
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 12, No. 1, February 2022, pp. 748~755

ISSN: 2088-8708, DOI: 10.11591/ijece.v12i1.pp748-755  748

Journal homepage: http://ijece.iaescore.com

Parallel genetic approach for routing optimization in large

ad hoc networks

Hala Khankhour1, Otman Abdoun2, Jâafar Abouchabaka1
1Department of Computer Science, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco

2Department of Computer Science, Faculty of Polydisciplinary, Abdelmalek Essaadi University, Larache, Morocco

Article Info ABSTRACT

Article history:

Received Oct 23, 2020

Revised Jul 31, 2021

Accepted Aug 19, 2021

 This article presents a new approach of integrating parallelism into the

genetic algorithm (GA), to solve the problem of routing in a large ad hoc

network, the goal is to find the shortest path routing. Firstly, we fix the

source and destination, and we use the variable-length chromosomes (routes)

and their genes (nodes), in our work we have answered the following

question: what is the better solution to find the shortest path: the sequential

or parallel method? All modern systems support simultaneous processes and

threads, processes are instances of programs that generally run

independently, for example, if you start a program, the operating system

spawns a new process that runs parallel elements to other programs, within

these processes, we can use threads to execute code simultaneously.

Therefore, we can make the most of the available central processing unit

(CPU) cores. Furthermore, the obtained results showed that our algorithm

gives a much better quality of solutions. Thereafter, we propose an example

of a network with 40 nodes, to study the difference between the sequential

and parallel methods, then we increased the number of sensors to 100 nodes,

to solve the problem of the shortest path in a large ad hoc network.

Keywords:

Ad hoc

Artificial intelligence

Genetic algorithm

Np-complete

Parallel computer

This is an open access article under the CC BY-SA license.

Corresponding Author:

Hala Khankhour

Department of Computer Science, Faculty of Science, Ibn Tofail University

B.P 859, Main Post 92000, Larache, Morocco

Email: hala.khankhour@uit.ac.ma

1. INTRODUCTION

In ad-hoc networks, one of the most problems is routing in quick time, which has a significant

impact on the network’s performance, so the best routing should find an optimum path in a specified time to

satisfy the quality of service from the source node to destination node [1], the field use extensively the

mathematical reasoning (logic, probabilities, data analysis) and process modeling, but it is very difficult to

solve the complex problems by the exact methods [2]. For that reason, we use the meta-heuristic [3], among

these methods are the genetic algorithm (GA) that will give good results, we will explain them in detail in the

following sections. In general, GA is very reliable and pushes to solve very high complexity problems, but

they take a long time to find the best solution, therefore the global search method can obtain accurate

approximate results. However, its computational cost is fairly high because it carries out an exhaustive search

of solutions [4]. Consequently, in recent years, researchers want to speed up the operation of GA, so they

tried to combine two or more independent processors in the same computer; they can create a multicore

processor. Today, all modern operating systems support concurrency across processes and threads, processes

are instances of programs that generally run independently of one another, e.g: if you start a java program,

the operating system spawns a new process that runs in parallel with other programs; within these processes,

we can use threads to execute code simultaneously, so that we can make the most of the available cores of the

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708 

 Parallel genetic approach for routing optimization in large … (Hala Khankhour)

749

central processing unit (CPU), for this reason, we propose the adequate recommendations is to use parallel

implementations. In that matter, the concurrency application programming interface (API) was first

introduced with java 5, and gradually improved with each new version of Java, the majority of concepts also

work for highly complex problems of the NP-complete class using thread class can cause a lot of errors, for

this reason, new version of java 5 introduced concurrency API [5]. The API is in the java

package.util.concurrent and contains many powerful classes to manage simultaneous programming, since

then, the concurrency API has been improved with each new version of Java, and even Java 8 provides new

classes and methods for dealing with concurrency. So, the main current existing alternative is to use parallel

architectures, specifically for highly complex problems of the NP-Complete class. Graphics processing units

(GPUs) offer attractive performance to energy consumption and the cost of purchase ratio and allow

performing many types of computations more quickly while maintaining the same cost concerning the CPUs.

On the other hand, the utility of GPUs [6] is evidenced by the fact that they are used in approx. 10% of the

fastest supercomputers in the world [7]. This paper focuses on GA in the ad hoc network, GA is efficient for

our problem, based on principles of natural selection [8], they are being applied successfully to find

acceptable solutions to problems in business, engineering, and science [4]. Our challenge is to change the

design of meta-heuristics GA with parallelism, to take advantage of GPU for solving large-scale complex

problems in ad hoc network with a view to high effectiveness and efficiency in a short time. The remainder

of this paper is planned according to this plan. Section 2 presents the problem studied: “routing problems in

ad hoc networks”. In sections 3 and 4, the parallelism with a GA, and its implementation details are presented

in section 4, in section 5, the simulated result is discussed. The paper is concluding in section 6.

2. PROBLEM STUDIED “AD HOC NETWORKS ROUTING OPTIMIZATION PROBLEM”

For several years, mobile multi-user wireless ad-hoc networks have attracted the attention of

scientists, network performance depends on the routing protocol, delay, energy consumption, quality of

service, and the path chosen which has a vital role in delivering the message. However, there are problems

for the network of large maps [9], the simulations used are limited to 50 nodes at most [10]-[13]. Therefore,

our problem is to find the shortest path from the source to the destination by visiting the neighboring city (n)

only once, for example, in the traveling salesman problem (TSP), the traveler wants to sell a product, and

wants to know the best path to minimize time and supplies, how should he plan his way for a minimum total

cost of n cities? It is impossible to solve a big map ad hoc network problem by the exact traditional methods

because it is considered as an NP-complete problem [14]; meta-heuristics have proven their performance in

solving NP-complete problems, such as GA initiated by Charles Darwin [2]. The principle of GA is directly

inspired by the laws of natural selection, it is defined by chromosome/sequence, population, and fitness

function. Our work is the complement of these previous works [15], [16], last year, researchers are studying

the stopping criterion of the GA because the search time in the space of solutions is one of the very important

factors to find the global optimal solution [17], hence, the multi-hop network topology can be illustrated by a

graph F=(N, K), where N is the number of nodes and K the link between the nodes, there is a cost 𝐶𝑖𝑗

associated with each link (𝑖, 𝑗), the cost of the path between the source and destination is specified by the cost

matrix 𝐶=[𝐶𝑖𝑗] by the (2), and every link noted by the (1) 𝐼𝑖𝑗 .

𝐼𝑖𝑗 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑘 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗 𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

𝐶 = ∑ 𝐶𝑔𝑖(𝑗).𝑔𝑖(𝑗+1)

𝑖≠𝑗

𝑗=1

(2)

The cost calculation takes a long time if we increase the number of nodes, which means the size of the

network has become larger. For this reason, we propose a hybridization between GA and parallel

architectures to end the search process quickly, especially for large map network, our results showed that the

use of the parallel method, is powerful in this case of our problem [18].

3. IMPROVING OPTIMIZATION PERFORMANCE WITH PARALLEL COMPUTING

TECHNIQUES

The advantage of paralleling GA is to gain computing time, there are at least two conventionally

used methods for this (we can refer to this article [19] for more details). Firstly, Data parallelism: occurs

when many data items can be activated at the same time, it focuses on the distribution of data across multiple

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 1, February 2022: 748-755

750

cores, it can use to speed up calculations. Secondly, the parallelism of tasks: occurs when there are many

tasks or functions which can be operated independently and largely in parallel, it focuses on the distribution

of functions between several hearts, this is used to decrease the latency [20]. We will focus on the second,

since the given problem is more suitable to be implemented using the method of parallelism of the tasks.

However, the multiplication of the number of calculation units does not spontaneously reduce the execution

time of programs. On the other hand, parallel programming makes it possible mainly to reduce the execution

time, in theory, if we divide a task into N processors, the time will be reduced N times, but in reality, there

are other factors that can determine the speed of execution of a parallel program, the time of transmission of

messages between the processes, and also, the parts in all programs that cannot be parallelized [4]; we add

that parallel programming is used and applied in almost all areas as an example we find: treatment of

scientific problems constituting major challenges, commercial applications parallel databases, web search

engines, dealing with larger and more complex problems and exploit current architectures.

3.1. Parallel computing with openMP and with MPI

OpenMP is the distribution of computational loads to several light processes called threads, the

purpose of parallel calculation is to decrease the execution time of the program, a program is executed by a

single task (process), by entering a parallel region, this task activates several "subtasks", each thread is

executed on a processor core, a sequential task is executed by the master thread [21]. The message passing

interface (MPI) is a distribution of computational loads on several processor cores, called processes, in order

to reduce the execution time of the program, these processors can belong to different machines linked by a

communication network which allows the exchange of data by "message passing". So MPI and openMP

embody two different approaches to parallel programming, by their different material abstractions, and each

model is suitable for a type of architecture. Indeed, the message passing model is suitable to multi-computer

type architectures (processors each having their memory and connected by a network) and the shared

memory model is appropriate to multiprocessor type architectures (processors accessing the same memory

via a bus). In addition, in the message passing model the parallel processes remain active throughout the

execution of the program while in the shared memory model the thread is activated at the start of the program

and this number can change dynamically throughout of execution [22]. In view of the advantages of the

multiprocessor parallel, we use this technologie with GA to optimize our problem in ad hoc.

4. PROPOSED APPROACH: PARALLELISM GENETIC ALGORITHMS IN AD HOC

NETWORK (PGA)

GA is an effective research method based on the principles of natural selection and genetics. They

are successfully applied to find acceptable solutions to problems in business, engineering, and science; in

general, GA is powerful specifically for highly complex problems of the NP-Complete, but each time we

increase the size of the network, we use more the CPU resources. For this reason, we thought of the use of

parallel programs, the basic idea of most parallel programs is to split a task into several pieces and to solve

the pieces simultaneously using several processors, this rule approach can be applied to GA in different ways.

In the literature we found many examples of successful implementation, some methods use a single

population, while others divide the population into several relatively parallel subpopulations, also there are

more suitable for multi-computers with fewer and more powerful processing elements [19]. There are three

main types of parallel GA: master salves single-world GA, fine-grained single-population GA, and multi-

population GA. In a master-slave GA, there is only one population, but the evaluation of physical fitness is

distributed among several processors, given that in this type of parallel GA, selection and crossing takes into

account the whole population. Parallel GA is suitable for massively parallel computers and consists of a

structuring the population, selection and mutation are limited to a small neighborhood, but the neighborhoods

overlap, allowing some interaction between all individuals, so the ideal case is to have one individual for

each available treatment item, and the multi-population GA is more sophisticated because they are consisted

of several sub-populations that exchange individuals occasionally [2], [23], [24]. So, in this article, firstly we

propose an algorithm to find the best routing path as shown in Figure 1.

In this sequence, to select the best path we have to repeat the steps previously several times, and it

takes a lot of time. That's why we took advantage of multithreading java and each thread does the same steps

mentioned above starting at the same time. After a certain number of iterations, all the threads finish their

tasks and give the best path found, as shown in Figure 2.

One of the most steps in measuring the performance of each individual is to calculate the Fitness, to

be able to judge the quality of an individual and compare it to others, which are defined in (3):

Int J Elec & Comp Eng ISSN: 2088-8708 

 Parallel genetic approach for routing optimization in large … (Hala Khankhour)

751

𝑓𝑖 =
1

∑ 𝐶𝑔𝑖(𝑗),𝑔𝑖(𝑗+1)

𝑙𝑖−1

𝑗=1

(3)

where 𝑓 𝑖 represents the fitness cost of the xi chromosome, 𝑙𝑖 is the length of the xi chromosome,

𝑔𝑖(𝑗) describes the gene of the xj position in the xi chromosome, and 𝐶 is the link value between two genes.

The goal is to build an application that solves the problem of routing quickest and safest for a large

map network, we tried to study the problem as multiple travelling salesman problem (mTSP) by using

traveling salesman problem library (TSPLIB) benchmark instances after we have applied parallelism genetic

algorithms (PGA) on ad hoc networks. Indeed, we have fixed the source and the destination, and considered

variable-length chromosomes or individual as a route, and their genes as nodes, such that the distance

between nodes must be non-zero. We start with a randomly selected initial population that contains several

routes. The path selection is done by the roulette system, and inspired by lottery wheels, for each pair of

routes chosen. The crossover operator chose one-point crossover randomly, except for the source and

destination node. If there is a loop in the path after the crossing, they avoid it, after crossing, so there is a low

possibility of producing illegal offspring, herein that's why we're going to introduce the mutation operator

from the last population, the illegal offspring will be forced to mutate, after the mutation operator. The repair

function deletes the node included twice in route and check if the next node is valid, each route is assessed by

fitness function (3), repeat according to the number of iterations. Finally, with the fitness function, we select

the best route traveled from the source node to the destination node, the procedure is illustrated by Figure 3.

Figure 1. Algorithm of the best routing path

Figure 2. Proposed GA for solving the sensor network in parallel method (PGA)

Figure 3. Genetic algorithm in sensor network

Repeat for i = 0 to i = length of database

 do chromosome (ci); calculate fitness (fci); choose the best (bi);

Repeat for i = 0 to i = population size; do population (P);

Repeat for i = 0 to i = number of iterations; do for i = o to i<= population size, i1 and i2 ∈ P

 if parent ((i1).random) < crossover rate),

 do select parent (i2) randomly from P, i3= do crossover (i1, i2); repair(i3);

if parent ((i3).random) < mutation rate ,

 do select (i4) randomly from P; i5= do mutation (i3, i4); repair (i5); calculate fitness (i5);

 compare fitness (i5, bi), choose the best (di);

until converged;

calculate the distance (di);

Step 1: Begin with the constraint limits is set for the sp route

 GenerationSize = 10000; PopulationSize=80; Number of iterations = 1000;

 CrossoverRate =0.8; MutationRate = 0.05; NodeSource = 5; NodeDistination = 40; K = 8;

Step 2: create a new generation;

Step 3: for i=o to K= size of number of threads; ExecutorService; Repeat GetBestChromosome

 GenerationSize, PopulationSize, NodeSource, NodeDestination, CrossoverRate, mutationRate; end for;

Step 4: ShutdownExecutor;

Step 5: Display the best distance with best fitness;

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 1, February 2022: 748-755

752

5. NUMERICAL RESULT AND DISCUSSION

5.1. Implementation

The challenge is to improve our approach of meta-heuristics GA to takes advantage of CPU for

solving large-scale complex problem networks by using PGA. The parameters and their description chosen in

this study are as shown in Table 1. Their configuration is summarized in Table 2.

Table 1. Parameters used in PGA
Parameters Values Description

Generation Size 10000 To have a great diversity

Number of Iterations 1000 After 1000 iterations we noticed the repetition of the same path
Population Size 80 The quality of the solution can be adjusted according to the population 80

Node Source 1 We fixe the source node

Node Destination 40 We fixe the destination node
Mutation Rate 0.05 After several tests, we see that with 0.05 we get better results

Crossover Rate 0.8 After several tests, we see that with 0.8 we get better results

Number of Threads 8 According to the computer used

Table 2. Configuration machine used in PGA
Configuration Value

RAM 8 Gb
Technology LPDDR3 SDRAM

Vitesse 1866 MHz

Cache 4 Mb
CPU Intel Core i7, 7600U/2.8 GHz

Maximum Speed in Turbo Mode 3.9 GHz

Number of Hearts Double Heart
Technology Platform Technology Intel vPro

5.2. Results and discussion

In the first step, we tried to study the problem as mTSP to evaluate our new approach PGA. We

compared it with another article Latah (KAG) [25]. Latah [25] proposed to combines the advantage of

k-means clustering and PGA to resolve the mTSP problem, the comparison seen in Table 3.

Table 3. The computational results of benchmark problems between KAG and PGA

Method TSPLIB Instance
K Based Best Distance

K=2 K=4 K=6

KAG Att48 50725.81 74083.53 -

PGA Att48 34932 38547 36656

KAG Berlin52 11066.69 11736.74 -
PGA Berlin52 8965 8841 6877

KAG Rat99 2487.64 1970.48 -

PGA Rat99 2264 1962 1878
KAG Bier127 282343.86 233708.3 -

PGA Bier127 243238 235824 277325

We notice from Figure 4, that for number of thread equal at 2, we found Berlin52 as a small town,

the approximate solution found is 8965 betters than the algorithm of KAG is 11066, with regard to large-

scale cities, we tested Bier127, the approximate solution found is 243238 its is much better than the KAG is

282343, for number of thread equal to 4, with our PGA we found 38547 so good result compared by KAG is

74083, for att48, there is a small different between PGA and KAG. In general, for the four instances used,

our proposed algorithm gave fairly good results. Thus, guaranteeing a good quality of the solution proposed

in a short time, more than result KAG. However, the simulation of PGA on TSPLIB has shown an excellent

result for small instances, but there is not a big difference between big instances; that means, the

multiplication of the number of calculation units does not spontaneously reduce the execution time of

programs. For this reason, we will use the parallelism, and we propose an algorithm that combines the

benefits of K-means clustering and GA with parallelism (PGA). In theory, we divide a task to N processors,

so the time will be reduced N times. But in reality, this is not the case, because other factors can determine

the speed of execution of a parallel program. Firstly, the time of transmission of messages between the

processes, and also, parts in all programs that cannot be parallelized.

Int J Elec & Comp Eng ISSN: 2088-8708 

 Parallel genetic approach for routing optimization in large … (Hala Khankhour)

753

(a) (b)

Figure 4. mTSP comparison our new approach PGA with KAG: (a) k=2, (b) k=4

5.3. Solve the sensor network using GA with parallel programming (PGA)

Ad hoc network is presented as a connected graph with N nodes, the chromosomes are considered as

the path and each gene represents a node ID that is selected randomly from the set of nodes connected, but

the length of the path should not exceed the maximum of a number of the node in the network. The goal is to

find the minimal cost path from the source to the destination [4].

5.4. Comparison of parallel and sequential programming

5.4.1. Simulation results for a fixed network with 40 nodes

In our research, we don’t find a real topology on the ad hoc network to apply our approach in a real

way, even we contacted the large companies of the networks they refused to give us a topology because the

data is confidential, that's why we opted to generate our topology with 40 nodes, depicted in Figure 5. In

sequential, repeating the previous steps several times help to select the best path, and it takes a lot of time

that's why we took advantage of multithreading java and each thread does the same steps starting at the same

time, after 1000 of iterations the cost of the best path found is 146 in but in 6415 ms. On the other hand, in

parallel, we find the same shot path 146 but just in 1535 ms, that means, the parallelism reduces the time

execution.

Figure 5. Example network with the optimal path in bold line (optimal path costs is 146)

5.4.2. Simulation results for random network topologies

To evaluate the quality of the proposed PGA approach and the convergence speed time, we generate

some network topologies with 40 nodes to 100 nodes randomly. We considered the number of cities as the

number of sensors, as shown in Table 4, we have translated the data from Table 4. In the form of a graph as

shown in Figure 6 to see the big difference between the two sequential and parallel methods.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 1, February 2022: 748-755

754

We notice from Table 4 and Figure 6, that with the topology of 40 nodes, our PGA approach finds

the best path in 6415 ms in sequential, compared to 1535 in parallel, with a time delay of 4880 ms. As for to

topology with 70 nodes, the difference between sequential and parallel has become bigger with 10323 ms,

and about the topology of 100 nodes, the difference is remarkable, and it has become 16914 ms. The new

simulation proposed PGA, show that the algorithm presents a much better quality of solution, and a much

higher rate of convergence between two methods, sequential and parallel. The performance of the GA in the

parallel method is better than the GA in sequential method. Above all, PGA with parallelism is insensitive to

variations of network topologies, or the numbers of nodes. Concerning the choice of short path and speed, the

proposed GA in parallel was shorter than GA in sequential method. Therefore, a hardware implementation is

required for applications involving real-time services in a dynamic topology network, especially in our

algorithm we did not need to know the network signal or the variance of the bandwidth; the proposed PGA

algorithm with parallelism can find the solution efficiently and quickly especially for the size of the network

of 100 sensors.

Table 4. Sensor network, sequential GA vs parallel GA

Number of Sensors
Execution Time of GA

Time Sequential (ms) Parallel (ms)

40 6415 1535

50 8495 1911

60 10229 2255
70 12947 2624

80 15320 3137
90 17757 3487

100 20939 4035

Figure 6. Comparison of the sequential GA vs parallel GA in ad hoc network

In Figure 6, for the topology of 40 nodes, the difference in time between the sequential approach

and the parallel approach is smaller. On the other hand, for a topology of 100 nodes we see a big difference

in the time calculated between the source node and the destination node, this is due to the communication

between the processors. For the topology of 100 nodes, the processor clock speed at which it can process

tasks does not increase with hyperthreading. Therefore, one can get a better battery life of the nodes

especially for large networks. We summarize that our approach PGA in a parallel way, can search the results

speedily and relatively independent of the size of the network ad hoc that means we can find better paths

even if we expand the large network.

6. CONCLUSION

This work presented a new approach of GA with parallelism to solve the large network routing

problem. Since crossbreeding and mutation operations work on chromosomes of variable length, which

means, we have studied in a dynamic topology, for this reason, we have expanded the network up to 100

sensors. Therefore, the results show that the PGA algorithm can search for the best solution in a very efficient

Int J Elec & Comp Eng ISSN: 2088-8708 

 Parallel genetic approach for routing optimization in large … (Hala Khankhour)

755

way. We introduced the mutation, which maintains the diversity of the population. On the other hand, we

chose the powerful programming of parallelism, which is the way to find the short path from the source to

destination in quick time, with the different methods sequential and parallel. The compared results

demonstrated that parallel programming in GA found the shortest path solution from the source node to the

destination in a short time. In the future, it is proposed to evaluate the performance of the network using more

advantage of GPU for solving the problem of the large network ad hoc.

REFERENCES
[1] I. Souissi, N. B. Azzouna, and T. Berradia, “Trust management in vehicular ad hoc networks: a survey,” International Journal of

Ad Hoc and Ubiquitous Computing, vol. 31, no. 4, pp. 230-243, 2019, doi: 10.1504/IJAHUC.2019.101210.

[2] H. Khankhour, J. Abouchabaka, and O. Abdoun, “Genetic algorithm for shortest path in ad hoc networks,” Advanced Intelligent

Systems for Sustainable Development, vol 92, pp. 145-154, 2019, doi: 10.1007/978-3-030-33103-0_15.
[3] P. Nuno, J. C. Granda, and F. J. Suárez, “Assessment of heuristics for self-stabilisation in real-time interactive communication

overlays,” International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC), vol. 28, no. 2, 2018, doi:

10.1504/IJAHUC.2018.092652.
[4] Z. Wu, C. Zhao, and B. Liu, “Polygonal approximation based on coarse-grained parallel genetic algorithm,” vol. 71, 2020, doi:

10.1016/j.jvcir.2019.102717.

[5] C. G. Calderona and C. B. Castañonb, “Isula: A java framework for ant colony algorithms,” SoftwareX, vol 11, 2020,
Art. no. 100400, doi: 10.1016/j.softx.2020.100400.

[6] N. Wilt, “The cuda handbook: A comprehensive guide to GPU programming,” Pearson Education, 2013.
[7] B. C. Vermeire, F. D. Witherden, and P. E. Vincent, “On the utility of GPU accelerated high-order methods for unsteady flow

simulations: A comparison with industry-standard tools,” Journal of Computational Physics, vol. 334, pp. 497-521, 2017, doi:

10.1016/j.jcp.2016.12.049.
[8] M. Tuberquia and C. Hernandez, “New approaches in cognitive radios using evolutionary algorithms,” International Journal of

Electrical and Computer Engineering (IJECE), vol. 8, no. 3, pp. 1636-1646, Jun. 2018, doi: 10.11591/ijece.v8i3.pp1636-1646.

[9] A. K. Giri, D. K. Lobiyal, and C. P. Katti, “Optimization of value of parameters in ad-hoc on demand multipath distance vector
routing using teaching-learning based optimization,” Procedia Computer Science, vol 57, pp 1332-1341, 2015, doi:

10.1016/j.procs.2015.07.445.

[10] S. Sharma, D. Jindal, and R. Agarwal, “Analysing mobile random early detection for congestion control in mobile ad-hoc
network,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 3, pp. 1305-1314, 2018, doi:

10.11591/ijece.v8i3.pp1305-1314.

[11] N. Khalil and A. Najid, “Performance analysis of 802.11ac with frame aggregation using NS3,” International Journal of
Electrical and Computer Engineering (IJECE), vol. 10, no. 5, pp. 5368-5376, 2020, doi: 10.11591/ijece.v10i5.pp5368-5376.

[12] A. Taha, R. Alsaqour, M. Uddin, M. Abdelhaq and T. Saba, "Energy efficient multipath routing protocol for mobile ad-hoc

network using the fitness function," in IEEE Access, vol. 5, pp. 10369-10381, 2017, doi: 10.1109/ACCESS.2017.2707537.
[13] M. Abdelhaq et al., “The resistance of routing protocols against DDOS attack in MANET,” International Journal of Electrical

and Computer Engineering (IJECE), vol. 10, no. 5, pp. 4844-4852, 2020, doi: 10.11591/ijece.v10i5.pp4844-4852.

[14] S. Khurana, G. Tejpal, and S. Sharma, “Efficient data dissemination approach for QoS enhancement in VANETs,” International
Journal of Ad Hoc and Ubiquitous Computing, vol. 31, no. 4, 2019, doi: 10.1504/IJAHUC.2019.101214.

[15] H. Khankhour, J. Abouchabaka, and O. Abdoun, “Optimization of the ad hoc network by using hybridization of genetic algorithm

with a two-optimization algorithm,” International Conference on Digital Technologies and Applications (ICDTA): Digital
Technologies and Applications, vol. 211, 2021, pp. 1073-1080.

[16] Chang Wook Ahn and R. S. Ramakrishna, "A genetic algorithm for shortest path routing problem and the sizing of populations,"

in IEEE Transactions on Evolutionary Computation, vol. 6, no. 6, pp. 566-579, Dec. 2002, doi: 10.1109/TEVC.2002.804323.
[17] F. F.Yeng, S. K. Yoke, and A. Suhaimi, “The saturation of population fitness as a stopping criterion in genetic algorithm,”

International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 5, pp. 4130-4137, 2019, doi:

10.11591/ijece.v9i5.pp4130-4137.
[18] A. Zeni et al., "LOGAN: high-performance GPU-based X-Drop long-read alignment," IEEE International Parallel and

Distributed Processing Symposium (IPDPS), pp. 462-471, 2020, doi: 10.1109/IPDPS47924.2020.00055.

[19] P. Bajpa and M. Kumar, “Genetic algorithm – an approach to solve global optimization problems,” Indian Journal of Computer
Science and Engineering, vol. 1, no. 3, pp. 199-206, 2010.

[20] J. Donggara, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and A. White, “Sourcebook of parallel computing,” Morgan

Kaufmann, San Francisco, CA, 2003.
[21] M. N. F. Jamaluddin, A. Ismail, A. A. Rashid, and T. T. B. O. Takhleh, “Performance comparison ofjava based parallel

programming models,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 16, no. 3,

pp. 1577-1583, 2019, doi: 10.11591/ijeecs.v16.i3.pp1577-1583.
[22] R. Baños, J. Ortega, C. Gil, F. de Toro, and M. G. Montoya, “Analysis of OpenMP and MPI implementations of meta-heuristics

for vehicle routing problems,” Applied Soft Computing, vol. 43, pp. 262-275, 2016, doi: 10.1016/j.asoc.2016.02.035.

[23] C. Guerrero, I. Lera, and C. Juiz, “Genetic algorithm for multi-objective optimization of container allocation in cloud
architecture,” Journal of Grid Computing, vol. 16, no. 7, pp. 113–135, 2018, doi: 10.1007/s10723-017-9419-x.

[24] P. Kitjacharoenchai, M. Ventresca, M. M. Javadi, S. Lee, J. M. A. Tanchoco, and P. A. Brunese, “Multiple traveling salesman

problem with drones: Mathematical model and heuristic approach,” Computers & Industrial Engineering, vol. 129, 2019, doi:
10.1016/j.cie.2019.01.020.

[25] M. Latah, “Solving multiple TSP problem by k-means and crossover based modified ACO algorithm,” International Journal of

Engineering and Technical Research, vol. 5, no. 2, pp. 430-434, 2016.

http://www.inderscience.com/info/inarticle.php?artid=101210
http://www.inderscience.com/jhome.php?jcode=ijahuc
http://www.inderscience.com/jhome.php?jcode=ijahuc
http://www.inderscience.com/info/inarticletoc.php?jcode=ijahuc&year=2019&vol=31&issue=4
https://link.springer.com/chapter/10.1007/978-3-030-33103-0_15
https://link.springer.com/book/10.1007/978-3-030-33103-0
https://link.springer.com/book/10.1007/978-3-030-33103-0
http://www.inderscience.com/info/inarticle.php?artid=92652
http://www.inderscience.com/info/inarticle.php?artid=92652
http://www.inderscience.com/jhome.php?jcode=ijahuc
http://www.inderscience.com/info/inarticletoc.php?jcode=ijahuc&year=2018&vol=28&issue=2
https://www.sciencedirect.com/science/article/pii/S2352711019300639#!
https://www.sciencedirect.com/science/article/pii/S2352711019300639#!
https://www.inderscience.com/filter.php?aid=101214
http://www.inderscience.com/jhome.php?jcode=ijahuc
http://www.inderscience.com/jhome.php?jcode=ijahuc
http://www.inderscience.com/info/inarticletoc.php?jcode=ijahuc&year=2019&vol=31&issue=4
https://www.researchgate.net/publication/352754189_Optimization_of_the_Ad_Hoc_Network_by_Using_Hybridization_of_Genetic_Algorithm_with_a_Two-Optimization_Algorithm
https://www.researchgate.net/publication/352754189_Optimization_of_the_Ad_Hoc_Network_by_Using_Hybridization_of_Genetic_Algorithm_with_a_Two-Optimization_Algorithm
https://link.springer.com/conference/icdta
https://link.springer.com/book/10.1007/978-3-030-73882-2
https://link.springer.com/book/10.1007/978-3-030-73882-2
file:///H:/recherche/2021/ijce/camera%20ready/recherche/2021/ijce/send/17.05.2021/Vol%2016,%20No%203
https://doi.org/10.1016/j.cie.2019.01.020
https://doi.org/10.1016/j.cie.2019.01.020

