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 Wireless networks are designed to provide the enabling infrastructure for 

emerging technological advancements. The main characteristics of wireless 

networks are: Mobility, power constraints, high packet loss, and lower 

bandwidth. Nodes’ mobility is a crucial consideration for wireless networks, 

as nodes are moving all the time, and this may result in loss of connectivity 

in the network. The goal of this work is to explore the effect of replacing the 

generally held assumption of symmetric radii for wireless networks with 

asymmetric radii. This replacement may have a direct impact on the 

connectivity, throughput, and collision avoidance mechanism of mobile 

networks. The proposed replacement may also impact other mobile 

protocol’s functionality. In this work, we are mainly concerned with building 

and maintaining fully connected wireless network with the asymmetric 

assumption. For this extent, we propose to study the effect of the asymmetric 

links assumption on the network performance using extensive simulation 

experiments. Extensive simulation experiments were performed to measure 

the impact of these parameters. Finally, a resource allocation scheme for 

wireless networks is proposed for the dual rate scenario. The performance of 

the proposed framework is evaluated using simulation. 
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1. INTRODUCTION 

The vast growth in the deployment and popularity of wireless and mobile networks attracted the 

attention of researches toward evaluating and enhancing the performance of the mobile and wireless 

networks’ protocols [1], [2]. One development direction adopted by some researchers was to apply and 

implement the protocols used by wired networks in the wireless domain. While designing any protocol or 

standard for mobile networks, one must consider several key differences that exist between wireless networks 

and wired networks [3]. The main characteristics of wireless networks are: i) mobility: although wireless 

does not constitute mobility by default, however, the main gain of the wireless technologies is to provide 

mobility to the users. It is unrealistic to design a wireless network that is not mobile. Therefore, in this paper, 

we assume the two terms are associated with each other; ii) power constraints: devices are typically battery 

operated, hence power resources are scarce. Moreover, due to health and regulations concerns, devices 

maximum transmission powers are set to a certain limit; iii) high packet loss: Wireless environments are 

noisy and suffer from many losses due to various reasons such as fading, attenuations, and multipath 

propagations; and iv) lower bandwidth: The available bandwidth to the wireless networks is typically lower 

than the available bandwidth to wired networks such as fiber optics networks. 

https://creativecommons.org/licenses/by-sa/4.0/
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 Mobility of the network is a crucial part. This is because nodes are constantly moving, and this may 

result in loss of connectivity in the network. While the node is moving, it is possible that it might lose a link 

with its neighbor(s) and gain new link(s) with other node(s). These dynamics, and in some cases, fast changes 

in the network configuration/topology might lead to a disconnected network where one or more nodes cannot 

access other nodes. And it is possible that in some cases the network will become connected again after a 

while. In order to carry out transmission and reception between two nodes in a wireless network, the 

transmitter and receiver must be within the same range. In addition to environmental factors, the power level 

at the transmitter and receiver stations influences these two ranges, respectively. Each station has a limited 

power for transmitting and receiving signals. Due to the limitations of wireless medium, mobile networks 

suffer from high packet loss and lower bandwidth constraints. Several standards have been proposed for 

wireless networks. For example, the IEEE 802.11 standard is used to describe the physical and medium 

access control (MAC) layers of WLAN. The functionality of the MAC layer is described by the distributed 

coordination function (DCF) [3].  

 A key difference between the wired and the wireless domains is apparent in the collision 

management policy. The core difference between CSMA/CA (the policy adopted in the wired domain) and 

the CSMA/CD (the policy adopted in the wireless domain) is that CSMA/CA tries to avoid collisions before 

transmission by means of collision detection. However, the detection component is not practical in the 

wireless domain, hence it adopted the collision avoidance policy. In CSMA/CA, each node listens for 

ongoing transmissions before it starts transmitting. Furthermore, each node is free to transmit when it has 

data to send. The collision avoidance mechanism is enforced through the RTS/CTS scheme. The RTS/CTS 

mechanism is a simple and easy to implement protocol, however, it misses on many possible non-interfering 

concurrent transmissions between other nodes in the network. Due to power constraints, each node in a 

mobile network has a limited transmitting and sensing (receiving) radius. The transmission radius is the range 

in which the node can send messages to another node within this range. On the other hand, the sensing radius 

is the range within which a node can sense (hear) transmission from other nodes. Most research done for 

mobile networks assumes that the transmitting and the sensing range for each station are the same. But what 

if they are not?. 

The first question to address is whether a station can have different transmitting and sensing radii?. 

The answer is yes. In some cases, the station is required to reduce its transmitting power for many reasons. 

For example, in case of the Bluetooth technology [4], the maximum number of stations allowed per a picocell 

is 7 stations. If a cell contains more than 7 stations, each station starts reducing its transmitting power in 

order to limit the cell size to 7. Another example for reduction of transmitting radius is to control the 

interference level experienced by all nodes so that the network can guarantee a certain level of quality of 

service (QoS). QoS is highly influenced by the power-noise ratio (i.e., interference level). 

Once a node transmits a signal, the radio wave propagates in the air. The signal strength is subject to 

several limiting factors due to reflection, diffraction, and scattering of the propagated signal [5]. Therefore, 

the received signal’s power by the receiving node is typically lower the transmitted signal’s power. The 

difference between the received power and the transmitted power is referred to as path loss (PL). The most 

common model for estimating path loss in open spaces (i.e., line of sight) is Friss free space model [5]. In 

Friss model, the received power (Pr) is estimated as (1): 

 

𝑃𝑟(𝑑) =
𝑃𝑡𝐺𝑟𝐺𝑡𝜆2

(4𝜋𝑑)2𝐿
        (1) 

 

where, d is the distance between the receiver and the transmitter, Pt is the power of transmitted signal, Gr is 

the receiver’s antenna gain, Gt is the transmitter’s antenna gain, λ is the wavelength, and L is the loss factor. 

It is used to measure the loss due to hardware imperfections and is typically set to 1. d and λ are measured in 

meters, and Pt , Gt, and Gr are measured in db. Now, we can use (1) to compute the path loss [5]: 

 

𝑃𝐿(𝑑𝑏) = 10 log10
𝑃𝑟

𝑃𝑡
= 10 log10

𝐺𝑟𝐺𝑡𝜆2

(4𝜋𝑑)2𝐿
      (2) 

 

From (1) and (2), the amount of signal degradation depends on several factors: antennas, wavelength 

(i.e., frequency), and the distance. In top of these factors, there are other factors that may affect the quality of 

the transmitted signals such as surrounding environment (e.g., rain, and fog), number of objects, and number 

of active nodes transmitting using the same frequency or even different frequencies. Due to this complex and 

variable nature of effecting factors, it is hard to predict the path loss, though there exist many empirical and 

theoretical path loss prediction models such as log shadow model. Even more, it might be unrealistic to 

assume that both nodes have the same transmission and sensing radii, as each node exhibits slightly different 
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conditions. Moreover, predicting or measuring the quality of the wireless signals is even more challenging in 

extreme surroundings such as wireless underground sensor network (WUSN) [6]. The relationship between 

distance and transmission power is examined in [7] for wireless mesh network (WMN), in which nodes can 

be either mobile or stationary. In this work, we examine this relationship in all mobile networks. 

The goal of this work is to study the effect of replacing the generally held assumption of symmetric 

radii for mobile networks with asymmetric radii. This replacement may have a direct impact on the 

connectivity, throughput and collision avoidance mechanism of mobile networks. The proposed replacement 

may also impact other mobile protocol’s functionality. In this work, we are primarily concerned with 

connectivity issues with the asymmetric assumption. Finally, a resource allocation mechanism is proposed to 

provide a fair sharing mechanism among all active nodes. In this mechanism, the resources allocation 

problem is formulated as a scheduling problem, then, a heuristic dual-rate algorithm is proposed to maximize 

the system’s throughput while serving a maximal number of users. 

The rest of this paper is organized as follows: Section 2 highlights the main findings in the literature. 

Section 3 presents the study methodology in evaluating the effect of the symmetric assumption. Section 4 

presents the simulation setup. The results are discussed in section 5. Dual-rate resource allocation framework 

is presented in section 6 along with some preliminary results. Finally, the paper is concluded in section 7. 

 

 

2. LITERATURE SURVEY 

Symmetric and asymmetric transmission systems were assumed in [8]. The main goal of the work in 

[8] is to have “good” routes from all nodes to the sink node. The authors try to use any symmetric and/or 

asymmetric links between nodes to construct routing tree. The motivation of their work is that many previous 

good algorithms only use the symmetric links in constructing the routing tree, however, the real wireless 

network contains many asymmetric links and avoiding them in constructing the routing tree would miss 

many possible good routes. Moreover, the main goal in wireless sensor network is to have one direction 

routes to pass the packets to the sink nodes, thus the assumption of using asymmetric links is valid. This 

approach was named reliable collection protocol for aggregating data packets (RECPE). The performance of 

the RECPE approach was tested using the TOSSIM simulator. The obtained results show that the RECPE 

approach achieved substantial performance gain in terms of latency, delivery cost, and packet loss ratio 

against the collection tree protocol that uses expected transmission count (ETX) as the routing metric. 

RECPE achieves better performance when more links are asymmetric as motivated by the approach.  

The testbed deployed in [9] found that substantial percentage of links in wireless sensor network is 

asymmetric and many of them are even unidirectional. The authors proposed a new one-way link metric 

expected number of transmissions over forward links (ETF). The authors compared ETF against expected 

transmission count in high fidelity testbed (on different platforms) and showed that exploiting asymmetric 

links (via ETF) significantly improves the performance. The authors suggest that their approach can be 

further used in other wireless environments rather than just WSNs such as wireless mesh networks in general 

as the assumptions used in their derivation holds.  

Symmetric wireless transmission links were assumed in [10]. The authors study the critical 

transmission radius in wireless ad-hoc networks where k-connectivity topology is assumed. The goal was to 

provide asymptotic distribution of the critical transmission radius in such topologies. In addition, the authors 

provide a critical neighbor number upper bound estimation. The results can be used in developing different 

protocols and algorithms in wireless networks where the topology assumptions hold. A symmetric 

transmission range was assumed and studied in [11] to develop estimation for the best number of cluster 

heads in wireless sensor networks. The authors determined the number of relay nodes and the energy 

consumption in the Intra- and Inter-cluster operations. By quantifying the energy consumption, the authors 

determine the optimal size of a local cluster for a given number of cluster heads which aids to determine the 

optimal number of cluster heads.  

Raza et al. [12] proposed a relay selection scheme for cooperative wireless networks based on both 

link’s weight and link’s quality. The proposed scheme considered both symmetric and asymmetric links. 

While the work in [13] sheds the light on the importance of differentiating between the communication in 2 

directions (the asymmetric assumption) and how it may affect the network performance. The work in [14] 

investigated the effect of common assumptions (axioms) used by researchers in the ad-hoc networks 

simulation studies. It questioned the validity of these assumptions and its relevance to the real world. It 

examined the following key axioms: the world is flat, a radio’s transmission area is circular, all radios have 

equal range, if I can hear you, and you can hear me (symmetry), if I can hear you at all, I can hear you 

perfectly, and signal strength is a simple function of distance. The authors challenged all these assumption in 

the real world and proved that they don't hold all the time and there is a need to examine the effect of these 

assumptions on the performance of ad-hoc networks as well as develop new tools to account for these 

findings.  



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 1, February 2022: 605-619 

608 

Salahat et al. in [15] discussed the asymmetric assumption in wireless networks and the main causes 

of the asymmetry in wireless channels. Using empirical study, the authors proved the importance of the 

asymmetric assumption for both line of sight (LOS) and none line of sight (NLOS) environments. The 

symmetric assumption was also investigated in [16] for wireless underground sensor networks (WUSN) that 

use soil as the communication medium, empirical results revealed that the asymmetric assumption holds for 

the cases of aboveground-to-underground links and for the underground-to-underground links. 

Additionally, many studies have been conducted to investigate the optimal value for the transmitting 

radius of a mobile node. Theoretically, it has been established that in order to achieve a good performance in 

a mobile environment, the transmitting radius should cover a region with 6 neighbors [17], [18]. The choice 

of an optimal transmitting radius is affected by several objectives that must also be achieved. The objectives 

to be met are as follows: Minimizing interference level, minimizing delay in the network, maximizing 

throughput, utilizing the available power level efficiently, and increasing connectivity 

A tradeoff must be achieved between the optimal transmitting radius and these objectives. Thus, the 

value of the transmitting radius can be defined as a function that considers all these factors. To our 

knowledge, most of the works in the literature considered the potential benefits/limitations of the asymmetric 

links and designed protocols to exploit these characteristics, no work was done to fully investigate its effect 

on the network performance as proposed in this work. In this work, we are concerned with the assumption of 

asymmetric links that may affect mobile network connectivity. 

The resource allocation problem in wireless domain is investigated on [19], in which the authors 

proposed a 2-stage linear probabilistic solution for a network powered by and edge computing unit. The 

authored derived a sub-optimal sampling solution as the original problem is a continuous one. The proposed 

solution managed to increase the system throughput by distributing the available resources (i.e., bandwidth, 

power and channels) among the users. Recently, the use of advanced artificial intelligence approaches (such 

as deep reinforcement learning) to tackle the resource allocation problem in the wireless domain is apparent 

[20], [21]. However, these techniques require substantial computations and may not be suitable for all 

wireless networks’ applications/types. 

The buffer link capacity issues and challenges are discussed in [22], the work in [22] identifies the 

main issues related to buffer size in wireless networks and how it can impact the performance of the network, 

it identifies link scheduling, adaptive link rates, frame aggregation, variable packet inter-service time, and 

multihopping as the key challenges for buffer management in wireless domains. The work then suggests 

some possible alternative to overcome these challenges: single hope solutions, multi-hope solutions and 

Active queue management. Our work, provide an extensive simulation experiments to highlight the impact of 

buffer size and capacity on the performance of the wireless networks. 

 

 

3. METHOD 

3.1.  Symmetric vs asymmetric system model 

To investigate the effect of the symmetric assumption on the network performance and connectivity, 

we conducted extensive simulation experiments under various scenarios. An event-based simulator was built 

using C++ to study the effect of asymmetric links over network connectivity. It simulates a scenario with 

mobile nodes in a rectangular plane of 1500x300 m, with each node having different transmission/sensing 

ranges. The mobility model of the nodes in the simulation is based on the ‘random waypoint’ model [23]. 

Mobile nodes are located at random coordinates in the rectangular area. According to the ‘random waypoint’ 

model, nodes are initially in the pause state. The pause time for each node is generated based on an 

exponential distribution function with various means. Once the pause time for a node has expired, the node is 

picked for movement to a new randomly generated location. The node moves towards its destination with a 

speed generated based on a uniform distribution. On reaching the destination, the nodes pause again and 

repeats the above procedure till the end of the simulation. 

During movement, a node can enter the transmitting or receiving radii of other nodes. At this time, a 

connection is established between the concerned nodes. Similarly, nodes that previously had formed links 

with other nodes may now leave the transmitting/receiving radii of these nodes resulting in a loss of 

connection. Figure 1 shows a communication scenario between two nodes with different transmission and 

sensing radii. 

In the case of an add link or remove link event, a graph connectivity check is performed using the 

breadth first search (BFS) algorithm [24]. The number of neighbors for each node is also calculated (this 

information is used later to compute the average number of neighbors). The following parameters and factors 

were assumed in our simulation: 

 Rectangular area of 1500 m by 300 m for the random waypoint mobility model 

 The speed of the nodes is generated based on a uniform distribution in the range 2 m/s and 20 m/s 
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 The total simulation time is set at 1,000,000 seconds 

 Number of nodes is chosen from 5, 10, 20 or 50 

 All mobile nodes pause for a time based on an exponential distribution with means 0, 10 and 20 seconds 

 The transmitting and sensing radii were varied for three different sets of experiments as shown in Table 1. 

 

 

 
 

Figure 1. Representation of the transmitting and sensing graphs under asymmetric links 

 

 

Table 1. Sets of radii for different experiments 
 Transmission radius Sensing radius 

Symmetric {20, 50, 80, 150, 300, 500} {20, 50, 80, 150, 300, 500} 

Symmetric with mean {20, 50, 80, 150, 300, 500} {20, 50, 80, 150, 300, 500} 

Asymmetric {20, 50, 80, 150, 300, 500} {100, 200, 300, 400, 500} 

 

 

This paper examines the effect of asymmetric links over connectivity. One of the performance 

metrics used to evaluate this effect is the probability of the network connectivity. The second metric of 

concern is the average number of nodes in the neighborhood of each mobile node’s sensing radius. This can 

be viewed as the cost for maintaining the same level of connectivity. In the case of the first metric, we are 

trying to measure how long the network stays connected. The probability of connectivity is the time of the 

network being connected over the total simulation run time. Traditionally, researchers have held the view that 

nodes have symmetric radii (i.e., similar transmission and sensing radii). However, mobile nodes can have 

different radii. In this case, we expect that connectivity of the network is not affected since connectivity is 

primarily established due to the transmitting radius even though the definition of connectivity says that a 

network is connected if a node can send and receive from all other nodes (sensing radius is larger than 

transmitting radius). If a node can sense other nodes but cannot transmit to them, the graph is not connected 

by default. As a result, increasing the sensing radius (asymmetric case), will not affect connectivity. 

 

𝑃𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑇𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒
𝑥100% 

 

The second metric is described by how many nodes the focal node can sense on average. As 

described in the last paragraph, we expect that connectivity is not affected due to increasing sensing radius. 

However, increased sensing radius will increase the number of nodes a particular node can sense. This may 

also affect the collision avoidance mechanism, for example the RTS/CTS method. For node i, 

 

𝐴𝑣𝑔𝑁𝑜𝑑𝑒𝑠
𝑖 =

∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

𝑛
 

 

In the asymmetric case, we expect to keep the same level of connectivity but expect the performance 

or efficiency of individual nodes to degrade. With increased sensing radius in the asymmetric case, the cost 

endured by each node to maintain the same level of connectivity becomes larger due to the number of nodes 

being sensed. In this case, individual nodes have to compete with a larger number of nodes for transmission. 

In general, the system throughput will remain the same. For verification purposes, several tests were 

performed to ensure that the simulation model is correctly implemented. The simulation model was 
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implemented using a top-down modular design approach. Antibugging was applied to test the program for 

errors by inserting additional checks and outputs in the program. The graph data structures were analyzed to 

ensure that the correct entries were being made. Similarly, the heap was traced for proper event execution.  

A trace was carried out with a list of a time ordered events and associated variables. In particular, the 

movement of nodes was traced through the system. A timeline was prepared manually and the nodes 

behavior in the system was compared against this timeline. Several input parameters were tested as a part of 

the continuity test. A degeneracy test was done to verify the implementation of the model by providing 

extreme values for workload parameters. 

 

 

4. SYMMETRIC VS ASYMMETRIC LINKS RESULTS AND DISCUSSION 

This section presents and discusses the obtained results. In this scenario, both the transmitting and 

sensing radii have the same values for all nodes. The symmetric link assumption is then extended with the 

transmitting radius being generated based on a mean. Here, the mean of the transmitting radius is the same as 

the sensing radius. All nodes thus have the same sensing radii but have different transmitting radii. Finally, 

we also present the results for the asymmetric link case. All nodes have the same sensing radii but have 

different transmitting radii. Furthermore, the transmitting radii are different from the sensing radii. 

 

4.1.  Symmetric link results 

Figure 2 depicts the effect of increasing the number of mobile nodes over average number of nodes 

and connectivity for the symmetric link assumption. Figure 2(a) depicts the average number of nodes for 

mean pause time 0 and number of nodes 5, 10, 20 and 50. Figure 2(b) depicts the same results for the 

probability of connectivity. Both the graphs show results for the symmetric case with various radii values 

(20, 50, 80, 150, 300 and 500, same for transmission and sensing). By default, with an increase in the 

transmitting/sensing radii, the average number of nodes for a particular node will increase. Similarly, with an 

increase in the total number of nodes in the mobile plane, the average number of nodes for a node also 

increases. At a transmitting/sensing radius of 300 m, the average number of nodes seems to stabilize. 

 

 

  
(a) (b) 

 

Figure 2. Effect of increasing number of nodes over: (a) average number of nodes, (b) probability of 

connectivity in the symmetric case 

 

 

Furthermore, with an increase in the number of nodes in the symmetric case, we can observe that the 

connectivity also increases. In the case of 50 nodes, the connectivity reaches 99%. Furthermore, with the 

increase in transmission radius (symmetric), the probability of connectivity also increases. When the 

transmission radius is in the range of approximately 50 to 150 meters, the connectivity increases significantly 

(~20% to ~90%). Below a transmitting radius of 50 meters, the coverage for each node is small and fewer 

nodes can communicate with each other resulting in low connectivity. After 150 meters, there is no 

significant improvement in connectivity as a path to every other node can be easily established. This behavior 

is clearer in the case of a larger number of nodes (e.g., 20 and 50 nodes). These observations were recorded 

for pause time of 0 seconds. The same behavior was noted for pause times of 10 and 20 seconds. 

 

4.2.  Extended symmetric link results 

Figure 3 presents the effect of increasing number of mobile nodes over average number of nodes and 

connectivity for the extended symmetric link assumption. Figure 3(a) depicts the average number of nodes 

for mean pause time 0 and number of nodes 5, 10, 20 and 50. Figure 3(b) depicts the same results for the 
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probability of connectivity. Both the graphs show results for the extended symmetric case with various radii 

values (20, 50, 80, 150, 300 and 500, same for transmission and sensing). The results for the extended 

symmetric case are identical to the symmetric case. A simple comparison between Figures 2 and 3 shows that 

there are slightly minimal differences between the results for the symmetric and the extended symmetric 

cases. 

 

 

  
(a) (b) 

 

Figure 3. Effect of increasing number of nodes over: (a) average number of nodes, (b) probability of 

connectivity in the extended symmetric case 

 

 

4.2.  Asymmetric link results 

Figure 4 presents the effect of increasing number of mobile nodes over connectivity for the 

asymmetric case. The graph shows three sets of lines for different number of nodes (first set of lines for 5 

nodes, second set of lines for 10 nodes and last set of lines for 20 nodes). All graphs are for pause time of 0. 

The transmission radius is different from the sensing radius for each node. Traditionally, the sensing radius is 

larger than the transmission radius. Figure 4 however shows certain scenarios where the transmission radius 

is larger (e.g., transmission radius = 500 and sensing radius = 100). Figure 4 shows the results for the 

asymmetric link assumption. In particular, Figure 4 describes the effect of increasing number of nodes over 

the probability of connectivity in the network. Three major conclusions can be drawn from Figure 4: 

 An increasing number of nodes lead to increased connectivity 

 Increased transmitting radius also results in increased connectivity 

 Increased sensing radius does not have a significant impact on connectivity. 

It also has cases where the transmitting radius is larger than the sensing radius. In these scenarios, 

the behavior of connectivity is similar to the traditional approach. With 20 nodes and a transmitting radius 

between 50 m and 150 m, there is a significant increase in connectivity. Above 150 m connectivity stabilizes. 

The reasons for this have been discussed already. Figure 5 shows the effect of increasing number of mobile 

nodes over average number of neighbors for the asymmetric case. The graph is split into three column 

graphs. (First set of columns for 5 nodes, second set of columns for 10 nodes and last set of columns for  

20 nodes). All graphs are for pause time 0. The transmission radius is different from the sensing radius for 

each node. Figure 5 shows certain scenarios where the transmission radius is larger than the sensing radius 

(e.g., transmission radius = 500 and sensing radius = 100). Figure 5 shows the effect of increasing number of 

nodes over the average number of neighbors for each node in the asymmetric case. Three major conclusions 

can also be drawn from Figure 5: 

 Increasing number of nodes lead to increased average neighbors 

 Increased sensing radius results in increased average neighbors 

 Increased transmitting radius has a tiny impact and causes average neighbors to go down. 

At the start of the simulation, we predicted that the transmitting radius would have no impact on 

average neighbors however the results show a tiny decrease with increasing transmitting radius. Figure 6 

presents the effect of increasing sensing radius over the probability of connectivity for the asymmetric case. 

The pause time is set at 0 and the number of nodes is 20. Based on the results from Figure 6, the sensing 

radius does not influence the connectivity. Figure 7 shows the probability of connectivity in the symmetric, 

extended symmetric and asymmetric case with pause time 0. The number of nodes is chosen to be 20. The 

effect of increasing sensing radius over the probability of connectivity for the asymmetric case is shown in 

Figure 6. This Figure supports our observation that sensing radius has a minimal impact on connectivity. 
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Figure 4. Effect of increasing number of nodes over the probability of connectivity-asymmetric case 

 

 

 
 

Figure 5. Effect of increasing number of nodes over the average number of neighbors in the asymmetric case 

 

 

Figure 7 displays the results for the probability of connectivity in the three cases: symmetric links, 

extended symmetric links and asymmetric links. This figure shows that between the range of 50 m and 150 m 

for the transmission radius (in all three cases), the connectivity experiences a sharp increase. After that point, 

connectivity tends to be more stabilized. A small increase is observed between 20 m and 50 m. This figure 

also shows that the behavior of the three cases is similar in terms of connectivity. To review, in the 

asymmetric link assumption, connectivity is only affected by the transmission radius. This is also the case 

with the symmetric and extended symmetric cases. This behavior is consistent for various numbers of mobile 

nodes. 

 

 

  
 

Figure 6. Effect of increasing sensing radius over 

connectivity in the asymmetric case 

 

Figure 7. Probability of connectivity in the three cases 

 

 

Figure 8 presents the effect of increasing sensing and transmitting radii over the average number of 

nodes for the asymmetric case. The pause time is 0 and number of nodes is 20. Figure 8 shows the effect of 
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increasing the sensing and transmitting radii for mobile nodes over the average number of neighbors for each 

node in the network for the asymmetric case. This figure supports our observation from the previous sections, 

i.e., transmission radius has very small effect on the average number of neighbors. Sensing radius on the 

other hand has a large impact as expected. Figure 9 shows the average number of neighbors in the symmetric, 

extended symmetric and asymmetric case with pause time 0. The number of nodes is chosen to be 20. 

Figure 9 displays the results for the average number of neighbors for each node in the three cases: 

symmetric links, extended symmetric links and asymmetric links. The figure shows that the symmetric and 

extended symmetric cases behave similarly. Alternatively, in the case of asymmetric links, increasing sensing 

radius results in a larger average number of neighbors for each node in comparison with the symmetric and 

extended symmetric cases. We were expecting the values for the three cases to be similar. However, the 

figure shows that the asymmetric case is a little different than the other two cases. We believe that the effect 

of transmitting radius on average neighbors as shown in Figures 5 and 8 can explain these results. 

 

 

  
 

Figure 8. Effect of increasing Tr and Ts over average 

number of nodes in the asymmetric case 

 

Figure 9. Average number of neighbors in the three 

cases 

 

 

4.3.  Effect of mobility results 

Figure 10 presents the effect of varying mean pause time over average number of nodes and 

connectivity. Figure 10(a) depicts the average number of nodes for mean pause time 0, 10, and 20.  

Figure 10(b) depicts the results for the probability of connectivity for different pause times. Both the graphs 

show results for the symmetric and extended symmetric cases with various radii values (first set of lines for 

symmetric and second set of lines for extended symmetric). Figures 10(a) and 10(b) show that the pause time 

has a minimal effect on both the average number of nodes and connectivity. Based on this fact, we have 

shown graphs for pause time 0 alone. We performed analysis for other pause times as well but observed that 

the results are identical. Therefore, only results for pause time 0 have been included in this report. 

Figure 11 depicts the effect of varying pause time over average number of nodes and connectivity in 

the asymmetric case. Figure 11(a) depicts the average number of nodes for mean pause time 0, 10, and 20. 

Figure 11(b) depicts the results for the probability of connectivity for different pause times. The first area 

coverage is for pause time 0, the second for pause time 10 and the third for pause time 20 in both graphs. 

This figure also shows that pause time has a minimal effect on both the average number of nodes and 

connectivity. 

 

4.4.  Symmetric versus asymmetric links results 

Here, we present and discuss the results for the average number of neighbors and connectivity for 

both the symmetric and asymmetric cases in. Pause time is set to 0 and number of nodes is set to 20.  

Tr represents the transmission radius and Sr represents the sensing radius. In the asymmetric case, for each 

transmitting radius (e.g. 20), there are 5 values for sensing radius corresponding to 100, 200, 300, 400 and 

500 meters. On the other hand, each value for transmitting radius corresponds to one value for sensing radius 

in the symmetric case. Intuition suggests that the sensing radius is larger than the transmitting radius. Hence, 

we are concerned about values where this condition holds. Obtained results show that to achieve the same 

level of connectivity for the asymmetric case as in the symmetric case, the average number of neighbors has 

increased in the asymmetric case. For example, we can observe that for transmitting radius of 150 m, the 

average number of neighbors in the symmetric case is 6.8. In case of asymmetric, we have the same level of 

connectivity but the average numbers of nodes are increased and go up to 9.5 with sensing radius of 500 m. 
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(a) 

 

 
(b) 

 

Figure 10. Effect of pause time over: (a) average number of nodes, (b) probability of connectivity in the 

symmetric and extended symmetric cases 

 

 

 
(a) 

 

 
(b) 

 

Figure 11. Effect of pause time over: (a) average number of nodes, (b) probability of connectivity 
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4.5.  Effect of environmental factors 

In this part, we investigate the effect of varying the environmental factors on the results for both 

cases of symmetric and asymmetric assumptions (the case of extended symmetric have a similar performance 

as the symmetric case). The environmental factors are enormous to be considered individually, hence, we 

study the aggregate effect of these factors by varying the signal noise ratio (SNR) to reflect the quality of the 

surrounding environment. High SNR value indicates a less hostile environment. For this, we examine two 

cases: harsh and soft settings. Figures 12-15 depict the results of both average number of neighbors and 

connection probability for the soft and harsh environments. The results are depicted for the symmetric and 

the asymmetric cases. It is clear that the results for the soft environment scenario are much better than the 

results for the harsh environment scenario. As the transmission radius increases the two indicators increase in 

both scenarios. 

 

 

  
 

Figure 12. Average number of neighbors-soft 

environment 

 

Figure 13. Connection probability-soft environment 

 

 

  
 

Figure 14. Average # of neighbors-harsh 

environment 

 

Figure 15. Connection probability-soft environment 

 

 

5. RESOURCE ALLOCATION MECHANISM 

The resource allocation problem in wireless networks can be viewed as a scheduling problem with n 

jobs, each job has a release date ri, processing time pi, weight wi and deadline di. with C identical machines. 

Assume the set of jobs is represented by unidirectional graph G(V, E). Graph G is an interval graph. Each job 

ji is mapped to a vertex vi in the set V. ji is described by the start time ai and the completion time bi. Both ai 

and bi represent the two end points of interval Ii. Two vertices are said to be adjacent if and only if the 

intersection by the corresponding intervals is not null. In this work, we propose an exact and efficient 

algorithm for both one and two channels problem with the assumptions of fixed rate and delay guarantee. The 

system supports all users with one of 2 fixed rates. In this framework, each connection can be assigned one of 

two rates: low rates (R1) or high rate (R2), such that R1≤R2≤2R1 (i.e., at any time slot the system can either 

serve one R2 user or two R1 users). The system capacity is C channels, here we differentiate between 2 cases: 

 Case 1: 𝑅1 > 𝑅2 =  
𝑅2

2
 

In this case, the problem can be reduced to the single rate problem by combining two overlapping 

R1s connections into one R1 connection using the following procedure: 
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a. For all R1 connections 

1) If connection i overlaps with connection j then 

2) newW[i,j] =w(i) +w(j) 

b. While newW is not empty 

1) max = max(newW[i,j]) 

2) Create a new connection from connections i and j with release time rnew=min(ri,rj), deadline 

dnew=max(di,dj), and weight wnew=w(i) +w(j) 

3) delete newW[i,j], newW[*,i], newW[i,*], newW[*,j], and newW[j,*]. 

We propose a 2-channel packing algorithm that accepts either one R1 connection or two R2 connections by 

packing them together repeated 
𝐶

2
 times only. Here is the algorithm: 

 

Packing algorithm for Case 1 

While there are unprocessed connections 

I = next instant to be processed (I∈Ji). 
If an instant of connection Ji have been accepted, then  

     reject I  

Define W as the sum weights of the overlapping 

instances with instant I. 

If I∈R1 then  
     pack two R1 instances together 

Define the set 𝐼 as the set of all overlapping 

instances of type R1 with I. 𝐼={I1,...,Ih}. 
Define max=maximum(w(I)+w(Ii)) 

If max > W.β then  

      accept both I and Ii  

Else  

      reject 

If I ∈ R2 and w(I)> W.β then 
      accept 

Else  

      reject 

 

 Case 2: 𝑅1 > 𝑅2 >  
𝑅2

2
 

For now, and for simplicity purposes we assume that each system channel is either equal to R1 or 

R2. In case of it is equal to R1 we propose a two-channel packing/scheduling algorithm. Here, we consider 

connections delay by creating different instances for each connection such that each connection instant starts 

at time t ≥ ri and ends before time t ≤ di. At most, one instant of each connection can be scheduled. Now, we 

propose a greedy algorithm for the dual rate scheduling problem. This algorithm scans all connections from 

left to right in the timeline (i.e., scans the connections with earlier release date first). The algorithm decided 

whether to accept or reject an instant. Some accepted connections might get rejected at later stage. As we 

mentioned before, only one instant of each connection can be accepted. In this case, the use of repetitive 

method for the multiprocessor case may not result in the maximum weight. This is due to the fact that the two 

rates are different and R1 cannot be reduced to R2 as described in the previous case. We devise the following 

integer linear program for the dual rate problem. Recall, each connection is described by (ri, pi, di, wi, ci), 

where ci is the connection rate measured in KB. The system total capacity at each time slot is C and is 

measured by KBs as well. Define the variable xi,t as the number of KB assigned for user i at time t. Time is 

slotted. Assume that the users’ weights are integer values. 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑤𝑖𝑥𝑖𝑡

𝑑𝑖

𝑡=𝑟𝑖

𝑛

𝑖=1

 

 

Subject to: 

For each time slot, ∑ ∑ 𝑥𝑖𝑡
𝑡+1
𝑡

𝑛
𝑖=1 ≤ 𝐶 

For each connection, ∑ 𝑥𝑖𝑡 = 𝑝𝑖𝑐𝑖
𝑑𝑖
𝑡=𝑟𝑖  

For each connection, 0 ≤ 𝑥𝑖𝑡 ≤ 𝑐𝑖 

 

Now, we propose the following algorithm for the dual-rate case. This algorithm runs only for one 

time and tries to maximize both total connections weight and total use of system’s capacity at each time slot. 

Find-maximum-weight-rate procedure is a greedy one that finds the maximum weight for a given subset of 

connections taking into account the capacity constraints. 
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Dual-rate Algorithm 
While there are unprocessed connections 

    I = next instant to be processed 

(I∈Ji) 
    If an instant of connection Ji have 

been accepted then  

         reject I 

Define the set 𝐼 as the set of all 

overlapping instances of I (i.e., 

𝐼={I1,...,Ih}). 
    If (capacity) then  

          accept 

    Else  

         Find-maximum-weight-rate such 

that ∑ 𝑐𝑖 ≤ 𝐶𝑛
𝑖=1  

 

Find-maximum-weight-rate 

While (capacity-constraint) 

    Remove instant Ik that has the smallest 

weight from the set 𝐼.   

    Compute 𝑊 =  ∑ 𝑤(𝐼𝑖) for each i in the set 𝐼. 
    If w(I)> β.W then  

           Accept I and all instances in 𝐼. 
    Else  

           Reject 

 

 

6. SIMULATION AND RESULTS 
The performance the proposed resource allocation framework is evaluated using simulation, only 

preliminary results are reported here, a complete analysis of its performance will be conducted in the future 

work. Resent the simulation environment and obtained results. It is compared again the performance of an 

early random rejection (ERE) scheme and Genetic algorithm-based scheme [25]. In ERE, connections are 

accepted up to a certain threshold (Thmax), once the threshold is reached, new connections are rejected. The 

system capacity (C) is set to 200. Network load is expressed by Erlangs, in which Erlang (E) is an expression 

of both connections arrival rate (λ), and the average connection time (m) such that E=λm. 

To select the best threshold value for the ERE scheme, we conducted several experiments with 

different Thmax values for the case of 100 Erlangs. The maximal threshold value was achieved at 80%. The 

remaining results for the ERE scheme was obtained at this threshold value. To measure the performance of 

these 3 schemes, the network effective throughput and the percentage of successful connections, as well as 

the delay were used as metrics. Figures 16 to 18 depict these results for these schemes, respectively. We note 

that the proposed scheme outperformed both ERE and genetic schemes at higher network’s loads in terms of 

throughput and percentage of completed connections and a comparable performance in terms of delay. 

 

 

  
 

Figure 16. Effective throughput results 

 

Figure 17. Successfully served connections 

 

 

 
 

Figure 18. Normalized delay 
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7. CONCLUSION 

Researchers have traditionally held the opinion that mobile networks are symmetric in nature, i.e., 

mobile nodes have the same transmitting and sensing radius. However, it has been established that this is not 

always the case. Thus, the goal of this work has been to study the effect of an asymmetric link assumption in 

mobile networks over the probability of connectivity and the average number of neighbors for each node in 

the network. In order to pursue with this study, an event-based simulator was developed. The mobility model 

was based on the popular random waypoint model. The experiments performed in this work have led to the 

following conclusions, the asymmetric link assumption has a minimal impact on the connectivity of the 

mobile network. However, the cost (measured in terms of the average number of neighbors for each mobile 

node in the network) for achieving the same level of connectivity using the asymmetric link assumption 

increases. Finally, a resource allocation scheme is proposed to serve nodes’ connection requests and admits 

as much as possible of these requests. The performance of this scheme is evaluated using simulation and the 

obtained preliminary results show that it outperformed the heuristic scheme. This work studied the effect of 

asymmetric links over connectivity and the cost required to maintain this connectivity. As part of the future 

work, we will extend the current research idea to cover the effect of this assumption on Interference level 

(power-noise ratio), routing protocols, and delay. Other future work may include the effect of asymmetric 

links on other standards such as Bluetooth. Furthermore, the combined effect of the symmetric/asymmetric 

and the capacity assumption will be further examined. 
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