle surface 

concentration, but SoC depend on particle average concentration. In the practice, optimal safe operation 

range of SoC for cells is above 20% and below 90%. Figure 2 describes a typical relationship between SoC 

and OCV at -5 0C and 25 0C of temperature for a Lithium samsung cell. SoC is a parameter that is not 

measurable directly, so it is estimated by using the current, voltage, and temperature of the cell. SoC is 

needed to be estimated accurately in order to use for the SoC balance control problem. Controlling the 
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operation of the battery system in order to prolong the life of the battery cells, to operate safely is a topic that 

scientists are currently interested in applying LIBs in transportation and electrical energy storage. To estimate 

SoC for one cell, we need the model describing the dynamic behavior of the cell and the SoC estimation 

algorithm based on that model with real-time current, voltage, and temperature inputs. The accuracy of the 

estimated SoC depends on the model of the cell and the SoC estimation algorithms used [6].  

The model of the cell: if the complex model is used (such as an electrochemical model), the 

estimated SoCs will be more accurate, but the computational burden and hardware costs will increase a lot 

when the number of cells in series 𝑁 is large. If the equivalent-circuit model is used, the order of that model 

plays an important role. The computational complexity of the SoC estimation algorithm is simpler with the 

lower-order model but the cell dynamic behavior is not reflected accurately. There is higher accuracy in SoC 

estimation when the higher-order model is used, but the computational burden is increased [7]. The SoC 

estimation algorithm: Up to now, most of the SoC estimation algorithms are based on coulomb counting [8], 

Kalman filter (KF) [9], adaptive extended Kalman filter (EKF) [10], [11], and other [12], [13] improved 

algorithms. Several other algorithms such as the use of fuzzy models and neural networks are also applied 

[14], [15].  

 

 

 
 

Figure 1. Inside the tesla model S battery pack   

 

 

  
(a) (b) 

 

Figure 2. The typical relationship between SoC and OCV for a lithium samsung cell: (a) tested at -5 0C and  

(b) tested at 25 0C    

 

 

The SoC estimation for 𝑁 cell connected in series is the challenge problem, there are some works 

related to this in literature [16], [17]. Normally, the SoC estimation algorithm is implemented repeatedly 𝑁 

times, if the number of cells 𝑁 is large then this is really a computational burden for the battery management 

system [18]. Beside that, from the works [7], [12], [14], [17] and the actual testing we found that the 

interference of the measuring noises, current sensor bias are an obstacle to estimating SoC exactly. In 

practice, the current through the cell is usually measured by a shunt resistor with a voltage signal of 𝑚𝑉, this 

voltage signal is more susceptible to interference than the voltage measuring signal at both ends of the cell 

(2.7 𝑉 to 4.2 𝑉). The current sensor bias of the rectifier affected by temperature needs to be considered in the 
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current measurement. The KF theory assumes that all noises are zero mean, so an unknown current sensor 

bias can introduce permanent SoC error. This paper introduces the SoC estimation method for a LiB 

connected in series using sigma point Kalman filters (SPKF) to minimize the influence of current and 

vfoltage measurement noise on the estimated SoC results. By using the second-order equivalent circuit model 

(SECM), this allows to describe more exactly the cell’s dynamic in the charged and discharged scenarios 

with amplitude varying suddenly (an important feature of electrical vehicles using LIBs must be considered) 

[19]. This method uses two SPKFs, the SoC of cells in the pack is calculated by sum of pack’s average SoC 

estimated by first SPKF and SoC differences estimated by second SPKF. 

The contributions of this work are: The first, by using only two filters to estimate the 𝑁 SoCs of 𝑁 

cells connected in series, the SoC estimation algorithm is performed only two times instead of 𝑁 times in 

each sampling time interval, so the computational burden reduced to 𝑁 − 2 times, this is a very effective 

solution when the battery pack has a large number of cells. The second, the SoC estimation taking into 

account the current sensor bias in the model in association with applying the SPKF filter allows mapping the 

distributions of current, voltage, and temperature signals to the distribution of the estimated SoCs of the cells 

with more accuracy tested by the 3 criterion. The remaining part of this paper is structured as follows: 

section 2 mentions the SECM of the cell taking into account the measurement noises and the current sensor 

bias. Section 3 introduces the proposed SoC estimation algorithm of cells connected in series using 02 

SPKFs. Section 4 shows the results applied on the Lithium ICR18650-22P SAMSUNG cells and discussions. 

Finally, section 5 summarizes some conclusions. 

 

 

2.  THE SECOND-ORDER EQUIVALENT CIRCUIT MODEL OF CELL 

Suppose that the LIB’s cell is depicted as in Figure 3(a), in which 𝑖(𝑡) is the cell current (𝑖(𝑡) > 0 

for charge and 𝑖(𝑡) < 0 for discharge, 𝑖(𝑡) = 0 for cell in no charge/discharge), 10% < 𝑧(𝑡) < 95% is SoC, 

3.6𝑉 < 𝑣(𝑡) < 4.2𝑉 is the cell voltage, −50𝐶 < 𝑇(𝑡) < 500𝐶 is cell temperature. In order to estimate the 

SoC at the sample time 𝑘, which is 𝑧𝑘, we need to measure the voltage, current and cell temperature. Let 

 𝑖𝑘 + 𝑏𝑘 + 𝑛𝑖,𝑘  is the measured current, 𝑣𝑘 + 𝑛𝑣,𝑘  is measured voltage, in which 𝑏𝑘 is the current sensor bias; 

𝑛𝑖,𝑘 is the current noise; 𝑛𝑣,𝑘 is the voltage noise. The Figures 3(b), 3(c) are the recorded voltage and current 

in the practice, respectively. The scanning electrochemical microscopy (SECM) of the cell is plotted in 

Figure 4 with 𝑂𝐶𝑉(𝑧(𝑡), 𝑇) is the relationship between the oral cholera vaccine (OCV) and SoC, this 

relationship is nonlinear function depending on cell temperature and this function is needed to determine by 

the practice data collected by tests. The parameter ℎ(𝑡) is the dynamic hysteresis voltage as a function of SoC 

and time, 𝑅1(𝑇), 𝐶1(𝑇), 𝑅2(𝑇), 𝐶2(𝑇) are two resistor-capacitor pairs describe the cell dynamic, 𝑅0(𝑇) is 

series resistance parameter, 𝑀0(𝑇), 𝑀(𝑇) are the hysteresis parameters, 𝜂(𝑇) is Coulombic efficiency, 𝛾(𝑇) 

is the parameter related to the the rate of decay. Note that all parameters of cell depend on the cell 

temperature. In exact terms, they also depend on the cell aging, the charge/discharge condition. For different 

kind of cell (Samsung, Panasonic), they are different. In this work, we suppose that all parameters of cell 

only depend on the cell temperature.  

Suppose that all the quantities is discreterized at the sampling time 𝑘, 𝑘 = 0,1,2, … , ∞ with the 

sampling interval ∆𝑡 is small enough so that the current and voltage of cell are constant over that interval. 

Suppose that 𝑄 is total capacity of a cell, the change in SoC over sampling interval is (1). 

 

𝑧𝑘+1 = 𝑧𝑘 − 𝑖𝑘
𝜂𝑘Δ𝑡

𝑄
 (1) 

 

The diffused resistor currents are computed as (2), 

 

𝑖𝑅1,𝑘+1 = 𝑒𝑥𝑝 (−
∆𝑡

𝑅1𝐶1
) 𝑖𝑅1,𝑘 +  (1 − 𝑒𝑥𝑝 (−

∆𝑡

𝑅1𝐶1
)) 𝑖𝑘  

 

𝑖𝑅2,𝑘+1 = 𝑒𝑥𝑝 (−
∆𝑡

𝑅2𝐶2
) 𝑖𝑅2,𝑘 +  (1 − 𝑒𝑥𝑝 (−

∆𝑡

𝑅2𝐶2
)) 𝑖𝑘 (2) 

 

Hysteresis voltage is given by (3). 

 

ℎ𝑘+1 = 𝑒𝑥𝑝 (− |
𝑖𝑘𝜂𝑘∆𝑡

𝑄
|) ℎ𝑘 −  (1 − 𝑒𝑥𝑝 (|

𝑖𝑘𝜂𝑘∆𝑡

𝑄
|)) 𝑠𝑖𝑔𝑛(𝑖𝑘) (3) 
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(a) 

 

  
(b) (c) 

 

Figure 3. Illustration of the cell measurements, (a) the LIB, (b) the recorded voltage (c) current of cell 

 

 

 
 

Figure 4. The second-order equivalent circuit model of the cell 

 

 

The current sensor bias is  𝑏𝑘 = 𝑏𝑘−1 + 𝑛𝑘−1, in which 𝑛𝑘−1 is virtual noise of the current sensor 

bias used only for the calculation. The output equation of the model describing the relationship of the cell 

voltage, the current, SoC, the hysteresis, and the diffused resistor currents is written as (4). 

 

𝑦𝑘 = 𝑂𝐶𝑉(𝑧𝑘) + 𝑀ℎ𝑘 − 𝑅1𝑖𝑅1,𝑘 − 𝑅2𝑖𝑅2,𝑘 − 𝑅2(𝑖𝑘 − 𝑏𝑘) (4) 

 

The state vector related to the diffused resistor currents, the hysteresis, SoC and the current sensor bias as is 

formed as the (5). 

 

x𝑘 = [𝑖𝑅1,𝑘+1 𝑖𝑅2,𝑘+1 ℎ𝑘+1 𝑧𝑘+1 𝑏𝑘+1]𝑇 (5) 

 

Define the system matrices and output matrix of the model as. 

 

A𝑅𝐶 = [
𝑒𝑥𝑝 (−

∆𝑡

𝑅1𝐶1
) 0

0 𝑒𝑥𝑝 (−
∆𝑡

𝑅2𝐶2
)

] , B𝑅𝐶 = [
1 − 𝑒𝑥𝑝 (−

∆𝑡

𝑅1𝐶1
)

1 − 𝑒𝑥𝑝 (−
∆𝑡

𝑅2𝐶2
)

] , A𝐻,𝑘 = 𝑒𝑥𝑝 (|
𝑖𝑘𝜂𝑘∆𝑡

𝑄
|)  
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A(𝑖𝑘) = [

1 0 0
0 A𝑅𝐶 0
0 0 A𝐻,𝑘

] , B(𝑖𝑘) = [

−
𝜂𝑘∆𝑡

𝑄
0

B𝑅𝐶 0
0 1 − A𝐻,𝑘

] , C𝑘 = [0 −𝑅1 −𝑅2 𝑀],  D𝑘 = −𝑅0  

 

Suppose the input and output vectors of the model as (6). 

 

u𝑘 = [
𝑖𝑘 + 𝑏𝑘

𝑠𝑖𝑔𝑛(𝑖𝑘 + 𝑏𝑘)
] ,  𝑦𝑘 =  𝑣𝑘 (6) 

 

Finally, the SECM of the cell is written as (7). 

 

{
x𝑘+1 = A(𝑖𝑘)x𝑘 + B(𝑖𝑘)u𝑘

 𝑦𝑘 = 𝑂𝐶𝑉( 𝑧𝑘 ,  𝑇𝑘) + Cx𝑘 + Du𝑘
 (7) 

 

Model (7) is used to estimate the SoC for the cell with input u𝑘 and output  𝑦𝑘  without measurement 

noise. When measuring u𝑘 and  𝑦𝑘 , the two measurement noises  𝑛𝑖,𝑘 and  𝑛𝑣,𝑘 were mixed in the curent and 

voltage as described in Figure 3(a). So that, the input vector and output vector of the model is written as (8). 

 

u𝑛,𝑘 = [
𝑖𝑘 + 𝑏𝑘 + 𝑛𝑖,𝑘

𝑠𝑖𝑔𝑛(𝑖𝑘 + 𝑏𝑘+𝑛𝑖,𝑘)
] ,  𝑦𝑛,𝑘 =  𝑣𝑘  +𝑛𝑣,𝑘 (8) 

 

With the input and output vectors in the (8), the model (7) is rewritten as (9). 

 

{
x𝑛,𝑘+1 = A(𝑖𝑛,𝑘)x𝑛,𝑘 + B(𝑖𝑛,𝑘)u𝑛,𝑘

 𝑦𝑛,𝑘 = 𝑂𝐶𝑉( 𝑧𝑛,𝑘,  𝑇𝑘) + Cx𝑛,𝑘 + Du𝑛,𝑘

 (9) 

 

In which x𝑛,𝑘+1 is state vector affected by measurement noise formed as (10). 

 

x𝑛,𝑘 = [𝑖𝑅1𝑛,𝑘+1 𝑖𝑅2𝑛,𝑘+1 ℎ𝑛,𝑘+1 𝑧𝑛,𝑘+1 𝑏𝑛,𝑘+1]𝑇 (10) 

 

Suppose the error w𝑘 = x𝑘+1 x𝑛,𝑘+1 to be the system noise of the model, 𝜉𝑘 = 𝑦𝑘−𝑦𝑛,𝑘 is the 

output noise of the model, we have (11). 

 

{
x𝑘+1 = A(𝑖𝑛,𝑘)x𝑛,𝑘 + B(𝑖𝑛,𝑘)u𝑛,𝑘 + w𝑘

 𝑦𝑘 = 𝑂𝐶𝑉( 𝑧𝑘 ,  𝑇𝑘) + Cx𝑘 + Du𝑛,𝑘 + 𝜉𝑘

 (11) 

 

The model (11) is used to estimate the state vector x𝑘+1, in that vector there are the SoC 𝑧𝑘 and the current 

sensor bias 𝑏𝑘  need to be estimated. In this work, we use LIB Samsung ICR18650-22P [20] with parameters 

𝑄 = 2200 𝑚𝐴ℎ, 𝑉𝑚𝑎𝑥 = 4.25 𝑉, 𝑉𝑚𝑖𝑛 = 2.75 𝑉, nominal voltage 3.62 𝑉. The test temperature range is 

considered from −5 °𝐶 to 45 °𝐶. The values of model’s parameters determined by practical tests are given in 

Table 1. 

 

 

Table 1. The cell’s model parameters of LIB Samsung ICR18650-22P 
T0C -5 0C 5 0C 15 0C 25 0C 35 0C 45 0C 


𝐤
 1.0869 0.9803 1.0220 0.95 1.0542 1.0399 

𝐐 (𝐀𝐡) 2.1596 2.1877 2.1943 2.175 2.1515 2.1523 
 243.1946 78.4915 63.6762 250.0074 170.6407 151.3064 

𝐌𝟎 (𝐕) 0.0072 0.0049 0.0035 0.002 0.0036 0.0024 
𝐌 (𝐕) 0.0347 0.0257 0.0218 0.02 0.0201 0.0185 
𝐑𝟎 (Ω) 0.013 0.023 0.0292 0.033 0.0012 0.0011 

𝐑𝟏𝐂𝟏 (𝐬) 0.6124 1.7555 0.3227 0.899 0.6997 0.4630 
𝐑𝟐𝐂𝟐 (𝐬) 3.9035 7.5994 8.1118 10.023 8.1840 6.5319 
𝐑𝟏 (Ω) 0.0204 0.0203 0.0201 0.019 0.019 0.0019 
𝐑𝟐 (Ω) 0.0494 0.0376 0.0288 0.022 0.0136 0.0134 
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3. PROPOSED SOC ESTIMATION ALGORITHM FOR 𝑵 CELLS CONNECTED IN SERIES 

USING TWO SPKFS 

Suppose that there is 𝑁 cells LIB connected in series as shown in Figure 5, the problem is to 

estimate SoCs of 𝑁 cells with the input and output signals affected by noises as (8), the noise distributions 

are considered as Gaussian-distributed. SPKF is the filter with high precision aimed at nonlinear system, in 

practice, the SPKF has some advantages compared to the EKF. This filter allows performance KF for 

nonlinear systems without the linearization steps. The set of weighted samples, called sigma points, is used 

for normalizing mean and covariance of a probability distribution. The sigma points of input distributions are 

mapped thought the nonlinear dynamic model functions to get the sigma points of output distribution  

[21], [22]. SPKF allows estimation states of nonlinear dynamic systems more accurately than the EKF does, 

but the computational complexity is same as EKF [23]–[25]. SPKF is easily implemented because there is no 

requirement of the Jacobi matrix calculation. The accuracy of state estimation using the SPKF mainly 

depends on the strategies of choosing sigma-points [26], [27]. Normally, we need to estimated SoC 𝑁 times 

for 𝑁 cells. If the number of cells 𝑁 is large, there is a large amount of calculation [18], [19]. To reduce the 

SoC estimation times, in this work we use only two SPKFs, the first filter estimates the mean of 𝑁 SoC and 

the current sensor bias, the second filter estimates 𝑁 SoC differences from the average SoC, the estimated 

SoC of each cell then is calculated by the sum of the average SoC determined by the first filter and the 

difference SoC estimated by the second filter. In one sampling time interval, the SoC estimation algorithm is 

implemented two times instead of 𝑁 times.  

 

 

 
 

Figure 5. 𝑁 LIB cells connected in series 

 

 

Consider the second model of cell in the (11) with input and output in the (8). The SOC estimation 

algorithm flowchart for 𝑁 cell connected in series is conducted as: 

 

The SOC estimation algorithm flowchart 
Begin   

Initialization 

For each sampling time 𝑘, 𝑘 = 1,2,3, … , ∞, do  

  Measure the current of cell 𝑖𝑛,𝑘 ; Measure voltages of 𝑁 cells 𝑦𝑛,𝑘
1 , 𝑦𝑛,𝑘

2 , … , 𝑦𝑛,𝑘
𝑁  ; 

Measure ambient temperature of cell 𝑇𝑘  

Estimate state vector x̂𝑘 = [�̂�𝑅1,𝑘+1 �̂�𝑅2,𝑘+1 ℎ̂𝑘+1 �̂�𝑘+1 �̂�𝑘+1]
𝑇
 by first SPKF  

   For each cell 𝑖 = 1,2,3, … , 𝑁 do  
                 Estimate the SOC difference ∆�̂�𝑘

(𝑖)
 by second SPKF; Estimate 

the SoC for cell �̂�𝑘
(𝑖)

= �̂�𝑘 + ∆�̂�𝑘
(𝑖)
                 

End 

 End  

End    

 

3.1.  Algorithm to estimate the average SoC for the N cells by the first SPKF filter 

The first filter estimates the mean of 𝑁 SoC and the current sensor bias as steps following: 

− Form the augmented state vector at sampling time 𝑘 defined by x̂𝑘−1
𝑎+ , including the estimated state 

vector at the sampling time 𝑘 − 1 the mean vector of the system noise w̅ and mesurement noise ξ̅: 

 

x̂𝑘−1
𝑎,+ = [x̂𝑘−1

+ w̅ ξ̅] (12) 

 

− Form the augmented covariance matrix (CM) of state estimation error vector by using CM of state 

estimation error at sampling time 𝑘 − 1, the CM of system noises and the CM of measurement noises: 
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σx̃,𝑘−1
𝑎,+ = 𝑑𝑖𝑎𝑔[σx̃,𝑘−1

+ σw σ𝜉] (13) 

 

− Set up matrix of 𝑝 + 1 sigma points: 
 

X𝑘−1
𝑎,+ = {x̂𝑘−1

𝑎,+ , x̂𝑘−1
𝑎,+ + 𝛾√σx̃,𝑘−1

𝑎,+ , x̂𝑘−1
𝑎,+ − 𝛾√σx̃,𝑘−1

𝑎,+ , } ≜ [X𝑘−1
x,+ X𝑘−1

𝑤,+ X𝑘−1
ξ,+ ]

𝑇
 (14) 

 

− Calculate sigma points matrix at sampling time 𝑘 by using the cell model’s dynamic function in (11): 

 

X𝑘,𝑗
x,− = A𝑘(𝑖𝑛,𝑘)X𝑘−1,𝑗

x,+ + B𝑘(𝑖𝑛,𝑘)u𝑛,𝑘+X𝑘−1,𝑗
𝑤,+         𝑗 = 0,1,2, … 𝑝   (15) 

 

− Estimate the priori state vector at the sampling time 𝑘: 

 

x̂𝑘
− = ∑ 𝛼𝑗

𝑚X𝑘,𝑗
x,−𝑝

𝑗=0  (16) 

 
− Update the CM of the state estimation errors: 

 

σx̃,𝑘
− = ∑ 𝛼𝑗

𝑐(X𝑘,𝑗
x,− − x̂𝑘

− )
𝑝
𝑗=0 (X𝑘,𝑗

x,− − x̂𝑘
− )

𝑇
 (17) 

 

− Calculate the output sigma points matrix at the sampling time 𝑘 by using the output equation in the 

model (11): 

 

Y𝑘 = 𝑂𝐶𝑉(�̂�𝑘, 𝑇𝑘) + C𝑘X𝑘,𝑗
𝑥,− + D𝑘u𝑛,𝑘 + X𝑘−1

ξ,+
 (18) 

 

− Estimate the output voltage of cells as (19): 

 

ŷk =  ∑ 𝛼𝑗
𝑚𝑝

𝑗=0 Y𝑘 (19) 

 

− Update the CM of output voltage estimation errors: 

 

σy,̃𝑘
− = ∑ 𝛼𝑗

𝑐𝑝
𝑗=0 (Y𝑘 − ŷk )(Y𝑘 − ŷk )𝑇 (20) 

 

− Update the covariance matrices of the state vector estimation error and output voltage estimation error:  

 

σx̃,𝑦,̃𝑘
− = ∑ 𝛼𝑗

𝑐(X𝑘,𝑗
x,− − x̂𝑘

− )
𝑝
𝑗=0 (Y𝑘 − ŷk )𝑇 (21) 

 

− Update the estimation gain matrix as (22): 

 

L𝑘 =
σx̃,𝑦,̃𝑘

−

σy,̃𝑘
−             (22) 

 

− Update the estimation state vector by using the estimation gain matrix, the measured real output 

voltages and the estimated output voltage of cells: 

 

x̂𝑘
+ = x̂𝑘

− + L𝑘  (y𝑘 − ŷk ) (23) 
 

− Update the CM of state estimation error vector: 
 

σx̃,𝑘
+ = σx̃,𝑘

− − L𝑘σy,̃𝑘
− L𝑘

𝑇  (24) 

 

3.2.  SoC differences estimation for 𝑵 cells by second SPKF 

The second SPKF estimates the SoC differences ∆�̂�𝑘
(𝑖)

, 𝑖 = 1,2, … , 𝑁, for 𝑁 cells at the sampling 

time 𝑘 as following steps:  
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− Form the augmented state vector of cell 𝑖 at the sampling time 𝑘 − 1 by using the SoC difference ∆�̂�𝑘
(𝑖)

 

and the mean vector of the SoC difference noises �̅�𝑧∆
(𝑖)

:  
 

∆�̂�𝑘−1
𝑎,(𝑖)+ = [∆�̂�𝑘

(𝑖)
, �̅�𝑧∆

(𝑖)
 ] (25) 

 

− From the augmented CM of SoC difference estimation error of cell 𝑖, by using the CM of SoC 

difference estimation error of cell 𝑖 at sampling time 𝑘 − 1 and the CM of SoC difference noise: 

 

𝜎∆𝑧,̃𝑘−1
𝑎,(𝑖)+ = 𝑑𝑖𝑎𝑔 (𝜎∆𝑧,̃𝑘−1

(𝑖)+ , 𝜎
𝑤∆𝑧

(𝑖)
 
) (26) 

 

− Set up the matrix of 𝑝 + 1 sigma points of cell 𝑖:  
 

∆𝜒𝑘−1
𝑎,(𝑖)+ = {∆�̂�𝑘−1

𝑎,(𝑖)+, ∆�̂�𝑘−1
𝑎,(𝑖)+ + 𝛾√𝜎∆𝑧,𝑘−1

𝑎,(𝑖)+ , ∆�̂�𝑘−1
𝑎,(𝑖)+ − 𝛾√𝜎∆𝑧,𝑘−1

𝑎,(𝑖)+   ≜ {∆𝜒𝑘−1,𝑗
∆𝑧,(𝑖)+, ∆𝜒𝑘−1,𝑗

𝑤∆𝑧 
+

}
𝑇

 (27) 

 

− Calculate the state sigma point matrix of cell 𝑖 at the sampling time 𝑘:  

 

∆𝜒𝑘,𝑗
∆𝑧,(𝑖)− = ∆𝜒𝑘−1,𝑗

∆𝑧,(𝑖)+ −
((𝑖𝑛,𝑘−�̂�𝑏,𝑘)+∆𝜒𝑘−1,𝑦

𝑤∆𝑧
+

)

3600𝑄
          𝑗 = 0,1,2, . . , 𝑝 (28) 

 

− Estimate the SoC difference of cell 𝑖 at the sampling time: 

 

∆�̂�𝑘
(𝑖)− = ∑ 𝛼𝑗 

𝑚∆𝜒𝑘,𝑗
∆𝑧,(𝑖)𝑝

𝑗=0  (29) 

 

− Update the CM of SoC difference estimation error of cell:  
 

 σ∆𝑧,𝑘
(𝑖)− = ∑ 𝛼𝑗

𝑐(∆𝜒𝑘,𝑗
∆𝑧,(𝑖)− − ∆�̂�𝑘

(𝑖)− )
𝑝
𝑗=0 (∆𝜒𝑘,𝑗

∆𝑧,(𝑖)− − ∆�̂�𝑘
(𝑖)− )

𝑇
 (30) 

 

− Calculate the output sigma points matrix of cell 𝑖: 
 

Y𝑘
(𝑖)

= 𝑂𝐶𝑉(𝑧�̅� + ∆�̂�𝑘
(𝑖)

, 𝑇𝑘) − 𝑖𝑛,𝑘∆𝑅(𝑖) + 

𝑀(𝑖)ℎ̂𝑘 − 𝑅1
(𝑖)

𝐶1
(𝑖)

𝑖̂𝑅,1 − 𝑅2
(𝑖)

𝐶2
(𝑖)

𝑖̂𝑅,2 − 𝑅0(𝑖𝑛,𝑘 − 𝑖�̂�
𝑘) (31) 

 

− Estimate the output voltage of cell 𝑖: 
 

�̂�𝑘
(𝑖)

= ∑ 𝛼𝑗 
𝑚𝑝

𝑗=0 Y𝑘
(𝑖)

 (32) 

 

− Update the CM of output voltage estimation error of cell 𝑖: 
 

𝜎𝑦,̃ 𝑘 
(𝑖)

= ∑ 𝛼𝑗 
𝑐𝑝

𝑗=0 (Y𝑘
(𝑖)

− �̂�𝑘
(𝑖)

)(Y𝑘
(𝑖)

− �̂�𝑘
(𝑖)

)
𝑇
 (33) 

 

− Update the CM of SoC difference estimation error and output voltage estimation error of cell 𝑖:  
 

𝜎∆𝑧,�̃�,𝑘
(𝑖)− = ∑ 𝛼𝑗 

𝑐(∆𝜒𝑘,𝑗
∆𝑧,(𝑖)− − ∆�̂�𝑘

(𝑖)− )
𝑝
𝑗=0 (Y𝑘

(𝑖)
− �̂�𝑘

(𝑖)
)

𝑇
 (34) 

 

− Update the state estimation matrix of cell: 

 

𝐿𝑘
(𝑖)

=
𝜎∆�̃�,�̃�,𝑘

(𝑖)−

𝜎
𝑦 ̃,𝑘
(𝑖)  (35) 

 

− Estimate the SoC difference of: 
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∆�̂�𝑘
(𝑖)+ = ∆�̂�𝑘

(𝑖)− + 𝐿𝑘
(𝑖)

(𝑦𝑛,𝑘
(𝑖)

−�̂�𝑘
(𝑖)

)   (36) 

 

− Update the CM of SoC difference estimation error of cell 𝑖:  
 

𝜎∆𝑧,𝑘
(𝑖)+ = 𝜎∆𝑧,𝑘

(𝑖)− − 𝐿𝑘
(𝑖)

𝜎𝑦,̃ 𝑘 
(𝑖)

𝐿𝑘
(𝑖)𝑇

 (37) 

 

3.3.  SoC estimation of cells  

The SoC of cell 𝑖 calculated as (38):  

 

�̂�𝑘
(𝑖)+

= �̂�𝑘
+ + ∆�̂�𝑘

(𝑖)+
 (38) 

 

 

4. RESULTS AND DISCUSSION 

The experimental system of SoC estimation is described in Figure 6, the components in the 

experimental system are listed as: i) The LiB samsung is formed by 7 cells connected in series with 

parameters listed in Table 1; measurement modul is created by 7 voltage difference measurement circuits, 1 

current measurement curcuit, 1 temperature sensor. The voltage difference signals are to the digital signals  

10 bit and transferred to the personal computer (PC) by RS485; ii) the PC implements the SoC estimation 

program for cells, the configuration of PC is core (TM) i3-6100 CPU@3.70 GHZ, 4 cores, RAM 8 GB; the 

MATLAB software is used to implement the SPKF algorithms, the LabVIEW 2018 [22] is used to make the 

graphic user interface, the MATLAB software is embedded to the LabVIEW to run the SoC estimation;  

iii) the load is motor BLDC, YONG-d67 240 W, 24 V, 10 A, the maximum speed is 295 rmp; iv) the charge 

source is owon, 195 W with 2 programmable channel 36 V, maximum current 6 A; and v) the SoC estimation 

algorithms are coded in MATLAB script, then embedded to the LabVIEW environment. The sampling time 

interval is 1 second. The algorithm flowchart of SoC estimation for 𝑁 cell in shown in Figure 7. 

 

 

 
 

Figure 6. The experimental system of SoC estimation 

 

 

 
 

Figure 7. The algorithm flowchart of SoC estimation 

mailto:CPU@3.70
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4.1.  The SoC estimation results for 1 cell 

In this part, the SoC estimation results for 1 cell is presented, the Figure 8(a) describes the current, 

voltage and temperature of the cell. The noise distributions of measured currrent, voltage and temperature are 

plotted in Figure 8(b), the Figure 8(c) and the Figure 8(d). The current noise was distributed inside from  

−0.8 𝐴 to 0.8 𝐴 caused by shunt-resistor with the sensitivity 15 𝑚𝑉/𝐴. The range of the voltage noise is 

range of -0.03 𝑉 to 0.03 𝑉, the distribution of temperature noise is in the range from −0.7 0𝐶 to 0.7 0𝐶. 

Figure 9 shows the results obtained when performing the SoC estimation algorithm corresponding to current, 

temperature and voltage inputs as shown in Figure 8 using the second-order model of cell with the 

parameters described in Table 1.  

The Figure 9(a) describes the comparison between real cell voltage and estimated voltage calculated 

by cell model, the voltage error is plotted in Figure 9(b) with 0.1 𝑉 and −0.075 𝑉 of maximum for discharge 

and charge, respectively. This maximum error is caused when there is the changing of charge to discharge 

vice versa. The cause of voltage error is the dependence of model on the temperature varying in the test, the 

parameters of cell were determined at particular temperatures − 5 0𝐶, 0  0𝐶, 5 0𝐶, 10 0𝐶, 15 0𝐶, 20 0𝐶, 

25 0𝐶, 30 0𝐶, 35 0𝐶. In the test, the temperature of cell raises from 25.5 0𝐶 at to 31.5 0𝐶 as plotted in  

Figure 9(c). The Figure 9(c) also plotted the estimated SoC of cell. After 1 hour with the discharging (3 𝐴) 

and the charging (1.5 𝐴) alternately, The SoC of cell tends to decrease from 92.5% at beginning to 65% at 

the end of the test. The SoC estimation error is shown in Figure 9(d) by comparing to criteria �̂�𝑘 ± 3𝜎.  

The criteria 3𝜎 decreases gradually from the beginning of the test to the end of the test as plotted in 

Figure 9(e), we can see that the accuracy of SoC estimation of the cell described by the criteria 3σ at the end 

of test was 0.0125%. The Figure 9(f) plots the updating of matrix 𝜎�̃�
+ by the time. At the times, there are the 

changings of charge to discharge vice versa, the voltage errors are large, some elements of matrix 𝜎𝑥
+ need to 

be changed in order to keep estimating SoC smoothly. 

 

 

  
(a) 

 

(b) 

 

  
(c) (d) 

 

Figure 8. The measurements and distributions, (a) the current, voltage and temperature of cell in the test,  

(b) the noise distributions of current, (c) temperature, and (d) voltage 
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(d)  (e) 

 

 
(f)  

 

Figure 9. The SoC estimation results for 1 cell, (a) the voltage and estimated voltage, (b) voltage error, (c) the 

estimated SoC and temperature, (d) estimated SoC±3σ, (e) criteria 3σ, , and (f) the matrix 𝛔�̃�,𝑘
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4.2.  The SoC estimation results for 7 cells  

In this part, the SoC estimation results for 7 cells connected in series are presented. Suppose that all 

cells are the same with parameters listed in Table 1. The Figure 10(a) plots the cells current, the Figure 10(b) 

and Figure 10(c) depicts the voltages of cells and temperature, respectively, the distributions of noises in 

current, voltages and temperature are plotted in Figures 10(d), 10(e) and 10(f). The estimated SoC for 7 cells 

is presented in Figure 11 and Figure 12 (in appendix), in which the Figure 11(a) is the estimated average SoC 

for 7 cells, the Figure 11(b) plots the estimated SoC differences of cells.  

 

 

  
(a) 

 

 

(b) 
 

  
(c) 

 

 

(d) 
 

  
(e) (f) 

 

Figure 10. The measurements and distributions, (a) the current of 7 cells, (b) the voltages of cells, (c) the 

temperature of cell, (d) the distributions of noise in current, (e) voltages and (f) temperature are plotted 

 

 

The Figure 12 plots the estimated SoC of each cell and comparing with criteria 3σ, in which:  

Figure 12(a) and Figure 12(b) are the estimated SoC and comparing with criteria 3σ for cell 1, similarity for 

the cells from 2 to 7 are plotted in Figure 12(c) to Figure 12(o). The Figure 13(a) shows the varying of matrix 

𝜎𝑧
+ in the test, the Figure 13(b) plots the varying of criteria 3. The mean of the criteria 3 for cells at the 

end of the test is approximately 0.5%. Figures 12 and 13 see in appendix. 
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(a) (b) 

 

Figure 11. The estimated SoC for 7 cells, (a) the estimated average SoC, and (b) the estimated SoC difference 

of cells 
 

 

5. CONCLUSION 

This paper deals with the method for SoC estimation of LIB with cells connected in series. In this 

works, the cell’s model is represented by the second-order equivalent circuit model taking into account the 

measurement disturbances and the current sensor bias. Using 02 SPKF filters to estimate the average SoC of 

cells, the current sensor bias and the SoC differences, the estimated SoC of each cell is is calculated by sum 

of pack’s everage SoC estimated by first SPKF and SoC differences estimated by second SPKF. This allows 

reducing the SoC estimation times to 2 times, this is a very effective solution when the battery pack has a 

large number of cells. The practical test is applied to 7 samsung ICR18650-22P lithium-Ion battery cells with 

the discharging (3 𝐴) and the charging (1.5 𝐴) alternately in 1 hour. The estimated SoC is quite accuracy 

with the criteria 3  of estimated SoC error is approximately 0.5. In this work, we suppose that all cells are 

physically identical, the equivalent circuit model with parameters listed in Table 1 are linearized at some 

particular temperatures and applied for all cells. This is clear evidence that those factors contribute to the SoC 

and current sensor bias estimation error observed in the test. In future work, the model of each cell to be 

updated adaptively by temperature will be researched.  
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(g)  (h)  (i)  

 

   
(j)  (k)  (l) 

 

  
 (m)   (n) 

 

Figure 12. The estimated SoC for each cell and the comparing with criteria 3, (a) the measurements for cell 

1, (b) estimated SoC for cell 1, (c) the measurements for cell 2, (d) estimated SoC for cell 2, (e) the 

measurements for cell 3, and (f) estimated SoC for cell 3, (g) the measurements for cell 4, (h) estimated SoC 

for cell 4, (i) the measurements for cell 5, (j) estimated SoC for cell 5, (k) the measurements for cell 6, (l) 

estimated SoC for cell 6, (m) the measurements for cell 7, and (n) estimated SoC for cell 7 
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Figure 13. The matrix σz̃
+ and criteria 3 , (a) the varying of the matrix σz̃

+ in the test and (b) criteria 3  

Estimated SoC of cell 7 (%) 

Estimated 

SoC of cell 5 

+3sigma 

-3sigma 

Estimated 

SoC of cell 6 

+3sigma 

-3sigma 

Voltage 6 (V) 

Estimated SoC of cell 6 (%) 

Temperature (°C) 

Voltage 4 (V) 

Temperature (°C) 

Voltage 5 (V) 
Temperature (°C) 

Estimated 

SoC of cell 4 

+3sigma 

-3sigma 

Estimated SoC of cell 4 (%) Estimated SoC of cell 5 (%) 
V

o
lt

a
g

e
 4

 (
V

) 

E
stim

a
te

d
 S

o
C

 o
f c

ell 4
 (%

) 

Temperature (°C) 

 

E
s
ti

m
a
te

d
 S

o
C

 o
f 

c
e
ll

 5
 (

%
) 

V
o
lt

a
g

e
 5

 (
V

) 

Temperature (°C) 

Temperature (°C) 

 

E
stim

a
te

d
 S

o
C

 o
f c

ell 6
 (%

) 

V
o
lt

a
g
e
 6

 (
V

) 

 

Temperature (°C) 

Voltage 7 (V) 

Estimated 

SoC of cell 7 

+3sigma 

-3sigma 

Temperature (°C) 

 

E
stim

a
te

d
 S

o
C

 o
f c

ell 7
 (%

) 

E
s
ti

m
a
te

d
 S

o
C

 o
f 

c
e

ll
 7

 (
%

) 

V
o
lt

a
g
e
 7

 (
V

) 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 1334-1349 

1348 

ACKNOWLEDGEMENTS   

This research was supported by Thai Nguyen University of Technology, TNUT, Vietnam.  

 

REFERENCES 
[1] J. Warner, “Lithium-ion battery packs for EVs,” in Lithium-Ion Batteries, Elsevier, 2014, pp. 127–150. 

[2] K. M. Venkatachalam and V. Saravanan, “Performance evaluation and load demand management of grid connected hybrid wind-

solar-battery system,” International Journal of Applied Power Engineering (IJAPE), vol. 9, no. 3, pp. 223–244, Dec. 2020, doi: 
10.11591/ijape.v9.i3.pp223-244. 

[3] X. Lin, “Theoretical analysis of battery SOC estimation errors under sensor bias and variance,” IEEE Transactions on Industrial 

Electronics, vol. 65, no. 9, pp. 7138–7148, Sep. 2018, doi: 10.1109/TIE.2018.2795521. 
[4] C. Yuan, Y. Deng, T. Li, and F. Yang, “Manufacturing energy analysis of lithium ion battery pack for electric vehicles,” CIRP 

Annals, vol. 66, no. 1, pp. 53–56, 2017, doi: 10.1016/j.cirp.2017.04.109. 

[5] D. N. T. How, M. A. Hannan, M. S. Hossain Lipu, and P. J. Ker, “State of charge estimation for lithium-ion batteries using 
model-based and data-driven methods: a review,” IEEE Access, vol. 7, pp. 136116–136136, 2019, doi: 

10.1109/ACCESS.2019.2942213. 

[6] Y. Zhou and X. Li, “Overview of lithium-ion battery SOC estimation,” in 2015 IEEE International Conference on Information 
and Automation, Aug. 2015, pp. 2454–2459, doi: 10.1109/ICInfA.2015.7279698. 

[7] J. Rivera-Barrera, N. Muñoz-Galeano, and H. Sarmiento-Maldonado, “SoC estimation for lithium-ion batteries: review and future 

challenges,” Electronics, vol. 6, no. 4, p. 102, Nov. 2017, doi: 10.3390/electronics6040102. 
[8] J. Xie, J. Ma, and K. Bai, “Enhanced coulomb counting method for state-of-charge estimation of lithium-ion batteries based on 

peukert’s law and coulombic efficiency,” Journal of Power Electronics, vol. 18, no. 3, pp. 910–922, 2018. 

[9] P. Manoharan, M. R, K. K, and S. R, “SoC estimation and monitoring of li-ion cell using Kalman-Filter Algorithm,” Indonesian 
Journal of Electrical Engineering and Informatics (IJEEI), vol. 6, no. 4, Dec. 2018, doi: 10.11591/ijeei.v6i4.548. 

[10] M. Souaihia, B. Belmadani, and R. Taleb, “A robust state of charge estimation for multiple models of lead acid battery using 
adaptive extended Kalman filter,” Bulletin of Electrical Engineering and Informatics (BEEI), vol. 9, no. 1, pp. 1–11, Feb. 2020, 

doi: 10.11591/eei.v9i1.1486. 

[11] Z. L. Huan, T. Tomohiro, and A. Tofael, “Leader-follower tracking system for agricultural vehicles: Fusion of laser and odometry 
positioning using extended kalman filter,” IAES International Journal of Robotics and Automation (IJRA), vol. 4, no. 1, pp. 1–18, 

Mar. 2015, doi: 10.11591/ijra.v4i1.pp1-18. 

[12] V. Sangwan, R. Kumar, and A. K. Rathore, “State-of-charge estimation for li-ion battery using extended Kalman filter (EKF) and 
central difference Kalman filter (CDKF),” in 2017 IEEE Industry Applications Society Annual Meeting, Oct. 2017, pp. 1–6, doi: 

10.1109/IAS.2017.8101722. 

[13] N. H. Mohd Amin, M. R. Ab Ghani, A. Jidin, Z. Jano, and T. Sutikno, “A review of hybrid battery management system (H-BMS) 
for EV,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 16, no. 3, pp. 1004–1012, Jun. 2018, doi: 

10.12928/telkomnika.v16i3.8743. 

[14] W. Zheng, B. Xia, W. Wang, Y. Lai, M. Wang, and H. Wang, “State of charge estimation for power lithium-ion battery using a 
fuzzy logic sliding mode observer,” Energies, vol. 12, no. 13, p. 2491, Jun. 2019, doi: 10.3390/en12132491. 

[15] M. Charkhgard and M. Farrokhi, “State-of-charge estimation for lithium-ion batteries using neural networks and EKF,” IEEE 

Transactions on Industrial Electronics, vol. 57, no. 12, pp. 4178–4187, Dec. 2010, doi: 10.1109/TIE.2010.2043035. 
[16] F. Sun, R. Xiong, and H. He, “A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles 

using bias correction technique,” Applied Energy, vol. 162, pp. 1399–1409, Jan. 2016, doi: 10.1016/j.apenergy.2014.12.021. 

[17] N.-T. Tran, A. Khan, T.-T. Nguyen, D.-W. Kim, and W. Choi, “SOC estimation of multiple lithium-ion battery cells in a module 
using a nonlinear state observer and online parameter estimation,” Energies, vol. 11, no. 7, Jun. 2018, doi: 10.3390/en11071620. 

[18] D. Saji, P. S. Babu, and K. Ilango, “SoC estimation of lithium ion battery using combined coulomb counting and fuzzy logic 

method,” in 2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology 
(RTEICT), May 2019, pp. 948–952, doi: 10.1109/RTEICT46194.2019.9016956. 

[19] A. M. Alsabari, M. K. Hassan, A. CS, and R. Zafira, “Modeling and validation of lithium-ion battery with initial state of charge 

estimation,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 21, no. 3, pp. 1317–1331, Mar. 
2021, doi: 10.11591/ijeecs.v21.i3.pp1317-1331. 

[20] S. Soeprapto, R. N. Hasanah, and T. Taufik, “Battery management system on electric bike using Lithium-Ion 18650,” 

International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 10, no. 3, pp. 1529–1537, Sep. 2019, doi: 
10.11591/ijpeds.v10.i3.pp1529-1537. 

[21] W. Fan and Y. Li, “Accuracy analysis of sigma-point Kalman filters,” in 2009 Chinese Control and Decision Conference, Jun. 

2009, pp. 2883–2888, doi: 10.1109/CCDC.2009.5192691. 
[22] B. N. Kumar Reddy, N. Suresh, and J. V. N. Ramesh, “A gracefully degrading and energy-efficient FPGA programming using 

LabVIEW,” International Journal of Reconfigurable and Embedded Systems (IJRES), vol. 5, no. 3, pp. 165–175, Nov. 2016, doi: 

10.11591/ijres.v5.i3.pp165-175. 
[23] Qin Wang, C. Rizos, Yong Li, and Shiyi Li, “Application of a sigma-point Kalman filter for alignment of MEMS-IMU,” in 2008 

IEEE/ION Position, Location and Navigation Symposium, 2008, pp. 44–52, doi: 10.1109/PLANS.2008.4569968. 

[24] C. Nguyen Van, “State estimation based on sigma point kalman filter for suspension system in presence of road excitation 
influenced by velocity of the car,” Journal of Control Science and Engineering, vol. 2019, pp. 1–16, Nov. 2019, doi: 

10.1155/2019/6898756. 

[25] C. Nguyen Van and T. Nguyen Vinh, “SOC estimation of the lithium-ion battery pack using a sigma point kalman filter based on 
a cell’s second order dynamic model,” Applied Sciences, vol. 10, no. 5, Mar. 2020, doi: 10.3390/app10051896. 

[26] O. Bayasli and H. Salhi, “The cubic root unscented kalman filter to estimate the position and orientation of mobile robot 

trajectory,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 5, pp. 5243–5250, Oct. 2020, doi: 
10.11591/ijece.v10i5.pp5243-5250. 

[27] V. D. Merwe and R. Sigma, “Point Kalman filters for probabilistic inference in dynamic state-space models,” Oregon Health and 

Science University, 2004. 
 

 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 State of charge estimation for lithium-ion batteries connected in series using … (Chi Nguyen Van) 

1349 

BIOGRAPHIES OF AUTHORS 

 

 

Chi Nguyen Van     received the PhD degree in Instrument and Control Engineering 

from Hanoi University of Science and Technology (HUST) in 2012. He is currently working 

as a Associate Professor with Institute of High-Technology Research and Development for 

Industry (RIAT), Thai Nguyen University of Technology (TNUT), Viet Nam. His research 

interests include nonlinear control, adaptive control, optimal control and system identification 

for Lithium Ion Batterry. He can be contacted at email: ngchi@tnut.edu.vn 

  

 

Thuy Nguyen Vinh     received the MSs degree in Automation Engineering from 

Thai Nguyen University of Technology (TNUT) in 2005. He is currently working as a 

researcher with Institute of High-Technology Research and Development for Industry (RIAT), 

Thai Nguyen University of Technology (TNUT) His research interests optimal control and 

system identification for Lithium Ion Batterry. He can be contacted at email: nguyenvinhthuy-

tdh@tnut.edu.vn 

 

https://orcid.org/0000-0002-9713-2880
https://www.scopus.com/authid/detail.uri?authorId=57211921092
https://orcid.org/0000-0002-5982-8983
https://scholar.google.com/citations?hl=en&user=M8qGfmwAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57215840040

