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 A novel approach for multimodal liver image contrast enhancement is put 

forward in this paper. The proposed approach utilizes magnetic resonance 

imaging (MRI) scan of liver as a guide to enhance the structures of computed 

tomography (CT) liver. The enhancement process consists of two phases: The 

first phase is the transformation of MRI and CT modalities to be in the same 

range. Then the histogram of CT liver is adjusted to match the histogram of 

MRI. In the second phase, an adaptive histogram equalization technique is 

presented by splitting the CT histogram into two sub-histograms and replacing 

their cumulative distribution functions with two smooths sigmoid. The 

subjective and objective assessments of experimental results indicated that the 

proposed approach yields better results. In addition, the image contrast is 

effectively enhanced as well as the mean brightness and details are well 

preserved. 
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1. INTRODUCTION 

Image enhancement is widely used to improve image clarity [1]–[3]. Medical imaging modalities, for 

example, includes magnetic resonance imaging (MRI), ultrasound, medical radiation, angiography, and 

computed tomography (CT) scans. There are several scanning techniques aims at visualizing the human body 

for diagnostic and treatment purposes. In addition, these modalities are beneficial for patient follow-up, with 

regards to the progress of the disease state. Medical imaging modalities follow a multidisciplinary approach to 

obtain the correct diagnosis for a specific patient in order to provide a personalized approach to patient care. 

These imaging techniques can be applied as non-invasive techniques to view the inside of the human body 

without any surgical intervention. They can be used to facilitate the diagnosis or treatment of various diseases 

[4]–[6]. The special resolution required to obtain detailed images of various structures of the human body is a 

major practical limitation of modern medical imaging techniques. Although, the speed of image acquisition 

has increased over the past decade, but this does not provide the required sensitivity to express anatomical 

structure and function, which is dose-limited, among other factors. 

Recently, artificial intelligence (AI) based algorithms obtain interesting performance results in 

diagnosing various diseases from medical images, sometimes even surpassing human-level performance. 

Exploring how AI might simplify life for the clinicians while keeping the ultimate responsibility for the 

diagnosis with the human expert may be more valuable in the short term. As AI and medical imaging algorithms 

gradually improve, they will be able to help less experienced users make better decisions, ultimately improving 

the quality of patient care. In addition, image quality can be improved with algorithms such as super-resolution 
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or smart anti-aliasing, which makes ultrasound scans more detailed and easier to read. AI can also enhance the 

efficiency by making ultrasound examinations less painful and more beneficial to the doctor than referral to a 

specialized X-ray ambulance [7]. 

In the field of biomedical imaging and computer diagnostics, the acquisition and analysis of images 

using more than one modality (i.e. multimodal) has been a subject of research for many years, since the various 

modalities include abundant information that can complement each other. As described in one of the 

multimodal imaging projects for brain tumor segmentation [8], each of the modalities can reveal a unique type 

of biological information for tumor-induced tissue changes and pose slightly different information processing 

tasks. Several multimodal imaging techniques, such as the combination of positron emission tomography (PET) 

and CT, have become the standard of clinical practice. Other methods, such as the simultaneous recording of 

functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) [9], are widely used for 

neurobiological research. With the growing volume of multimodal image data and the techniques developed to 

analyze it, one of the main but largely underestimated problems is that most of the techniques described are 

conceptually similar, but only deal with a specific imaging problem and a specific scenario. Any classical 

image fusion method is composed of registration and fusion of features from the registered images [10].  

Liver image enhancement techniques are extremely useful in streamlining the planning and navigation 

phases. These techniques improve visualization of liver and its internal anatomy to help doctors better to 

diagnose the existence of liver tumour and plan intervention accordingly. Moreover, they make subsequent 

image-based navigation tasks, such as registration, feature extraction and segmentation, more robust [11]. CT 

imaging is regarded as the primary tool in diagnosis of various human diseases. However, inferior contrast and 

imprecise visualization are the drawbacks that limit its utility. CT is frequently preferred over other modalities 

owing to its quick acquisition time, better ability to capture bony structures and low cost. Keeping human liver 

into consideration, few structures such as tumours can be better visualized in MR image. While certain vessels 

are clearly manifested in CT.  

Better images can be obtained, if the information from multiple imaging modalities is combined to 

reconstruct an enhanced image. However, there are few published works in the combination of multiple 

modalities in the design of guided contrast enhancement approaches [12]–[16]. Among different contrast 

enhancement approaches, the histogram processing-based approaches get attention [17]–[23]. Multimodality 

guided image enhancement exploits complimentary information from individual modalities to reconstruct a 

new image. This reconstructed image improves visualization of the structures of interest, highlights details 

through establishing reasonable contrast among various areas and enhance fine details of liver anatomy. Pre-

operative liver image enhancement is the focus of this work. In this paper, we propose a technique to enhance 

contrast of liver CT image using its corresponding MR image. The image is processed in spatial domain. The 

impact of our proposed method on the local and global contrast of output image is analysed. Subjective and 

quantitative assessments of the method is performed using different evaluation matrices.  

 

 

2. RESEARCH METHOD 

The main purpose of the presented approach is to enhance the contrast of liver CT to highlight details 

of liver. CT scans of liver often show low contrast. For enhancement, corresponding high contrast regions of 

liver MRI image is employed. The datasets for our experimental is consisting of liver CT and MRI liver as 

DICOM format. The proposed technique has three steps as shown in Figure 1: i) converting CT and MRI 

images to the same range, ii) the histogram of CT liver image is adjusted to match histogram of reference image 

MRI liver, and iii) in adaptive histogram modification approach is utilized to enhance the obtain CT liver after 

adjusting parameters [24]. An adaptive histogram modification approach can be summarized as following: 

Let’s denote X an input image with size MxN having I possible intensity levels. In this paper assumes I=256. 

 

𝑋 =

[
 
 
 

𝑋0,0 𝑋0,1 ⋯ 𝑋0,𝑁−1

𝑋1,0 𝑋1,1 ⋯ 𝑋1,𝑁−1

⋮
𝑋𝑀−1,0

⋮
𝑋𝑀−1,1

⋱
⋯

⋮
𝑋𝑀−1,𝑁−1]

 
 
 

 (1) 

 

Then, let m denote its mean intensity. 

 

𝑚 =
∑ ∑ 𝑋(𝑟,𝑐)𝑁−1

𝑐=0
𝑀−1
𝑟=0

𝑀𝑁
   (2)  

 

Using the mean 𝑚 as a splitting point, we separate the image histogram 𝐻 into two sub histograms 𝐻𝐿  and 𝐻𝑈: 
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𝐻 = 𝐻𝐿 ∪ 𝐻𝑈  (3) 

 

where, 

 

𝐻𝐿 = {𝐻0, 𝐻1, … ,𝐻𝑚} (4) 

 

𝐻𝑈 = {𝐻𝑚+1, 𝐻𝑚+2, … , 𝐻𝐼−1}  (5) 

 

After the splitting, the probability density functions of the two sub histograms are calculated using: 

 

𝑝𝑑𝑓(𝑘) = {

𝐻𝐿(𝑘)

∑ 𝐻𝐿(𝑛)𝑚
𝑛=0

      𝑖𝑓   𝑘 ≤ 𝑚

𝐻𝑈(𝑘)

∑ 𝐻𝑈(𝑛)𝐼−1
𝑛=𝑚+1

   𝑖𝑓    𝑘 > 𝑚
  (6) 

 

where 𝑘 ∈  {0,1, … , 𝐼 − 1} and it represents the intensity level. Then, the time step to calculate the median is 

to calculate the cumulative distribution functions for both sub-histograms, which have been packed into (7). 

 

𝑐𝑑𝑓(𝑘) = {
∑ 𝑝𝑑𝑓(𝑛)𝑘

𝑛=0      𝑖𝑓    𝑘 ≤ 𝑚

∑ 𝑝𝑑𝑓(𝑛)𝑘
𝑛=𝑚+1  𝑖𝑓   𝑘 > 𝑚

  (7) 

 

Then, the medians of 𝐻𝐿  and 𝐻𝑈 denoted by 𝜇𝐿 and 𝜇𝑈, respectively, are computed in (8) and (9) are satisfied. 

 

𝑐𝑑𝑓(𝜇𝐿) = 0.5      𝑖𝑓        𝑘 ≤ 𝑚 (8) 

 

𝑐𝑑𝑓(𝜇𝑈) = 0.5     𝑖𝑓        𝑘 > 𝑚  (9) 

 

 

 
 

Figure 1. Schematic overview of the proposed methodology 

 

 

In this module, two parametric non-linear sigmoid functions are created with their origins located on 

the medians of their corresponding sub-histogram. Their input values 𝑘 one input or k inputs- need to be 

normalized, and for this reason we use (10). Therefore, the resulting range of values will fit in the sigmoid 

desired boundaries and thus, generating 𝑧(𝑘) ∈ [−5,5] 𝛾 ≥ 1. This range is convenient because, in (11), the 

values beyond these limits will be practically 0 or 1 which a parameter 𝛾 ≥ 1. In this Figure 1, we can also get 

some insight of the graphical from the function corresponding to (11). Therefore, the sigmoid functions 

described by (11) will take values inside the ranges [0,𝑚] for 𝑘 ≤ 𝑚 and [𝑚, 𝐼 − 1] for 𝑘 > 𝑚. They have 
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smooth transitions, hence, avoiding severe affectations by peaks on the histogram, and therefore, abrupt 

changes on the cumulative distribution function for each sub-histogram are avoided.  

 

𝑧(𝑘) = {

5(𝑘−𝜇𝐿)

𝑚
  𝑖𝑓        𝑘 ≤ 𝑚

5(𝑘−𝜇𝑈)

𝐼−1−𝑚
  𝑖𝑓        𝑘 > 𝑚

  (10) 

 

𝑠(𝑘) = {

1

1+𝑒−𝛾𝑧(𝑘)    𝑖𝑓    𝑘 ≤ 𝑚

1

1+𝑒−𝛾𝑧(𝑘)    𝑖𝑓    𝑘 > 𝑚
  (11) 

 

Where 𝛾 is a parameter that controls the smoothness of the sigmoid function.  

In our modification scheme, we justify the value of 𝛾 parameter to (0.68) as the adaptive 𝛾 can be 

chosen as: 

 

𝛾 =  
(128−𝜇)

128
  (12)  

 

where 𝜇 is the mean brightness the processed image and for most medical images, their mean brightness is 

around 40, hence, 𝛾 is around 0.68. 

The last module performs mapping through histogram equalization and stretching. To perform 

histogram equalization, we apply (13). 

 

𝑢(𝑘) = {
𝑢𝐿 = 𝐿0 + (𝑚 − 𝐿0)𝑠(𝑘) 𝑖𝑓 𝑘 ≤ 𝑚
𝑢𝑈 = 𝑚 + (𝐿𝑓 − 𝑚)𝑠(𝑘) 𝑖𝑓 𝑘 > 𝑚

  (13)  

 

Where 𝐿0 and 𝐿𝑓 represent the desired lower and upper limits, respectively, for the dynamic range of the output 

image. In this paper 𝐿0 = 0 and 𝐿𝑓 = 𝐼 − 1 are supposed. 

After obtaining the mappings 𝑢, we calculate 𝛼𝐿and 𝛼𝑈 values given by (14) and (15). 

 

𝛼𝐿 =
(𝑚−𝐿0)

max(𝑢𝐿)−𝑚𝑖𝑛(𝑢𝐿)
 , 𝛼𝑈 =

(𝐿𝑓−𝑚)

max(𝑢𝑈)−𝑚𝑖𝑛(𝑢𝑈)
  (14) 

 

 

𝑇(𝑘) = {
𝐿0 + 𝛼𝐿(𝑢𝐿(𝑘) − 𝑚𝑖𝑛(𝑢𝐿)) 𝑖𝑓 𝑘 ≤ 𝑚

𝑚 + 𝛼𝑈(𝑢𝑈(𝑘) − 𝑚𝑖𝑛(𝑢𝑈)) 𝑖𝑓 𝑘 > 𝑚
  (15) 

 

Finally, the mapping function from (14) is applied to each pixel of the image 𝑋, to obtain the enhanced outcome 

𝑌 as shown in (16). 

 

𝑌 = 𝑇(𝑋) (16) 

 

 

3. RESULTS AND DISCUSSION 

In this section, we present experimental results obtained as shown in Figure 2. For best of our 

information, this work is considering the first attempts to apply concept of cross-modality guided quality 

enhancement of liver image. The performance of the proposed method is evaluated in terms of index of quality 

improvement using contrast evaluation measures. We use two well-known measures: no reference image 

quality (NIQE) [25] absolute mean brightness error (AMBE) [26]. These metrics measure different aspects of 

the image such as image quality, contrast, and brightness preservation, respectively. Nonetheless, it is important 

to keep in mind that an image could have several artifacts, like mid-gray accumulations, that may compromise 

the perceptual quality of the image, and still obtain optimum values for these objective measures. Thus, it is 

desirable to complement the objective assessment with a subjective one, to accurately evaluate the algorithms. 

The quantitative measurements are important for further evaluation of the enhancement process. In 

our experimental, we used the most commonly objective evaluation methods like the absolute mean brightness 

error (AMBE) and no reference image quality assessment (NIQE). A low score value indicates high perceptual 

quality. Table 1 indicated the AMBE and NIQE scores of the experimental results. Which shies that bet result 

when 𝛾 = 0.5 which MOS is 4.1. 
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Mean opinion score (MOS) is calculated as the arithmetic mean over single ratings performed by 

human subjects for a given stimulus in a subjective quality evaluation test: 𝑀𝑂𝑆 =  
∑ 𝑅𝑛

𝑁
𝑛=1

𝑁
, where 𝑅 is the 

individual rating matrix for a given stimulus by 𝑁 subjects. Table 2 indicated MOS scores for the experimental 

results which show the best results at 𝛾 = 0.7 of AMBE and at 𝛾 = 0.5 of NIQE. 

 

 

 

𝛾 = 0.2 

 

𝛾 = 0.3 

 

𝛾 = 0.4 

   
   

 

 

𝛾 = 0.5 

 

𝛾 = 0.6 

 

𝛾 = 0.7 

   
 

Figure 2. The experimental results of enhanced Liver CT and its histograms 
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Table 1. AMBE and NIQE of the experimental results 
Observers Ranking [1:5] 

[1: Bad–2: Poor–3: Fair– 4: Good–:Excellent] 

 (a) (b) (c) (d) (e) (f) 

1 3 4 3 4 4 4 

2 4 5 4 5 4 3 

3 4 3 4 4 3 5 
4 4 4 3 5 3 3 

5 4 3 4 4 4 4 

6 3 4 4 4 4 5 
7 3 3 3 3 3 4 

8 4 4 4 5 4 4 

9 4 3 5 4 4 3 
10 3 4 4 3 5 4 

MOS 3.6 3.7 3.8 4.1 3.8 3.9 

 

 

Table 2. MOS for the experimental results  
Images AMBE NIQE 

Original CT Liver - 6.9478 
Enhanced CT liver (𝛾 = 0.2) 30.6951 4.2249 
Enhanced CT liver (𝛾 = 0.3) 29.2592 4.1509 
Enhanced CT liver (𝛾 = 0.4) 28.9220 4.0806 
Enhanced CT liver (𝛾 = 0.5) 27.2368 4.0554 
Enhanced CT liver (𝛾 = 0.6) 26.2744 4.1002 
Enhanced CT liver (𝛾 = 0.7) 21.7649 4.1829 

 

 

4. CONCLUSION 

A multimodality guided enhancement approach of liver is proposed in this paper. The technique 

focuses on contrast improvement of liver CT. In the domain of medical imaging, such multimodality guided 

enhancement techniques have not been proposed to the best of our knowledge. The experimental results show 

that the proposed approach gives better results and highlights fine details of liver CT. Image quality assessment 

and contrast assessment matrix demonstrate its effectiveness. 
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