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 For low density parity check (LDPC) decoding, hard-decision algorithms are 

sometimes more suitable than the soft-decision ones. Particularly in the high 

throughput and high-speed applications. However, there exists a considerable 

gap in performances between these two classes of algorithms in favor of soft-

decision algorithms. In order to reduce this gap, in this work we introduce 

two new improved versions of the hard-decision algorithms, the adaptative 

gradient descent bit-flipping (AGDBF) and adaptative reliability ratio 

weighted GDBF (ARRWGDBF). An adaptative weighting and correction 

factor is introduced in each case to improve the performances of the two 

algorithms allowing an important gain of bit error rate. As a second 

contribution of this work a real time implementation of the proposed 

solutions on a digital signal processor (DSP) is performed in order to 

optimize and improve the performance of these new approchs. The results of 

numerical simulations and DSP implementation reveal a faster convergence 

with a low processing time and a reduction in consumed memory resources 

when compared to soft-decision algorithms. For the irregular LDPC code, 

our approachs achieves gains of 0.25 and 0.15 dB respectively for the 

AGDBF and ARRWGDBF algorithms. 
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1. INTRODUCTION 

In digital transmissions, there is an extraordinary rise in throughput demand in order to respond the 

various multimedia uses increasingly favoered by users who want universal connections. More for used 

mobile radio systems, the information is frequently disturbed by noise in the transmission channel. Thus, a 

high-performance error-correcting code is essential and obviously vital for digital transmissions making a 

development of high-performance decoders with low latency, high working frequency and high throughput a 

challenged research problem [1], [2]. 

Low density parity check (LDPC) codes, introduced in 1962 by Gallager [3], have an important 

correction power that makes them very attractive for use on highly disturbed channels. Due to their capacity 

to error correction performances, the LDPC codes are widely used in many communication systems and 

standards, such digital video broadcasting–satellite–second generation (DVB-S2), IEEE 802.16e (WiMAX), 

IEEE 802.11n (Wi-Fi), and 5G [4]-[6]. LDPC codes use a binary sparse parity check matrix H and for their, 

decoding procedure, the hard-decision and soft-decision algorithms are the two main usually used algorithms. 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

An improvement and a fast DSP implementation of the bit flipping algorithms for ... (Mouhcine Razi) 

4775 

The soft-decision algorithms calculate the extrinsic log likelihood ratio (LLRs) to evaluate the reliability of 

received messages (𝑦n), these methods achieve the best bit error rate (BER) performances [7]-[9], but these 

iterative decoding algorithms require large number of arithmetic operations; and can introduce prohibitive 

delays for very high-speed transmissions where latency plays an important role. Alternatively, for hard-

decision algorithms (or bit flipping algorithms) the decoding time can be strongly reduced with some relative 

loss in performances [10]. Even that, they still helpful for some applications where the speed and high 

throughput are needed, more particularly if one finds a way to reduce the performances gap between the two 

classes of algorithms [11]. These hard-decision algorithms have been introduced to address three important 

problems: BER performance, latency issues, and computational complexity. These issues can be seen as a 

trade-off problem where the challenge is to optimize all of them under specific requirements. This type of 

algorithm propsed by Gallager [3] simplifies the decoding method by taking a hard-decision (𝑥n) on the 

message received from the transmission channel (𝑦n) at the beginning of the decoding process. It first 

calculates the sum of the syndromes ∑ ∏ 𝑥𝑗𝑗∈𝑁(𝑖)𝑖∈𝑀(𝑛) , if this sum is equal to the number of lines in the 

matrix H, it stops the decoding, otherwise it calculates the inversion function 𝛥𝑘(𝑥) ≜ ∑ ∏ 𝑥𝑗𝑗∈𝑁(𝑖)𝑖∈𝑀(𝑛)  that 

estimates the reliability of received channel messages; and the bit which corresponds to the minimum of this 

function will be switched. This bit flipping (BF) algorithm has very low complexity since it requires, in each 

iteration, only a simple summation over binary parity-check values for each bit. However, this method 

provides poor decoding performance, for instance three or more orders when compared of the soft-decision 

algorithm for an SNR of 3.5 dB. To overcome these problems, the hard-decision algorithms have been 

largely investigated and numerous variants of BF algorithms has been proposed. Among which the weighted 

BF (WBF) algorithm [12], the modified weighted BF (MWBF) algorithm [13], gradient descent bit-flipping 

GDBF [11] and reliability ratio weighted GDBF (RRWGDBF) [14]. These works use an additive or 

multiplicative weighting factors in Δk(x) to evaluate the reliability of syndromes [15], [16].  

Kou et al. [12] proposed the WBF algorithm in which a weighting factor based on the minimum 

value of 𝑦n is considered in the syndromes calculation to make 𝛥𝑘(𝑥) more reliable. This process increases 

the complexity and the number of iterations even if some improvements in performances, in term of BER, 

have been achieved. A modified version (MWBF) has been introduced by Zhang et al. [13] who added an 

offset value, based on the absolute value 𝑦n, in 𝛥𝑘(𝑥) of the WBF algorithm. This algorithm, even it leads to 

some signal quality enhancement it involves a slight increase in complexity of Δk(x). Another improved 

MWBF (IMWBF) version was introduced by Jiang et al. [15] which offered further improvement by using a 

weighting factor aiming to avoid the SNR dependency. This new weighting factor can be determinated via 

Monte Carlo simulations. Always in order to enhance the error rate performances, Wadayama et al. [11] 

suggested the concurrent GDBF algorithm as a gradient-descent optimization model for the maximum 

likelihood decoding problem. This algorithm adds in 𝛥𝑘(𝑥) a relation between the message after the hard 

decision and received channel message allowing a maximum of correlation, then searches for the minimum 

value of 𝛥𝑘(𝑥), and finally flips the corresponding bits. To improve the decoding performance of this GDBF 

algorithm another version called reliability-ratio weighted GDBF (RRWGDBF) algorithm has been proposed 

by Phromsa-ard et al. [14] that uses a weighted summation over syndrome components with an adaptive 

threshold to obtain reduced latency. The GDBF and RRWGDBF algorithms are methods that gives better 

trade-off between performance and complexity among all hard-decision algorithms [11], [14], [17], but when 

compared, for instance, to the min sum (MS) algorithm, which is a soft-decision algorithm, these two 

algorithms show relatively limited performances in term of BER [18]. Their main advantage is the simplicity 

of their hardware implementation compared to the MS algorithm for instance, which needs high material 

resources and increases the decoding latency. Several researchers proposed alternative GDBF algorithms to 

improve quality, but these algorithms require more than hundred iterations to converge toward best 

performances. Even that, the GDBF algorithm outperformed the WBF and MWBF algorithms in error 

correcting ability and more significantly in the average number of iterations. Nevertheless, during the 

decoding with GDBF algorithm, there is a risk of flipping some correct bits and again flipping them at 

another times in the next iterations, which causes a performance degradation with additional delays.  

Thus, in this work we propose the adaptative GDBF (AGDBF) algorithm where a solution to solve 

this problem is developped. By following the bits flipping procedure, when a twice flipped bit is detected, we 

stop the flipping of this bit by adding a multiplicative weighting coefficient . In the same framework of the 

decoding improvement, we also propose an adaptative RRWGDBF (ARRWGDBF) algorithm, this time by 

first using a pre-processing step to check the columns of the short cycles in the H matrix and finally using a 

weighting correction factor to eliminate the impact of these short cycles. By theses ways, these algorithms 

allow better performances as hard-decision algorithms making them useful for high-speed applications. After 

being validated by simulations, the proposed algorithms are hardware implementation on a digital signal 

processors (DSP) platform in order to improve their performances and to reduce the processing time of these 

new approchs, as a second contribution of this work. The rest of the paper is structured as follows, an 
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overview of the approaches of the GDBF and RRWGDBF algorithms is presented in the section 2 that permit 

a hardware implementation of the simplified LDPC decoder. In the next section we announce our new 

approach for these two algorithms. Finally, the DSP implementation results will be presented. 

 

 

2. RESEARCH METHOD 

2.1.  Decoding algorithms 

The LDPC codes use a binary sparse m×n parity check matrix H, where m=n-k, k being the 

information length and n the code length. The H matrix can be represented by a conventional Tanner graph as 

illustrated in Figure 1, where m represents the check nodes (CNs), and n represent the variable nodes (VNs). 

Each variable node vi is connected to a set of check nodes and each check node ci is connected to a set of 

variable nodes. M(n) denotes the set of check nodes connected to an involved nth variable node and N(m) the 

set of variable nodes that participate in mth check node. 

For the communication systems and the standards, it is known that an optimized irregular LDPC 

code has better performance than a regular LDPC code [19], besides, the quasi cyclic LDPC (QC-LDPC) 

codes showed good performances for large codeword length [20]-[22]. The decoding complexity is 

proportional to 𝐸/𝑅𝑛, where 𝐸 is the number of links between the check nodes and the variable nodes, and 

𝑅=k/n is the code rate [23]. For the present work, we assume an additive white Gaussian noise (AWGN) 

channel with a variance σ2=N0/2, where N0 is the spectral power density, and binary phase-shift keying 

(BPSK) modulation [24]. 

 

 

 
 

Figure 1. Example of Tanner graph and its parity check matrix 

 

 

2.1.1. Soft-decision decoding 

The MS algorithm is the simplest way to implement the Soft-decision algorithms [18], [25]. It is 

mainly based on the calculation of extrinsic LLR messages exchanged between the check nodes and the 

variable nodes of the Tanner graph. This algorithm achieves very high performances in terms of BER [26], 

but his major disadvantage is the implementation which needs more material resources and consumes more 

time resulting in a decoding latency increase. 

 

2.1.2. Hard-decision decoding 

 Soft-decision algorithms calculate the LLRs to evaluate the reliability of received messages, this 

calculation is more complexe. To overcome this constraint, Gallager [3] has proposed BF algorithm that 

works in hard-decisions. This type of algorithm simplifies the decoding method by a hard-decision of the 

message received from the transmission channel at the beginning of the decoding process, and the algorithm 

calculates the sum of the syndromes per line. If this syndrome is equal to the number of lines in the matrix H, 

it stops the decoding, otherwise it calculates the inversion function which allows to define the false bits to be 

inverted. The basic version of BF algorithm [3] is defined in Figure 2. 

Compared to soft-decision algorithms, this algorithm searches the minimum value of the Δk 

function to flip the corresponding bits, so it inverts several bits in the same iteration, which makes the BF 

algorithm the simplest to implement among all the inversion methods. But inverting several bits at the same 

time can lead to generation of new errors and finally the decoder cannot detect and correct all the errors. As a 

consequence, the performances of this algorithm still very far from those obtained by the soft-decision 

algorithms [15], [16].  

To overcome these problems, some previous works use an additive or multiplicative weighting in 

Δk(x) to evaluate the reliability of syndromes. By this way, it can be easy to detect and correct almost all the 

errors as confirmed for instance by Jinag et al. [21] and Gua et al. [16]. Modified expressions of Δk(x) to 

improve the BER performances are then proposed, they are all based on (1). In this equation ∅(𝑥n, 𝑦n) 
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represents the metric (reliability) of the received messages 𝑦n, 𝛼 and  are weighting factors to balance the 

values between ∅(𝑥n , 𝑦n) and ∑ ∏ 𝑥𝑗𝑗∈N(i)𝑖∈M(n) . 

 

Δ𝑘𝑔𝑙𝑜𝑏𝑎𝑙(𝑥)  ≜    Ø(𝑥𝑛 , 𝑦𝑛) + ∑ 𝑖∏ 𝑥𝑗𝑗∈N(i)𝑖∈M(n)          (1) 

 

 
Decision:  

 for j =1 to N do    𝑥𝑗 = 𝑠𝑖𝑔𝑛( 𝑦𝑗)                              (𝑥j : hard decision of 𝑦j) 

 for l =1 to  Lmax  do                                                    (Lmax:  maximum iterations) 

    for  i = 1 to M do     𝑆𝑖 = ∏ 𝑥𝑗𝑗∈𝑁(𝑖)                        ( Si : the syndromes by line) 

     if  ∑𝑆𝑖 = 𝑀  then break 

    for  k = 1 to N do    𝛥𝑘(𝑥𝑘) ≜ ∑ ∏ 𝑥𝑗𝑗∈𝑁(𝑖)𝑖∈𝑀(𝑘)    (k : inversion function) 

    for  j = 1  to  N  do 

           if 𝛥𝑘(𝑥𝑗) = min (𝛥𝑘)  then  𝑥𝑗 = −𝑥𝑗 

until Finished 

end Function 

 

Figure 2. Main steps of the BF decoding algorithm 

 

 

2.1.3. GDBF and RRWGDBF algorithms 

The GDBF algorithm is a method that gives a better trade-off between performance and complexity 

among all hard-decision algorithms [11]. It becomes a viable alternative to the belief propagation (BP) 

algorithm. In the GDBF algorithm, one must find the code-word that gives the maximum correlation value. 

The function to be optimized is defined by (2). 
 

  𝑓(𝑥)  ≜ ∑ 𝑥𝑘𝑦𝑘
𝑛
𝑖=1   + ∑ ∏ 𝑥𝑗𝑗∈N(i)

𝑚
𝑖=1        (2) 

 

For a correct code word, the 𝑓(𝑥) function achieves its maximum value. One then has to check to 

maximize this function by changing the values of 𝑥k. The inversion function, defined by (3), of this algorithm 

gives the metric for each individual bit that lead to take a decision to flip or not the corresponding bit. 
 

Δ𝑘(𝑥)  ≜   𝑥𝑘𝑦𝑘 + ∑ ∏ 𝑥𝑗𝑗∈N(i)𝑖∈M(k)        (3) 
 

Another algorithm named RRWGDBF has been proposed to improve the GDBF algorithms [14]. 

This algorithm further increases the convergence speed of the BF algorithm by adding the multiplicative 

weighting factor, β, in the syndromes, the new metric is then given by (4). 
 

Δ𝑘(𝑥)  ≜   𝑥𝑘𝑦𝑘 + ∑ 𝛽𝑖𝑘∏ 𝑥𝑗𝑗∈N(i)𝑖∈M(k)            (4) 
 

Where: 𝛽𝑖𝑘 =
1

|𝑦𝑘|
∑ 𝑦𝑗𝑗∈N(i)          (5) 

 

Before going further, we undertook to evaluate the BER performances of the above cited algorithms. 

For that we performed a simple comparison in the case of n=576. Results are shown on Figure 3.  

 

 

 
 

Figure 3. BER performance of MS, BF, GDBF and RRWGDBF algorithms for LDPC code of length-576 
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It can be observed that the performances of these two last inversion algorithms are better than the 

BF algorithm but still far from the BER of the MS procedure. Thus, to reduce the gap between these two 

classes of algorithms, we introduce in the following, two new approaches to improve the BER performances 

of both the GDBF and the RRWGDBF decoding algorithms by introducing weighting factors to make more 

reliable their inversion functions. 

 

2.2.  Proposed decoding method  

As a test experimentation we will focus on the decoding process for the WiMAX standard. 

Therefore, for the GDBF and RRWGDBF algorithms and for an easier implementation system, we will 

consider two matrix H based on an irregular QC-LDPC code of codeword length 576 and 1056 [27]. 

 

2.2.1. Proposed AGDBF approach 

The GDBF algorithm searches for the minimum value of the inversion function, then flips the 

corresponding bits. During decoding, there is a risk of flipping some correct bits and flipping them again at 

other times in the next iterations, which induces some performances degradation with an additional delay. 

Thus, to solve this problem, we introduce a new weighting coefficient, which adjust the values between 𝑥k𝑦k 

and the syndrome ∑ ∏ 𝑥𝑗𝑗∈N(i)𝑖∈M(k) . The key of this proposal is to follow the bit flipping, and if we detect 

that a bit is flipped twice (Nk = 2), we stop its flipping procedure by multiplying the first term in the inversion 

function by a weighting factor  in order to increase its value, therefore, it will not be affected by the flipping 

next times. And the inversion function becomes: 

 

Δ𝑘(𝑥) = {
𝛼 × 𝑥𝑘𝑦𝑘 + ∑ ∏ 𝑥𝑗       𝑖𝑓     𝑁𝑘 = 2𝑗∈N(i)𝑖∈M(k)

𝑥𝑘𝑦𝑘 + ∑ ∏ 𝑥𝑗𝑗∈N(i)𝑖∈M(k)               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (6) 

 

2.2.2. Proposed ARRWGDBF approach  

 The codes (576,384) and (1056,792) give the best performance for the RRWGDBF algorithm, but 

the H matrix will not be very sparse, so there will be the presence of short cycles in the H matrix. A cycle 

starts from a given variable node and shows all the parity and variable nodes to which it will be connected 

falling back on the starting variable node. Figure 4 illustrate some examples of short cycles of order 4, order 

6 and order 8 as shown in Figures 4(a)-(c) usually encountered in H matrix. 

To improve the performance of the RRWGDBF algorithm, it is necessary to avoid the generation of 

short cycles in the Tanner graph, In fact short cycles are very penalizing when calculating the inversion 

function. The "girth" is the minimum cycle length that can be encountered in a Tanner graph. With the 

appearance of cycles, the result of the sum of the syndromes ∑ ∏ 𝑥𝑗𝑗∈N(i)𝑖∈M(k)  will not be reliable, which 

decreases the performance of the decoder. Therefore, it is essential to eliminate short cycles to obtain good 

decoding performance. 

 

 

 
 

Figure 4. Example of short cycles; (a) order 4, (b) order 6 and (c) order 8 

 

 

To overcome the problem of the speed convergence for the RRWGDBF algorithm, we suggest in 

this work to introduce a pre-processing step to search the columns of the short cycles in the H matrix in order 

to identify them and then to multiply them by a reweighting factor to obtain a gain of bit error rate 

performances. To identify the columns of short cycles we followed the same method of Yang et al. [28] and 

we found that columns between 265 and 312 for H(192, 576) matrix and columns between 1 and 727 for 

H(264, 1056) matrix are the columns that present short cycles of order 4. The multiplying factor is then 

introduced in the first term of the inversion function which is the calaculated for n=576 by the following (7) 

and (8): 
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Δ𝑘(𝑥) =

{
 
 

 
 𝛼 × 𝑥𝑘𝑦𝑘 + ∑ 𝛽𝑖𝑘∏ 𝑥𝑗       𝑖𝑓     (264 <  𝑘 <  313)                             (7)

𝑗∈N(i)
𝑖∈M(k)

𝑥𝑘𝑦𝑘 + ∑ 𝛽𝑖𝑘∏ 𝑥𝑗
𝑗∈N(i)

𝑖∈M(k)

              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                         (8) 
 

 

 

3. RESULTATS AND DISCUSSION 

3.1.  Software validation 

The different hard-decision algorithms with the proposed algorithms were coded using the C/C++ 

programing language. And for simulation, we used the host computer of Intel Core i7 7500U, 2.7 GHz. 
 

3.1.1. Weighting factors determination 

For the AGDBF, as the aim is to increase the value of the inversion function when a flipped bit is 

detected, we permformed a series of simulation using a set of arbitrary positives values of . Results for the 

representative ones (2, 5, 10, 20, 50) are presented in Figure 5 and Figure 6 for the two codes (576,384) and 

(1056,792) respectively. The value of 5 is the minimal value where an appreciable gain can measure and the 

value of 20 is the higher value from which the observed changes still negligible and even not measurable. 

For the ARRWGDBF, we follow the same procedure and representative results for  in the list  

(2, 5, 10, 20) illustrated in Figures 7 and 8, respectively for n=576 and n=1056. Values of =5 and =10 can 

be assigned to the check nodes that are crossed by the short cycles of order 4, for these two codeword 

lenghts. In fact, for higher than these values the changes in the BER becomes very negligeables. 
 

 

  
 

Figure 5. Comparison of performance of AGDBF 

algorithm for different 𝛼 values, for an irregular 

LDPC code (576,384) 

 

Figure 6. Comparison of performance of AGDBF 

algorithm for different 𝛼 values, for an irregular 

LDPC code (1056,792) 
 
 

  
 

Figure 7. BER performance of ARRWGDBF 

algorithm for different values of 𝛼 for an irregular 

LDPC code (576,384) 

 

Figure 8. BER performance of ARRWGDBF 

algorithm for different values of 𝛼 for an irregular 

LDPC code (1056,792) 
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3.1.2. Simulation results 

Figures 9 and 10 show respevctiveley the achieved decoding performances by the two proposed 

algorithms in the case of targeted codeword length 576 and 1056. The AGDBF algorithm gives 

approximately a gain of 0.2 dB at a BER=10-4 for n=576 and approximately 0.17 dB gain at 4×10-5 for 

n=1056 show in Figure 9, thus, the use of the weighting factor improves the decoding performance compared 

to the GDBF algorithm. For the ARRWGDBF algorithm a gain of approximately 0.14 dB is obtained at a 

BER=10-3 for n=576 and a gain of approximately 0.17 dB at BER=4×10-4 for n=1056 show in Figure 10, 

again, the pre-processing step in the H matrix and the use of the reweighting factor in the inversion function 

lead to non negligeable gain in the BER performances. 

 

 

  
 

Figure 9. BER performance of the GDBF and the 

proposed AGDBF algorithms 

 

Figure 10. BER performance of the RRWGDBF 

and the proposed ARRWGDBF algorithms 

 

 

In Table 1, a comparison between the new and basic algorithms in term of BER is presented. It can 

be seen that the BER performance, between the GDBF [29] and the proposed AGDBF algorithms is 

improved and also the number of iterations is highly reduced, 30 iterations in our case instead of 60 in the 

previous version [29]. Idem, in the proposed ARRWGDBF algorithm the BER is improved. 

 

 

Table 1. Comparison of performance of GDBF [29], RRWGDBF, AGDBF, and ARRWGDBF algorithms 
Algorithms Code length Rate SNR [dB] Lmax BER 
GDBF [29] 1000 0.9 4 60 10-2 

Proposed AGDBF 1056 0.75 4 30 6×10-3 
RRWGDBF 1056 0.75 4 30 2×10-3 

Proposed ARRWGDBF 1056 0.75 4 30 1.5×10-3 

 

 

3.2.  Hardware implementation 

DSP implementation of the proposed solutions is helpful to to evaluate the performances and the 

delays of algorithms. The DSP processor has a fast kernel that allows high speed memory accesses and it also 

can suggest some improvement ways. The platform used in this work is the Texas Instrument's 

TMS320C6713 floating point DSP processor [30]. The LDPC decoder has been developed in software on the 

Code Composer Studio Simulator using C/C++ programming language. 

For applications that require a large codes length, to speed up the decoding process and optimize 

memory, we adopt the same method as we reported previously [31], we have stored just the positions of the 

1s in the H matrix. This method simplifies the check for the 1s during decoding and decreases the time 

processing by reducing the number of memory access. Figure 11 illustrates the steps we followed to 

implement our algorithms: 

In the case of the code (576,384), Figure 12 shows that, for AGDBF algorithm, a gain of 0.25dB is 

obtained for a BER of 5×10-5 and for ARRWGDBF algorithm, a gain of 0.15dB is obtained for a BER of 

3×10-4. On Figure 13, (case of the (264,1056) code), for the AGDBF algorithm, a gain of 0.13dB is obtained 

for a BER of 5×10-5 and for ARRWGDBF algorithm, a gain of 0.15dB is obtained for a BER of 3×10-4, 

illustrating the performance improvement of the decoding process in each case. 
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Figure 11. Flowchart of the DSP implementation 

 

 

  
 

Figure 12. BER of GDBF, AGDBF, RRWGDBF 

and ARRWGDBF algorithms for an irregular 

LDPC code (576,384) 

 

Figure 13. BER of GDBF, AGDBF, RRWGDBF 

and ARRWGDBF algorithms for an irregular 

LDPC code (1056,792) 

 

 

Table 2 shows a comparison of the processing time per iteration and the memory resources 

consumed for the MS, AGDBF and ARRWGDBF algorithms. As far as memory requirements are concerned, 

the sparse matrix implementation, storing just the positions of the 1’s in the H matrix, saves a considerable 

amount of memory by allowing the entire code to reside only on the on-chip memory. The use of on-chip 

memory IRAM avoids accesses to slower off-chip memory, and the AGDBF and ARRWGDBF algorithms 

exploit less memory. On the other hand, the MS algorithm uses the on-chip and external memory SDRAM. 

Thus, the number of cycles per iteration of the proposed AGDBF and ARRWGDBF algorithms is much 

lowered compared to the MS algorithm. Therefore, the system can implement a large codes length based on 

the proposed algorithms. In the same table, it can also be seen that the number of cycles and memory 

allocation, between the GDBF and AGDBF algorithms from one part and between the RRWGDBF and 

ARRWGDBF algorithms from the other part, are almost unchanged. 

 

 

Table 2. Comparison of number of cycles per iteration and memory allocation for MS, GDBF, AGDBF, 

RRWGDBF and ARRWGDBF algorithms for n=576 
Algorithms MS GDBF Proposed AGDBF RRWGDBF Proposed ARRWGDBF 

Number of cycles per 

iteration 

8.7×106 411×103 425×103 1.39×106 1.4×106 

Memory allocation (IRAM) 
(KBytes) 

41 29 29.3 32.4 32.5 

Memory allocation 

(SDRAM) (KBytes) 

12700 0 0 0 0 
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4. CONCLUSION 

In this paper, an improvement of the decoder performances is presented, based on new proposed 

adaptative versions of the GDBF and RRWGDBF algorithms. Our approach modifies the GDBF decoding 

algorithm with an added weighting coefficient to avoid multiple flipping of some right bits leading to the 

named adaptive GDBF (AGDBF) version. In the case of RRWGDBF decoding algorithm, a new named 

adaptive RRWGDBF (ARRWGDBF) is suggested in which a pre-processing step to check the columns of 

the short cycles in the H matrix and using a weighting correction factor. 

Software simulation and real time implementation using DSP platform have been carried out to 

evaluate and to optimize the performance of the proposed LDPC decoder. Implementation results show the 

improvement of the proposed approaches in terms of convergence and also conserved the same processing 

time. Moreover, for length-576, at BER of 5×10-5, the AGDBF achieves approximately 0.25 dB gain over the 

GDBF algorithm, and for BER of 3×10-4, the ARRWGDBF achieves approximately 0.15 dB gain; For the 

code length 1056, at BER of 5×10-5, the AGDBF gives gain of 0.13 dB over the GDBF algorithm, and for the 

BER of 3×10-4, the ARRWGDBF reaches a gain of 0.15 dB. The proposed algorithms are useful for the 

communication system such as wireless systems, such WiMAX, 4G, 5G. The term adaptative is introduced 

here because the weighting coefficients can be changed from one situation to another, making it adaptable for 

each case. 
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