
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 11, No. 6, December 2021, pp. 5034~5048 

ISSN: 2088-8708, DOI: 10.11591/ijece.v11i6.pp5034-5048      5034 

  

Journal homepage: http://ijece.iaescore.com 

A new system to detect coronavirus social distance violation 
 

 

Marta Botella-Campos1, José Luis Gacía-Navas2, Albert Rego3, Sandra Sendra4, Jaime Lloret5 
1,2,3,4,5Instituto de Investigación para la Gestión Integrada de zonas Costeras, Universitat Politècnica de València, 

Valencia, Spain  
4Department of Signal Theory, Telematics and Communications (TSTC), Universidad de Granada, Granada, Spain 

 

 

Article Info  ABSTRACT 

Article history: 

Received Sep 9, 2020 

Revised Jun 15, 2021 

Accepted Jun 25, 2021 

 

 In this paper, a novel solution to avoid new infections is presented. Instead of 

tracing users’ locations, the presence of individuals is detected by analysing 

the voices, and people’s faces are detected by the camera. To do this, two 

different Android applications were implemented. The first one uses the 

camera to detect people’s faces whenever the user answers or performs a 

phone call. Firebase Platform will be used to detect faces captured by the 

camera and determine its size and estimate their distance to the phone 

terminal. The second application uses voice biometrics to differentiate the 

users’ voice from unknown speakers and creates a neural network model 

based on 5 samples of the user’s voice. This feature will only be activated 

whenever the user is surfing the Internet or using other applications to 

prevent undesired contacts. Currently, the patient’s tracking is performed by 

geolocation or by using Bluetooth connection. Although face detection and 

voice recognition are existing methods, this paper aims to use them and 

integrate both in a single device. Our application cannot violate privacy since 

it does not save the data used to carry out the detection and does not associate 

this data to people. 
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1. INTRODUCTION 

Throughout history, different viral diseases happened to end up being considered global pandemics, 

causing miles of deaths. Among the most recent examples of the last 100 years, we can find the Spanish Flu 

in 1918 (H1N1), the swine flu in 2009 A(H1N1) [1] or recent coronaviruses such as the severe acute 

respiratory syndrome (SARS-CoV) in 2002 [2], Middle East respiratory syndrome-related coronavirus 

(MERS-CoV) in 2012 [3] or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 [4] 

with more than 1.9 million of infected people and near 120.000 deaths (up to April 2020).  

The fast propagation of these viral diseases is due to its propagation being done by the air [5]. For 

this reason, the physical distance [6] between people and the use of medical masks are important actions to 

control the evolution of the pandemic. After overcoming the initial contagion outbreak of a pandemic, it is 

necessary to adopt these actions to avoid second outbreaks. However, in our daily routine, when we walk 

down the street and answer a phone call, we may not keep the recommended minimum physical distance. In 

this sense, we are more exposed to a possible contagion. 

In our current society, we are surrounded by data networks, wireless sensor networks (WSNs) [7], 

and connected devices such as smartphones that greatly facilitate our daily tasks. This way of maintaining a 
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global network is known as internet of things (IoT) [8]. These types of networks are deployed in cities [9], 

endowing them with a certain intelligence and autonomy, in medical applications [10] or in our own homes 

to take care for our elderly people [11], among others.  

The particular case of the development of applications and services for smartphones is generating 

great interest among researchers. One of the main factors that promote the development and improvement of 

these devices is related to the increase in the number of sales of mobile devices, although the sale of mobile 

devices begins to stabilize at approximately 1,500 million units as shown in Figure 1. Figure 1 shows the 

number of smartphones sold worldwide to end users from 2008 to 2018. As we can see, the growth in the 

number of sales has maintained an increasing trend, reaching 1,500 million units in 2018 [12]. Therefore, 

taking into account the statistics regarding the number of existing mobile devices, it makes sense to develop 

applications for smartphones that help us maintain the necessary physical distance to prevent possible 

contagions. The current computational power of these devices also allows running complex tasks such as 

image processing [13] or even audio equalization, as well as supporting many applications that were 

originally intended for desktop computers and could help us in our purpose. 

 

 

 
 

Figure 1. Effects of selecting different switching under dynamic condition 

 

 

Taking into account the fact that almost everyone has at least one mobile device (especially in 

developed countries), we can think of developing an application for mobile terminals that allows us to define 

and keep the necessary social distance to prevent the rapid spread of the pandemic. Following this idea, we 

could use the sensors and actuators included in mobile phones to develop such systems [14]. After analysing 

the state of the art related to the development of mobile applications based on the use of sensors, we observed 

that beyond the development of bare-bones applications (in most cases, these applications do not use sensors) 

to know if a person is infected with COVID-19 or to follow their progress in the disease, no applications have 

been developed.  

There are different ways for determining if other persons are nearby our position. It could be 

possible to use geolocation by GPS or 3G/4G for this purpose [15], [16]. However, this solution requires that 

the user whom we intend to locate has a mobile device and it would be necessary to enable the location of the 

terminal. We must also consider the precision error of these technologies which may be a few meters. We can 

conclude that these would not be optimal solutions. However, we can use 2 different procedures to determine 

if someone is too near to us. On the one hand, we can use our smartphone to determine if there is another 

voice source (other than ours) close to us. On the other hand, we could make use of the device's rear camera 

(for example, while we are making a call and we are not paying attention to our surroundings), which 

automatically analyses our nearby scenario and determines if a person is close by. 

This paper proposes a new application to be run in a Smartphone to help us detect the presence of 

persons that are not maintaining the recommended physical distance. The proposed solution involves the 

development of 2 different applications to detect both the presence of a voice that does not correspond to the 

phone’s owner and perform a face detection to verify the distance. The system was tested in a laboratory 

environment to check its feasibility and efficiency. 

The rest of this paper is structured as follows; Section 2 presents some previous works related on the 

proposal where similar existing systems are presented. The proposed system is presented in section 3. In 

section 4 and 5, the implementation of the subsystems is explained. Section 4 describes the face detection 
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system. Section 5 shows the voice detection system. Other similar works are described in section 6 to 

compare their performance with our proposal. Finally, conclusion and future work are presented in section 7. 

 

 

2. CAMERA AND MICROPHONE DETECTION RELATED WORKS 

As Parra et al. explained [14], mobile phones are complex devices that contain several useful 

sensors to detect various parameters from our surroundings. This section presents some interesting works 

where existing methods and applications to perform face detection or voice detection are proposed. The 

presented applications will be based on the use of the camera and microphone embedded in smartphones. 

 

2.1.  Sound detector systems with mobile phones 

Voice assistants such as Siri, Google Now, Cortana or Alexa, have turned smart devices and 

computers where touch interfaces cannot be used into very accessible systems [17], [18]. The use of 

intelligent algorithms complements its operations and can help us recognize the presence of people, 

performing authentication and so on. In 2017, Feng et al. [19] developed an authentication system called 

VAuth able to provide continuous authentication for voice assistants. The system takes information of the 

body-surface vibrations of the owner and VAuth continuously checks them to the received voice commands. 

VAuth was implemented by using an accelerometer due to the low energy footprint and to collect on-body 

vibrations which the attacker cannot easily alter. In this way, VAuth guarantees the voice assistant to execute 

only the commands that originate from the owner voice. VAuth was tested with 18 users with several voice 

commands. Results show that VAuth achieved 97% detection accuracy and less than 0.1% false positive rate. 

One of the main problems of Vauth is the need of having 2 devices connected via Bluetooth. This fact 

implies that the overall energy consumption is high. Therefore, the voice capture depends on the availability 

of the second device which should be installed in glasses or should be worn as a gadget.  

In this sense, it is recommended to have a unique device to perform the entire process such as the 

one presented by Bragg et al. [20]. In this case, authors presented a customizable mobile phone application 

able to detect sounds that hard-of hearing people need to know. To develop the system, users must train the 

application to identify the sounds users want to be able to detect by recording several examples of those 

sounds. The different sounds are then classified into categories of sounds. According to the authors, the 

system is flexible since it can include additional sounds by performing new training phases and, portable 

because the system is implemented in a mobile phone. Users are notified by using common mediums as text 

messages or vibrations. This application was checked through a Wizard-of-Oz in-lab and offline proof-of-

concept for a Gaussian mixture model (GMM) based sound detection algorithm with different results for 

several sources and conditions. According to the system description, the smartphone should capture the audio 

and save it. Finally, the audio is analysed to determine which element generated that sound. It is not a real-

time application that allows us to instantly detect and process audio. 

Finally, it could be interesting to determine if the voice was generated by a person or the captured 

sound was a recorded voice-over. So, Zhang et al. [21] developed and tested the application VoiceLive. 

Authors evaluated a phoneme sound localization-based liveness detection application for mobile phones with 

the goal of differentiating between phrases spoken by a live user and a recorded one. The system was tested 

by replaying phrases by human speech production system and by mobile phone audio hardware. The 

application is based on the fact that modern mobile phones contain a stereo recording of dual microphones. 

The liveness detection application tries to detect the sound origin of each phoneme within the human vocal 

system and is based on the extraction of time difference of arrival (TDoA) of each phoneme sound to the two 

microphones of the phone. Authors tested the system in several persons and three different mobile phones as 

well as different sampling frequencies, phone displacements, and lengths of passphrases. Results showed that 

VoiceLive achieved over 99% detection accuracy and was able to determine if the captured sound came from 

a real person or not. However, the authors do not define whether it is possible to process the voice in real-

time. Furthermore, it has not been proven that the system can correctly work when different voice sources are 

present. 

 

2.2.  Face detection and recognition with mobile phones 

Face detection has aroused the interest of many researchers since it can be used to implement secure 

access systems based on mobile devices. Modern smartphones have RGB cameras suitable for capturing 

faces [22]. However, face biometric detection systems are not usually included as a native option. So, 

additional algorithms specifically designed for mobile environments are required [23]. 

In 2010, Dave et al. [24] analysed several algorithms to detect and recognize faces using mobile 

phones. Authors compared algorithms such as colour segmentation and template matching for face detection, 

and Eigenface and Fisherface for face recognition, to implement a face recognition system to be used on 
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DROID phones. From results, authors state that face detection algorithms usually present problems. For 

colour segmentation algorithm to work properly, the skin colour of a person should not be similar to the 

background colour. In this scenario, faces cannot be distinguished. Moreover, the template-matching 

algorithm is dependent on the standard template chosen and the illumination conditions, among others. 

Results showed that Eigenface and Fisherface achieved a total correct recognition/rejection rate of 84.3% 

with Eigenface, and 94.0% with Fisherface. Although the performance of the proposed system was quite high 

in terms of accuracy, the limitations of the face detection algorithm make it unsuitable for other scenarios 

where light conditions and background colours cannot be controlled. Furthermore, for the template matching 

algorithm to perform its task appropriately, the face needs to be centred and take a big part of the image. This 

situation implies that faraway faces will not be detected and thus, it will be impossible to determine at which 

distance an individual may be.  

However, face detection algorithms have evolved over the past years. Elrefaei [25] presented a 

criminal detection framework to be used in Android mobile devices which aims to recognize the face of a 

criminal or a suspect. The application is based on the client-server paradigm that permits real-time face 

recognition in video surveillance. To develop the system, authors used the robust Viola-Jones algorithm since 

it is not affected by illumination conditions. The application also includes an extension for face tracking 

based on an optical flow algorithm with fast corner features and regular features, as extraction methods. The 

application was tested using Sony Xperia Z2 Android 5.1 Lollipop Smartphone and results showed that the 

presented system achieves a higher level of accuracy and efficiency than optical flow with fast corner 

features. In spite of the fact that this proposal achieves acceptable performance rates, this solution requires a 

server side to perform its task. Moreover, face detection was performed on real-time captured videos, which 

increases the computational power. Thus, this application is still not appropriate for the aim of this project. 

Finally, Yang and Luo [26] proposed a real-time face recognition system on Android platform able 

to perform face detections by applying AdaBoost algorithm and face recognition by utilizing Eigenfaces. 

Authors also applied some methods to speed up the processes of face detection and recognition and enhance 

the rate of successful recognitions. From results, authors concluded that their system could perform real-time 

face recognition/detection over Android Operative System and mobile devices in over 300 ms. Though this 

system manages to perform real-time face detection and recognition in a short time, the proposed solution 

was designed as an identification tool, and requires a database in which the user can store face samples. 

Again, we encounter that the proposed solution operates correctly when being fed with multiple images to 

build a strong classifier of face features. 

Except for very few works like the one presented by Kim [27], the existing systems only base their 

use on one type of detection. Our proposal combines the use of sound and image sources to verify and 

estimate people’s presence and distance to the user’s terminal to ensure physical distance and minimize 

contagion by viruses transmitted by air. The proposed application improves the presented works in different 

aspects. On the one hand, we present an application that bases its operation on the use of embedded sensors 

in the smartphone, i.e., the microphone and the camera. Thus, avoiding the dependency on other devices to 

capture video/audio. The application can recognize the owner's voice by using the mel frequency cepstral 

coefficients (MFCC) [28]. Consequently, the presence of other voices will imply a possible violation of 

social distance. In addition, voice and image processing is performed in real-time, and therefore notifications 

to the users will be more effective. To correctly perform both voice and image processing, the application 

uses deep learning techniques [29] that will help us have a more accurate detection. Finally, the proposed 

system ensures users’ privacy since it does not collect any information from the terminal and does not need 

Internet connection nor GPS coordinates. Therefore, the use of this approach will always be local and 

anonymous. 

 

 

3. PROPOSAL DESCRIPTION AND METHOD 

This work has been done with the following method. Firstly, the research problem indicated in the 

previous sections was identified. Then, the hypothesis of creating a system based only on the microphone and 

the camera that can detect social distance violations was specified. In this section, the system is explained in 

terms of architecture, algorithm and working procedure. 

Figure 2(a) shows the different modules of the software architecture. The main algorithm, which is 

explained in this subsection, uses two subsystems to work. First, the voice detection subsystem analyses the 

sound captured by the microphone to detect unknown voices. Secondly, the face detection system is the 

subsystem that uses the camera to detect how many faces are close to the user. The system reads the number 

of faces and if there are unknown voices using the microphone. The main system must provide the voice 

detection subsystem with samples to train the algorithm. 
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The system then uses both the microphone and the camera to detect possible violations of the 

security distance. However, both systems are not used at the same time, meaning that there is no necessity to 

synchronize both systems. Figure 2(b) shows the state diagram of the alarm detection system on which 

transition from recognizing voice to detecting faces and vice versa are explained. States' names are displayed 

in black while transitions are blue. The transitions arcs show the condition and the action performed. Firstly, 

when the mobile is in idle state or the user is using it for surfing on the Internet or using other apps, only the 

microphone is activated. In the figure, it would be the "analysing microphone data" state. In this state, the 

data of the microphone is being analysed to detect voices. The voice of the user will be detected but if an 

unknown voice (the voice of a second person) is detected, an alarm will be triggered. The system is now in 

"risk state" which means that the security distance is not being implemented. When the risk state finishes, the 

system returns to the previous state, in this case, "analysing microphone data". 

 

 

 
 

(a) (b) 

 

Figure 2. Architecture proposal, (a) software architecture and information exchange of the different software 

modules of the system, (b) state machine diagram of the main algorithm 

 

 

The other possibility to detect persons is using the camera. This is used only during a call. 

Therefore, when a call is performed (incoming or outgoing), the system moves to a new state "in a call" 

where the microphone is not used anymore, and the phone is waiting to use the camera. However, the camera 

will only be analysed when the phone is detected to be in a vertical position. When the accelerometer detects 

a vertical position, the system state will change to "analysing camera data". Now the system is searching for 

faces in the camera. Here the number of faces is the important value. If there are two different faces detected 

by the camera, the alarm would be activated. In this case, the system would enter the "risk state" state. The 

difference is that when the alarm ends, the new state will be "analysing camera data" instead of "analysing 

microphone data". Then, the current state can move backwards to "in a call" or even to "analysing 

microphone data" if the cell phone is detected as in a non-vertical position or in a "not-in-a-call" state. This is 

an infinite loop that is repeated while the user does not close the app. 

The algorithm of the main system is shown in algorithm 1. Firstly, the variables are initialized. In 

order to represent the states, a numeric value is assigned to them. The state "analysing microphone data" is 

number 0, "in a call" is number 1, "analysing camera data" is number 2 and, finally, "risk state" is number 3. 

The first time the application is run, the user will be required to record some voice samples to start 

the voice recognition training process. In this process, the user must say several sentences (the minimum 

number of sentences is 5) to train the voice detection subsystem. However, there is no need for a face 

detection training process since the application will never capture the user’s face. The face detection process 

only works when the user is talking on the phone. Therefore, the camera only captures images of the 

surrounding area but not the user's face. This is the reason why the app does not need to differentiate between 

the owner of the phone and other people. 

Once the training is complete, the application enters in an infinite loop until the user exits or closes 

the application. Starting in the state 0, the conditions shown in Figure 2(b) are evaluated to update the 

"currentStatus" variable, which indicates the current status. Depending on the phone status and the values 

that the subsystems return, the current state changes. When the "risk state" is reached, the alarm is activated. 

After that, when the alarm ends, (it is discarded by the user or a certain amount of time has passed), the 

system returns to its previous state. This is done using the "riskStateEntry" variable, which stores the last 

state before moving into the "risk state". Between iterations, the app will be paused during a certain time (by 

default, 200 ms). 
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Algorithm 1. Main algorithm 
userExit = 0 

currentStatus = AnalMicroData 

riskStateEntry = 0 

UserVoice = StartTrainingProcess() 

Do 

  If(currentStatus = 0) 

     If(GetStatusMicrophone()= Disabled) 

 StartMicrophone() 

 StartVoiceRecognition(UserVoice) 

  Else 

     If (ReadVoiceRecognition()= True) 

      currentStatus = 3 

      riskStateEntry = 0 

             RaiseAlarm() 

       Else 

      If(GetPhoneStatus()= InCall) 

  currentStatus = 1 

  StopMicrophone() 

     End If 

         End If 

      End If 

   End If 

 

     If (currentStatus = 1) 

         If(GetPhoneStatus()!= InCall) 

              currentStatus = 0 

          Else 

            If(ReadPosition()= VERTICAL) 

           currentStatus = 2 

           riskStateEntry = 0 

           RaiseAlarm() 

       End If 

          End If 

     End If 

 

     If (currentStatus = 2) 

   If(ReadPosition()!= VERTICAL)) 

  currentStatus = 1 

  TurOffCamera() 

      Else 

  If(GetStatusCamera()= Disabled) 

   TurOnCamera() 

        End If 

       If (ReadNumberFaces() > 1) 

      currentStatus = 3 

      riskStateEntry = 2 

      RaiseAlarm() 

  End If 

     End If 

 End If 

 

       If (currentStatus = 3) 

         If(ReadAlarmState()!= Raised)) 

   currentStatus = riskStateEntry 

   End If 

      End If 

      Sleep(deltaTime) 

      userExit = ReadUserExit() 

While userExit = 0 

  

 

 

 

4. FACE DETECTION 

In this section, the part of the application that is able to detect people’s faces while the owner of the 

phone is talking on the mobile phone, is explained. The main two parts of this application are the 

accelerometer and the face detection part. When there is an incoming call, the app will first detect the 

position of the phone by using the accelerometer, to know whether the person is holding the phone while 

talking or if the phone is leaning on the table or any other horizontal surface. In case the phone is not in 

horizontal position, the camera will be activated. Taking into account that the mobile phone is not in 

horizontal position and there is an incoming call, there are two possible options on how the person is talking 

on the phone: using headphones or holding the phone by hand. If the camera detects that the light intensity 
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received is very low (dark image) the app will suppose that the user is using headphones and no face 

detection will be activated. In any other case face detection will be activated. 

 

4.1.  Accelerometer 

Every mobile phone has acceleration sensors known as accelerometers [30]. This sensor measures in 

m/s2 the acceleration force applied to a device in the three physical axes (x, y, z), including the force of 

gravity. Algorithm 2 explains the access to the accelerometer sensor of Android mobiles and how to use it in 

order to obtain the position of the phone. Algorithm 2 is the part of the code that is included in the OnCreate 

function on MainActivity, that is the first function when running the app. In this code, the SensorManager 

system service is accessed first. This system allows access to the accelerometer information that we have 

saved on the "sensor" variable. In case the "sensor" variable is correctly declared and is not null, 

SensorEventListener and onSensorChanged functions are declared. This function is accessed every time the 

accelerometer sensor detects any change. The x, y, z values can be taken as shown inside of 

onSensorChanged function. In case x and y values are between -3 and 3, the mobile phone will be horizontal. 

In any other case, the phone position will be supposed. 

 

Algorithm 2. Access to accelerometer sensor and mobile position detection by using x, y, z acceleration 
sensorManager = getSystemService(Context.SENSOR_SERVICE) as SensorManager 

sensor = sensorManager!!.getDefaultSensor(Sensor.TYPE_ACCELEROMETER) 

if (sensor == null) finish() 

sensorEventListener = object : SensorEventListener { 

 override fun onSensorChanged(sensorEvent: SensorEvent) { 

  val x = sensorEvent.values[0] 

  val y = sensorEvent.values[1] 

  val z = sensorEvent.values[2] 

  If (x < 3 && x > -3 && y < 3 && y > -3) 

   posicion.text = "Horizontal" 

  Else 

   posicion.text = "Talking on phone" 

  End If 

 } 

 override fun onAccuracyChanged(sensor: Sensor, i: Int) {} 

} 

 

4.2.  Face detection 

Once the position of the phone is defined the camera will be activated. First of all, light intensity 

will be captured in order to know if the camera can be used to detect faces or not. If the light intensity is high 

enough, we will suppose that the person is holding the phone and the face detection process will start.  

Figure 3 shows the process, explained before, to decide whether to activate or not the face detection process. 

 

 

 
 

Figure 3. Face detector activation flowchart 
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In order to develop the real time face detection app, we used a GitHub repository [31] that uses the 

Firebase Platform Services to develop applications [32]. Thanks to the services of Firebase Platform, it is 

possible to develop an Android Mobile application to detect facial features. The application detects every 

face captured by the camera and draws a square around them. In order to draw these squares, the application 

measures the size of the faces by detecting different facial features of all people captured by the camera. 

Depending on the shape of people’s heads, the measurement of the square’s sides can vary for the same 

measurement distance. 

We can obtain the size of the side of every square surrounding a head. The size of these squares can 

be obtained as an internal Android unit that is used to draw the squares around the faces. We used the side 

measurement of the squares to establish whether people around the mobile owner are far enough according to 

the security distance established for COVID-19 disease [33]. Figure 4 shows the data obtained after testing 

the application with four different persons in order to know how measurements vary depending on the 

distance between the phone and the person that is being captured. 

The data obtained shows that the variation of the side measurement is higher for short distances than 

for large distances. Figure 4 also shows that the application works correctly with different people. Data 

shown in Figure 4 has been obtained by capturing people that are directly looking at the phone camera, 

though in real situations people will not be directly looking at the phone camera. In order to know how the 

orientation of people’s faces can affect to their face size measurement, we have measured the same four 

persons looking to -90o (left side face), -45o, 0o (frontal position), 45o and 90o (right side face) degrees from 

the phone at 1 meter and 1.5 meters from the phone.  

Table 1 shows the average error of the square side measurement when people are looking -90o, -45o, 

45o and 90o degrees from the phone, compared to frontal position. Taking into account that the square side 

measurement variations between every 25 cm are: 75-100 cm=-68.08 units; 100-125 cm=-36.92 units;  

125-150 cm=-30.00 units; 150-175 cm=-20.42 units; and keeping in mind the average error shown in  

Table 1, we can say that it is possible to detect if people are far enough or not. 

 

 

 
 

Figure 4. Square side measurement depending on the distance 

 

 

Table 1. Average error of square side measurement 
Average Error at 1 meter from the phone Average Error at 1.5 meters from the phone 

Person Position Error Person Position Error 

-90 17,66 -90 10,50 

-45 7,17 -45 4,33 

45 4,42 45 2,08 
90 17,08 90 8,58 

 

 

5. OWNER VOICE RECOGNITION 

Speaker recognition is a challenging task that aims to extract speech characteristics to identify a 

user. Typically, a speaker recognition system consists of two modules: Feature extraction and feature 

matching [34]. This way, small amounts of data that represent each speaker will be extracted from the voice 

signal to compare those features with new inputs. This section presents the process used to identify a speaker 

within an Android application. Thus, it is divided into three different subsections. 
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5.1.  Application structure on android 

For the aim of this project, we built an android application able to extract voice features of a user 

and identify his/her voice using machine learning algorithms. Figure 5 shows the flow diagram of this 

application. As the figure shows, once the application is started, the user will be asked to record 5 samples of 

their voice. At each sample, mel frequency cepstral coefficients [35] will be extracted along with the central 

frequencies of the mel filter banks. This data will then be exported into a csv file to allow further processing 

before training the machine learning model. Once the model has been trained, the user will be able to record 

a new voice sample that will be compared to the previous ones and classified in two different groups: Known 

user or unknown speaker. 

 

 

 
 

Figure 5. Application flowchart 

 

 

5.2.  Mel frequency cepstral coefficients 

One of the most important features used in speech and speaker recognition systems are MFCCs [36]. 

This technique is based on human hearing behaviour and thus, it expresses frequencies in the MEL scale. 

Figure 6 shows the overall process of extracting cepstral coefficients. In this project, we used the TarsosDSP 

library to perform the analysis of the data on Android systems [37]. This library allows real-time feature 

extraction and synthesis both in audio records and videos. Following the indications in [38], cepstral 

coefficients were extracted configuring TarsosDSP method to extract 13 coefficients using 28 filters in the 

frequency range from 300 Hz to 8000 Hz, for a sampling rate of 44.1 kHz and a buffer size of 2048 samples. 

 

 

 
 

Figure 6. MFCC block diagram 

 

 

5.3.  Deep learning algorithm 

In order to classify new voice samples, we created a deep learning architecture using Deeplearning4j 

library [39]. This way, we created a multi-layered artificial neural network. The proposed prediction model 

structure is composed of 3 layers. The Input layer was configured to have 13 input nodes that will pass the 
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collected data to a Hidden layer with 6 input nodes and 3 output nodes. Finally, the Output layer is formed of 

a single node to classify data into two categories: Known user or unknown speaker. In our case, we used the 

negative log-likelihood (NLL) cost function to optimize the parameter values given to the neural network 

model. Moreover, we implemented backpropagation in order to minimize the error on the computation of the 

gradient performed by previous layers. The training of the model was performed by recording five samples of 

the user’s voice that will be passed 4 times to achieve high accuracy results. 

 

5.4.  Owner identification 

Figure 7 shows the utterance of the sentence "Hello, my name is Josefine" performed by two 

different speakers. As the figure shows, the voiceprint of each person is unique. When comparing voice 

biometrics, it is possible to detect and identify different speakers. By storing multiple voiceprints of the end 

user during the enrollment phase, we created a model that will be used to verify the presence of other 

individuals that may not maintain the recommended physical distance. The match score given by the 

classification algorithm returns an estimation value, resulting in a near 0 value when the speaker is the owner 

of the terminal, and a near 1 value when the speaker is unknown to the system. Thus, extracting features of a 

user’s voice can be of great use in authentication methods where fingerprint or facial recognition are 

impossible, like customer-support calls. 

Speaker verification can be clearly seen in Figure 8, where cepstral coefficients of the above-

mentioned voiceprints have been plotted. The Mel frequency cepstrum is often used in sound processing to 

represent the power spectrum of a sound in an equally spaced mel scale to approximate it to the human 

auditory system’s response. These coefficients are used as features in speech recognition to help lessen the 

influence of noise and extract relevant audio characteristics that are necessary for the speech recognition 

process. When comparing the performances of both speakers, one can observe that the rate, the periodicity, 

and complexity of vibration of each speaker is different. Thus, extracting the cepstral coefficients of the end 

user allows us to identify a person among the rest. 

 

 

 
 

Figure 7. Recorded samples of two speakers saying the same sentence 

 

 

 
 

Figure 8. Cepstral coefficients of the recorded samples of two different speakers 
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Table 2 shows the mean estimation values of the classification algorithm after recording 5 samples 

for a known user and comparing new samples with the built model. These values were obtained by 

performing the mean value of three attempts for every speaker. As the results show, by extracting the cepstral 

coefficients of a speaker to train a model we can successfully differentiate among different speakers to 

determine whether a person is accompanied by someone else or, in this case, whether other individuals may 

be too close to the user’s terminal. 

 

 

Table 2. Estimation values of the classification algorithm 
Speaker Mean Estimation Value  

Known user 0.26 

Unknown speaker 1 0.85 

Unknown speaker 2 0.76 
Unknown speaker 3 0.82 

 

 

6. OTHER SIMILAR SOLUTIONS 

Once the design and results of our proposal have been discussed, the system will be compared with 

other implemented solutions. In this section, a brief comparison is presented and the differences between our 

proposal and other alternatives are summarized. Although the COVID-19 it is a relevant topic, there are not 

numerous technical solutions regarding social distance. Table 3 shows a comparison between the proposal 

and the alternatives.  

 

 

Table 3. Comparison of alternatives 
Related 

solutions 

Scope Sensors and data used Needs other users using 

the same system? 

Identification Privacy 

[37] Individual Bluetooth 

Device-to-device 
interaction 

Yes Needs a user profile of 

your health system 

Uses sensitive data 

[38] Individual Bluetooth Yes Needs your actual data Uses sensitive data 

[39] Individual Bluetooth No None No data required 
[40] Global GPS 

Location 

Mobility 

- None Uses anonymous 

location and 

mobility data 
[41] Global GPS 

Location 

Mobility 

- None Uses anonymous 

location and 

mobility data 
[42] Place GPS 

Location 

User Feedback 

Yes User account Uses location and 

mobility data 

[43] Individual Camera 

Feet detection 

No Snapchat user account No data required 

This work Individual Speech recognition 
Camera  

Facial detection 

No None No data required 

 

 

Apple and Google have launched an app to monitor people's contacts using Bluetooth [40]. The app 

tracks data about the user and the location, raising some questions about privacy, especially taking into 

account that they operate with sensitive data, being able to categorize if a user is infected. The Australian 

government proposed COVIDSafe [41], an application that uses Bluetooth to detect other users who have 

been in contact with COVID. The contacts are used to trace a possible spread when the user is infected. 

However, it does not alert the user from a social distance violation. Another solution was developed by the 

United Nations Technology Innovation Labs (UNTIL) [42]. Their app also uses Bluetooth in a similar way. 

However, it detects every type of device with Bluetooth, so it can warn of a device-to-device distance 

violation, but not of a social distance violation. 

  In a more global way, services like Unacast’s Social Distancing maps [43] or Inoco [44] work with 

the location data of a wide number of users to show a statistical analysis of the mobility and the social 

distance violation rate in different countries. They offer a software development kit (SDK) that third parties 

can include in their applications. Therefore, they collect anonymous data and process it. 

Some solutions such as Crowdless, developed by Lanterne [45], are used to alert people of crowded 

areas. The user can check the state of occupation of the place they want to go to before actually doing so. The 

application uses location data and users’ feedback to determine how crowded a place is. Finally, the only 
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known solution to who uses the camera is a filter of "Snapchat" social network application that adds a visual 

warning when it detects a person less than two meters away [46]. Though it is only a complement of the 

application, and not a specialized application, and a Snapchat account is required.  

In comparison, our proposal provides a solution that respects the privacy of the user and their 

anonymity, not using identification, sensitive data nor locations as parameters. Moreover, it combines the use 

of the camera with the use of speech recognition techniques. Consequently, it is able to warn the user of 

social distance violations without storing any private data. Furthermore, it warns the user without needing to 

interact with other devices or users of the app, notifying the social distance violations only to the end user. 

The natural evolution of this kind of applications and systems is to develop a common platform able 

to obtain data from different patient’s profiles to analyse them [47]. Because the environments where the 

measures are taken can be quite different, it is also important to think of a versatile system able to be adapted 

to the features of each scenario [48]. Finally, a more accurate mechanism to recognize the owner and the rest 

of people can be necessary [49], [50]. 

 

 

7. CONCLUSION AND FUTURE WORK 

In this work, a system to detect people that may be around the user is presented. The proposal is 

based on two different detection systems combined and synchronized. On the one hand, the face detection 

system, used to detect people using the phone camera during a call. The performed tests proved that the 

system can be used to detect nearby people. On the other hand, the voice recognition system. This module is 

based on a deep neural network, and uses NLL for optimization. The system is trained when the application 

is run for the first time. The results showed that the system obtains different coefficients for different 

speakers that can be used to identify unknown speakers. However, due to restrictions related to the pandemic, 

more work needs to be carried out in real time scenarios and crowded environments. 

In future works, the system will be improved. First, the use of geolocation-related data will be 

studied to gather statistics, perform studies, and generate maps of the confirmed cases at a city level. 

Moreover, the data can be used to raise alarms to the closest systems and entities. Another possible 

improvement is regarding the intelligent system for voice recognition. In the future, the system could use an 

online algorithm to enhance the functionality and improve its accuracy. Moreover, it could be trained prior to 

its installation to achieve better results. Another improvement would be adapting the system to other 

environments and issues, such as noisy environments, by enhancing the subsystems and considering different 

constraints and casuistics. As for face detection, curvelet transform and support vector machine (SVM) 

classifiers could be used as a mean to extract face features, and detect whether the same person keeps 

approaching a user. Finally, the app will be prepared to be uploaded to a platform such as GitHub for further 

improvements through user comments and testing. 
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