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 The usage of mobile phones has increased multifold in the recent decades 

mostly because of its utility in most of the aspects of daily life, such as 

communications, entertainment, and financial transactions. Feature phones 

are generally the keyboard based or lower version of touch based mobile 

phones, mostly targeted for efficient calling and messaging. In comparison to 

smart phones, feature phones have no provision of a biometrics system for the 

user access. The literature, have shown very less attempts in designing a 

biometrics system which could be most suitable to the low-cost feature 

phones. A biometric system utilizes the features and attributes based on the 

physiological or behavioral properties of the individual. In this research, we 

explore the usefulness of keystroke dynamics for feature phones which offers 

an efficient and versatile biometric framework. In our research, we have 

suggested an approach to incorporate the user’s typing patterns to enhance the 

security in the feature phone. We have applied k-nearest neighbors (k-NN) 

with fuzzy logic and achieved the equal error rate (EER) 1.88% to get the 

better accuracy. The experiments are performed with 25 users on Samsung 

On7 Pro C3590. On comparison, our proposed technique is competitive with 

almost all the other techniques available in the literature. 
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1. INTRODUCTION  

In the last decade, the use of mobile phones and personal digital assistant (PDA) devices increased 

tremendously. The growth of mobile phones has increased over the period of time with tremendous 

improvement at technology side. Be it network growth from 2G to 5G and handset evolution from feature 

phone to powerful smartphones. As per the report from GSMA [1], there are 5.2 billion subscribers globally. 

However, the growth of mobile phones has also increased the mobile related thefts and fraud rates with 183 

smartphones are stolen everyday between March 2015 and March 2016 in UK itself [2]. Mobile phones become 

potential targets as most of the transactions nowadays take place through them from the management of bank 

accounts to the buying and selling of stocks. This raises a potential question regarding the security of the mobile 

phone [3], [4]. Nowadays, different authentication approaches have been used on handheld devices to ensure 

the security of content [5], [6]. Some of them are password, fingerprint, iris, face, and pattern. These approaches 

are now the mainstream authentication techniques used across all the handheld and portable devices. The 

demerit of the existing approaches is that they are prone to shoulder surfing, guessing attacks, brute force 

attacks and dictionary attacks. Shoulder surfing is a password attack in which the user’s password is 

compromised by peeping in the password entry screen while the actual user types in the password [7]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Relatively newer authentication method, that is pattern-based authentication in touchscreen devices, is also 

prone to the finger marks and smudges which can be used to lift the pattern sequence. As per recent report from 

counter point research, there is going to be a huge demand for the feature phone market as mentioned in [8]. 

Globally, the feature phone segment is forecast to generate around US $16 billion cumulatively in wholesale 

hardware revenues over the next three years. There affordability of feature phones is one of the major reasons 

why feature phones are the preferred mobile phone in many developing countries like India, Africa and 

Bangladesh. The market reports from counterpoint and shipment opportunity for feature phones there is a 

strong need to have robust security system [9], [10] without any additional hardware cost. In our proposed 

work, we have developed one of authentication solution based on behavioral keystroke dynamics from the 

user’s learned machine learning model for feature phones.  

To address the security issues in the feature phones, new age authentication technique uses biometrics 

as a means to identify the actual user. Biometric authentication [11] recognizes individuals by depending on 

their behavioral or physiological features like; fingerprints, iris, voice and signature. To deploy the fingerprint 

scanner or iris to the feature phone, it requires additional cost, memory and high computing power in the device 

which tend to increase the cost of the phone, therefore, such system is not feasible option in feature phone. 

Also, the conventional approaches are one-time authentication methods, in which a user can access the sensitive 

content if he or she logs the system with the correct password. Post acceptance of the password, there is no 

commercially available authentication system to ensure the continuity of security for that sensitive content in 

feature phones based on behavioral biometrics. Once the user is approved, there is no further screening of user 

which can help to detect if imposter is operating the device. Face, fingerprints and iris are examples of biometric 

solutions available in smartphones to offer high-end secure access control. In order to provide such biometric 

systems, it requires additional cost to mobile device because of additional equipment and hardware costs like 

fingerprint scanner, iris sensors requirement. Also, fingerprint and iris require high memory and computing 

power to perform and execute. Moreover, in case of feature phones which are low cost there is no support of 

biometric based authentication. To overcome this issue efficiently keystroke biometrics has been utilized in 

literature. Keystroke biometric authentication is behavioral based and it uses user’s key input patterns and it 

based on the fact that each individual user’s typing patterns are unique and consistent. 

Many approaches to authenticate a device by keystroke biometrics have come in foreplay. Clarke and 

Furnell [12] analyzed user authentication based on keystroke input patterns on handset devices. They have 

utilized the key input of 11-digit phone numbers and 4-digit password to classify individuals. Their models 

were based on the generalized regression networks with accuracy of equal error rate (EER) ranging from 9% 

to 16%. Hwang et al. [13] achieved EER of 13% when applying the arthematics rhythms with Cues. They have 

utilized the key input 4-digit password to classify the users. Their models employed framework where only 

valid user’s patterns are used for training purpose. In their work 25 users participated and they collected only 

5 patterns from each user for enrollment.  

Motwani et al. [14] in their work, the dataset was dynamically generated and the impostors were not 

involved during the enrollment phase, false rejection rate (FRR) was 3.2% with only 27 features. Stanciu et al. 

[15] focused on effectiveness of sensor-enhanced keystroke dynamics, they have utilized movement sensors 

that is accelerometer and gyroscope in their work. In their work 20 users participated and they gathered 

keystroke and sensor samples in controlled environment on Samsung Nexus S device. In their work results 

suggest that basic keyboard authentication is prone to attacks and when sensors are considered they obtained 

better results against statistical attacks. Huang et al. [16] achieved EER of 7.5% with their work for smartphone 

device on Android platform. They utilized statistical classification technique in their model. In their work client 

side, they developed Android application to capture the keystroke data, and server-side system database and 

authentication engine was developed as web service. The total of 40 users aged from 22 to 55 years old 

participated in their experiments.  

It has been observed that existing security authentication mechanism in feature phones are based on 

personal identification number (PIN) or password characters. Current security authentication provided in 

feature phones are prone to the security attacks from imposters and fraudulent attackers. The basic concept 

with keystroke dynamics is the capacity of the method to understand the patterns like typing pattern during 

keyboard usage from the individual and then use this as a parameter to verify the user. A person typing on the 

mobile device will have the check if the time difference between typing of each of the letters of the password 

is similar to the owner’s typing pattern. In the proposed work, the typing pattern (keystroke modality) of the 

user is learned with the k-nearest neighbors (k-NN) and fuzzy logic. The experimental data was collected on 

Samsung On7 Pro C3590 and the model was trained on the desktop PC Windows 10, by dividing the data into 

training and validation set. The next part of the paper is organized as follows section 2 explains our work 

keystroke dynamics-based authentication, section 3 explains results and discussion and future work and 

conclusion are discussed in section 4. 
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2. KEYSTROKE DYNAMICS APPROACH FOR FEATURE PHONES  

The behavioral biometric [17], [18] technology proposed in the paper by analyzing the typing pattern 

of the user which is also known as Keystroke dynamics. Behavioral biometric is the field of study that uniquely 

measures patterns of human activities and thereby identifies the user. Behavioral biometric authentication 

methods include Keystroke dynamics, Touch dynamics, Voice, Signatures and Gait. Figure 1 shows the various 

known behavioral biometric methods. Behavioral biometrics provide secure authentication for banking and 

insurance applications, retail point of sales, and various other domain that need continuous authentication based 

on user’s interaction with system. The block diagram of the proposed keystroke dynamics authentication 

system is shown in Figure 2. The whole process of keystroke dynamics is divided in to the following three 

steps: i) enrolment, ii) model training, and iii) authentication. 

 

 

 
 

Figure 1. Behavioral biometrics 

 

 

 
 

Figure 2. Basic steps for the authentication process 

 

 

2.1.  Enrollment (data collection)  

In proposed work, a total of 25 users aged between 22 to 42 years, have participated in the experiment. 

In order to capture the keystroke data input from the users, we have developed mobile application on Samsung 

On7 Pro C3590. In our experiments, 4-digit password “1976” was used and users were asked to enter the 

password 60-times during enrollment phase at Samsung India Noida R&D center, where one of the author is 

working. The data collection was done in two separate sessions for each user. Entire enrollment process took 

one week to collect the sample data from all the users. The keystroke data acquisition step comprises of building 

a character transition lists for particular chosen keyword. The duration of key-presses between every two 

characters are stored. This proposed work was designed to classify the users in feature phone based on the 

typing patterns while entering the 4-digit personal identification number (PIN) key, which is based on the hold-

time of key press, flight time and the total time entering the PIN. Our work utilizes the following mentioned 

parameters while capturing the data from the user: i) keystroke latency (flight time): time taken between two 

consecutive keystrokes, ii) hold-time: time to press and release a key, and iii) total time: time to press first key 

press and last key release. The components of features that are utilized in this work are shown in Figure 3. 
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Figure 3. Keystroke dynamics features  

 

 

The input captured during enrolment is in the following format for the keyword “1976” with 8 features 

[i1, i2, i3, d1, d2, d3, d4, t]. Where: 

dk : Time of press for key (hold time in milliseconds) 

ik : Time between first key release and next key press (flight time in milliseconds) 

t : Total time from first key press to last key release (in milliseconds) 

 

2.2.  Model training 

In proposed work, with the help of data collected during enrollment phase typing pattern for a 

particular password is recorded and then model is trained with k-NN and fuzzy logic. Overall, 8 features are 

collected as shown in Figure 3 including hold time, flight time and total time from first key to last key release 

for the keyword “1976”. The input features obtained are then passed through the k-NN model and the fuzzy 

training model separately and both the models are then trained using the given input features. The 

authentication values are obtained separately from both the models and final authentication value is returned 

as shown in Figure 4. 

 

 

 
 

Figure 4. Proposed keystroke model architecture based on k-NN and fuzzy 

 

 

2.2.1. K-NN model  
We have used k-nearest neighbor (k-NN) as a classification method because of its key application in 

pattern recognition and prediction. k-NN uses the k nearest neighbors of the feature value, in our case we use 

5-NN to search five nearest neighbors of user’s typing patterns. In this algorithm, we make use of Euclidean 

distance to know the distance between the claimed user typing pattern and the actual user features.  

Euclidean distance provides the direct distance between two points in space along the line joining the 

two points. It helps to find the shortest distance between two input feature vectors along the line segment 

joining the two input vectors. The Euclidean distance is calculated for all the points and then nearest points 

having the smallest distance are considered. Here is pictorial representation as shown in Figure 5 of how 

Euclidean distance is used in k-NN. 

 

𝑑(𝑧, 𝑧′) = √(𝑧1 − 𝑧′1)² + (𝑧2 − 𝑧′2)² + ⋯+ (𝑧𝑛 − 𝑧′𝑛)² (1) 

 

Where:  

Z : Training sample value  

z` : Test sample value  

d(z,z`) : Computes the Euclidean distance  
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In nearest neighbor model, the number of characters in keyword decide the number of dimensions in 

a hyper dimensional space. Each set of typing pattern of that keyword among multiple iterations is one point 

in that hyper dimensional space. Since we have collected multiple inputs to train the model, we have multiple 

clouded points plotted for a particular keyword once the classifier training is complete as shown in Figure 6. 

In the proposed work we have hold time, flight time and total time as feature set which is captured from user 

and model is trained for the 4-digit keyword “1976”. Refer Figure 7 shows the model is trained with data set 

which is comprised of training samples and genuine or accepted and the sample cases which are imposter.  

 

 

  
  

Figure 5. k-NN using Euclidean distance Figure 6. Plot of user data captured keystroke 

inputs 

 

 

 
 

Figure 7. Plot of training data set of a user and the accepted and the rejected data 

 

 

2.2.2. Fuzzy logic 

Fuzzy means something that is not clearly defined or has crisp values. Fuzzy logic is used in the cases 

where a crisp definition cannot be provided for a quantity, such as the amount of hot or cold. In our case, a user 

when typing can have variable typing speeds, classified as fast, slow or normal. A crisp definition of the 

quantity where the value changes from fast to normal to slow cannot be defined in this case. Figure 8 shows 

frequency of typing speed timings graphically for a typical user, the normal typing speed has maximum 

frequency which occurs in day-to-day life while typing, while the frequency decreases as moving towards 

timings that are categorized as fast or slow. The actual values of timing will vary from person to person and a 

crisp range cannot be defined between the three values. Such values introduce a degree of fuzziness and using 

methods such as k-NN fail to classify two users with overlapping typing speed. Such fuzziness is solved by 

using the concepts of fuzzy logic. Fuzzy logic is used in authentication systems based on biometrics to provide 

enhanced security as in case of biometrics a lot of data from different users can be overlapping. In case of keystroke 

dynamics-based authentication system, the input features are keystroke timings which can have varying values 

for a single user which may or may not overlap with another user timings.  

From Figure 8 we can see that it is not possible to define a single value as fast or slow typing speed 

for a given user. As explained in Figure 9 in the fuzzy logic model, inference engine which is responsible for 
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determining the output for a given input based on learned data, uses the input features of the keystroke timings 

which are first converted to the fuzzified input. Using the input keystroke timings, the rule base is generated 

which will be used to determine the timing similarities for a test input. Similarity gives a degree of closeness 

between one typing speed timing against the timings from learned users and is calculated by fuzzifying the test 

input first and based on the similarity values fuzzy output values are calculated. Finally, the fuzzy output can be 

converted to the crisp Authentication value using the available defuzzification functions such as centroid method, or 

normal max value, based on the current membership value, and center of sums. 

 

 

 
 

Figure 8. Timings between keystrokes of a participant 

 

 

 
 

Figure 9. Working of the proposed fuzzy logic model for keystroke dynamics 

 

 

A. Determining rule base for user classification 

The input to the fuzzy system is the key stroke timings from a user collected over time or may be a 

test input typing pattern that needs to be authenticated yet, these inputs need to be converted to the fuzzy inputs 

before they are passed through the inference Engine for further processing, for both learning and test phase. 

Following timings are taken into account when calculating the fuzzy membership input: i) time of 

press for key (hold time: dk); ii) time between first key release and next key press (flight time: ik); iii) total time 

from first key press to last key release (t). 

The input is in the following format for the 4-character keyword “1976” with 8 features [i1, i2, i3, d1, 

d2, d3, d4, t]. Note that this feature set is particular to 4-character keywords only and will change with the 

number of characters used for learning. Here, i1, i2, i3 represent, Interval between releasing key and stroking 

next key (Milliseconds). Similarly, d1, d2, d3, d4 values represent Time period key during key remain pressed. 

Finally, last value represents, Time period first key press and last key release (Milliseconds) 

Multiple feature set will be obtained for a given user during the learning phase. The values averaged 

to obtain an average typing time for a single user for all the three types of timings. We get the following 3 

values for each input tuple for a single user. 

 

(𝑑, 𝑖, 𝑡) = (∑ 𝑑𝑘
4
𝑘=1 , ∑ 𝑖𝑘, 𝑡

3
𝑘=1 ) (2) 
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To train the user, 

 

𝑑𝑎𝑣𝑔 =
∑ 𝑑𝑘
𝑛
𝑘=0

𝑛
 (3) 

 

𝑖𝑎𝑣𝑔 =
∑ 𝑖𝑘
𝑛
𝑘=0

𝑛
 (4) 

 

𝑡𝑎𝑣𝑔 =
∑ 𝑡𝑘
𝑛
𝑘=0

𝑛
 (5) 

 

where, n: total number of input timing feature set for a single user obtained while training. 

Finally, we calculate an upper and lower limit of the typing speeds that can be used as rough estimate 

of the typing timing of a single user in day-to-day life. Threshold tl and tu are defined for each three inputs 

which give a rough estimate of minimum and maximum value of timing for a single user and is calculated as 

the mth standard deviation from the average value. This methodology helps to circumvent any outliers that 

may have occurred during data collection: 

 

For d:  

 

tld = davg – m * σ(d) (6) 

 
tud= davg + m * σ(d) (7) 

 

For i:  

 

tli = iavg – m * σ(i) (8) 

 
tui= iavg + m * σ(i) (9) 

 

For t:  

 

tlt = tavg – m * σ(t) (10) 

 
tut= tavg + m * σ(t)  (11) 

 

where, generally, m is 3, but for our purpose we have taken value of m to be 1 as using 3 can sometimes allow 

outliers to be falsely accepted and in case of typing it is possible that multiple users may have very overlapping 

timings and may lead to false acceptance. Here, m * σ (d) defines mth standard deviation around the average 

value. tlk and tuk represents the lower and upper learned threshold timings for the user, where k is d, i, t. Finally, 

these values of threshold will be used during the input fuzzification phase to generate input membership 

function for a user input. 

 

B. Input fuzzification 

The obtained threshold values in the previous step are then used to generate an input membership 

function. The input membership function is defined as: 

 

𝜇𝑘 =

{
 
 

 
 

0

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
+

1

𝑛𝑜𝑟𝑚𝑎𝑙
+

0

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
, 𝑖𝑓 𝑡𝑙𝑘 ≤  𝑡𝑘 ≤ 𝑡𝑢𝑘

(1−
1

|𝑡𝑘− 𝑡𝑙𝑘|
)

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
+

1

|𝑡𝑘  −𝑡𝑙𝑘|

𝑛𝑜𝑟𝑚𝑎𝑙
+

0

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
, 𝑖𝑓 𝑡𝑘 < 𝑡𝑙𝑘

0

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
+

1

|𝑡𝑘−𝑡𝑢𝑘|

𝑛𝑜𝑟𝑚𝑎𝑙
+

1− 
1

|𝑡𝑘−𝑡𝑢𝑘|

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
,   𝑖𝑓 𝑡𝑘 > 𝑡𝑢𝑘

 (12) 

 

where, k= d, i and t, respectively and the membership function is calculated for d, i and t respectively. The 

membership function calculations are partitioned based on the thresholds. The membership function will have 

degree 1 for normal when the timings are between upper and lower threshold value and zero for positive and 

negative. Similarly for cases when the timing is less than or greater than the threshold the degree of membership 

is calculated as shown in (12). 
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So, now we have three values defined for each timing. The membership graph for input is presented 

in Figure 10. The graph timings have been modified to allow for a range of user timings because a single user 

may have a varying range of timing from a general average. All the three keystroke timings will have a similar 

membership function. 

For any incoming test input [ti1, ti2, ti3, td1, td2, td3, td4, tt], (d, i, t) is calculated as shown previously in 

(2). The membership values are calculated for three values d, i, t, using the membership function as mentioned 

in (12). For an incoming test input, we obtain three membership functions µd, µi, µt. 

 

 

 
 

Figure 10. Fuzzy membership function for the input timings based on authenticated user input. 

 

 

C. Calculating similarity for a test input using inference engine 

After converting the input to fuzzified values the inference engine uses the rule base to determine the 

similarity for the input to the learned user timings. Based on the closeness of the features to the limits of the 

authentication values, similarity function can be defined as mentioned in (13), (14): 

 

𝑠 = (
(∑(𝜇𝑘))

3
) (13) 

 

𝑠𝑛𝑜𝑟𝑚 = (𝑠/||𝑠||)/ 𝑛𝑜𝑟𝑚𝑎𝑙 (14) 

 

where,  

µk : input membership function with k = d, i, t 

normal : means that membership value of the normal is considered only for similarity. 

S : represents the similarity, 0 <= s <=1. 

snorm  : represents the normalized values 

Here, summation is done separately for negative, normal and positive member values defined in the input 

membership function.  

 

D. Obtaining output membership function 

Finally, after applying keystroke dynamics timings and calculating the score the inference engine will 

calculate the possible authentication value based on the current learned preferences and based on a threshold 

of similarity ‘sl’, ‘su’ the authentication values is generated. Where, sl is the lower limit and su is the upper limit 

for similarity thresholds. A similarity value below 0.9 times sl of means no authentication, while if similarity 

is greater than 1.1 times of su the user is fully authenticated. Using a range instead of strict values of sl and su 

helps to achieve the desired fuzziness by removing any strict crispiness in the threshold values. For in-between 

values of similarity, authentication values are defined using the output membership function as shown in (15). 

Values for the sl and su can be set based on the learning from the previous data. Typical values for sl are  

0.3-0.5 and for su are 0.6-0.8. Similar, to the input function an output function can be defined as shown in (15): 

 

𝜇𝑜𝑝 =

{
 
 
 
 

 
 
 
 

0

𝑁𝑜𝐴𝑢𝑡ℎ
+

1

𝜕𝐴𝑢𝑡ℎ
+

0

𝐹𝑢𝑙𝑙𝐴𝑢𝑡ℎ
, 𝑖𝑓(1.1 ∗ 𝑠𝑙) < 𝑠 ≤ (0.9 ∗ 𝑠𝑢)

1

𝑁𝑜𝐴𝑢𝑡ℎ
+

0

𝜕𝐴𝑢𝑡ℎ
+

0

𝐹𝑢𝑙𝑙𝐴𝑢𝑡ℎ
, 𝑖𝑓𝑠 < 𝑠𝑙

0

𝑁𝑜𝐴𝑢𝑡ℎ
+

0

𝜕𝐴𝑢𝑡ℎ
+

1

𝐹𝑢𝑙𝑙𝐴𝑢𝑡ℎ
, 𝑖𝑓𝑠 > 𝑠𝑢

𝑠−𝑠𝑙
0.1∗𝑠𝑙

𝑁𝑜𝐴𝑢𝑡ℎ
+

1−
𝑠−𝑠𝑙
0.1𝑠𝑙

𝜕𝐴𝑢𝑡ℎ
+

0

𝐹𝑢𝑙𝑙𝐴𝑢𝑡ℎ
, 𝑖𝑓𝑠𝑙 ≤ 𝑠 ≤ 1.1𝑠𝑢

0

𝑁𝑜𝐴𝑢𝑡ℎ
+

1−
𝑠𝑢−𝑠

0.1𝑠𝑢

𝜕𝐴𝑢𝑡ℎ
+

𝑠𝑢−𝑠

0.1∗𝑠𝑢

𝐹𝑢𝑙𝑙𝐴𝑢𝑡ℎ
, 𝑖𝑓0.9𝑠𝑢 ≤ 𝑠 ≤ 𝑠𝑢

  (15) 
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Based on the similarity value s, membership function for the output µop, is calculated as shown in (15). 

The graph for the output membership function is shown in Figure 11. Three values have been defined for 

authentication membership function: i) no authentication, ii) partial/strict authentication, and iii) full 

authentication. 

 

 

 
 

Figure 11. Output fuzzy function obtained from keystroke input after applying inferences 

 

 

Instead of using crisp similarity thresholds for sl and su the authentication membership values are 

generated by varying over a range which helps to achieve the desired fuzziness in the output membership 

function as shown in the Figure 10. The partial authentication decreases as the reliability/similarity increases 

while at the same time partial authentication membership increases, similar is the case of partial and full 

authentication the membership values change gradually over a range of similarity values. 

 

E. Final crisp authentication value generation 

From this approach, finally the output can be converted into de-fuzzified output by taking the max of 

the three outputs as defined in (16): 

 

Output = max (a, b, c) (16) 

 

where, 

a : membership value for no auth  

b : membership value for partial auth 

c : membership value for full auth 

 

2.3.  Authentication 

The final step post model training, is of authentication. Both the trained classifiers separately generate 

the authentication results which are then combined together generate the final authentication value. For k-NN 

the trained classifier is used to calculate the nearest distance of the test sample from all of the training samples 

in that hyper dimensional space. Once the nearest distance of the testing sample is calculated, it is checked 

with the permissible threshold value for that keyword and if the value is outside the limits of threshold, the test 

sample is marked as unrecognized typing pattern and the user is classified as imposter. When by recursive 

intruding the imposter matches the value within the permissible threshold, the imposter is falsely allowed the 

access. The permissible threshold solely depends on the duration between typing each consecutive letter. For 

the imposter to match the values in permissible threshold all these parameters should match the parameters that 

of the actual user. 

For fuzzy model the similarity is calculated for user and output authentication values is generated for 

the user. The user is considered to be authenticated if the authentication value is obtained as full authentication. 

A value of no or partial authentication is considered as no authentication in this case. Figure 12 shows basic 

flow chart when unknown user tries to access mobile app or log in to the device, even when he knows the user 

password the proposed system checks the behavioural characteristics of user input pattern on keystroke and 

dis-allows access to the imposters. This way it provided the second level of security to the user in feature 

phone. There are basically two phases in the authentication system-enrolment and login phase. In the enrolment 

phase the user keystroke dynamics are learned by the classifier.  

When setting a 4-digit PIN the timings for the user are captured feature vector is created with it. This 

Feature vector is then passed through the k-NN classifier for training. The fuzzy classifier also learns threshold 
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values for the lower and upper typing timings for the user. During the login phase when a test user actually 

enters the similar timing feature vector are obtained and passed through the learned classifier to obtain the k-

NN authentication output. Similarly, the input is converted to a fuzzified input and then using the fuzzy 

inference converted to fuzzified output to finally obtain the crisp output result.  

 

 

 
 

Figure 12. Basic flow diagram of proposed keystroke dynamics 

 

 

3. RESULTS AND DISCUSSION 

The accuracy of the keystroke dynamics system is measured on the following counts:  

a) False rejection rate (FRR) is the measure of the percentage ratio between incorrectly reject authorized users 

against the total number of genuine users accessing the system. A lower false rejection rate means less 

reject cases and easier access by legitimate user. 

b) False acceptance rate or FAR is measure of the percentage ratio between falsely accepted unauthorized 

users against the total number of imposters accessing the system. Terms such as false match rate (FMR) or 

type 2 error refers to the same meaning. A smaller FAR indicates less imposter accepted. 

c) Equal error rate (EER) is used to determine the biometric system accuracy. When both FAR and FRR rates 

are equal that intersection point is EER. The lower the value of EER the higher the precision of the biometric 

system. 

Based on an experiment conducted to find accuracy of keystroke analysis, FAR i.e. rate of system 

giving access to an imposter. Experiment has been performed for 25 different users for different acceptance 

threshold FRR i.e. rate of system denying access to authorized user has been taken for 25 different users for 

different acceptance threshold. To conduct this experiment fluently, the authorized user took 4-digit PIN as 

input. Now, to know the EER value, we plotted the graph between FAR and FRR value. The intersection point 

of this graph so plotted gives us the EER value as shown in Figure 13. More precisely the closest match of 
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FRR and FAR value is the EER. Table 1 represents a comparative evaluation of accuracy parameters performed 

between our proposed k-NN model and the improved version of our model when fuzzy logic is added alongside 

k-NN classifier to find the final authentication value. 

 

 

 
 

Figure 13. Relation between FAR and FRR 

 

 

Table 1. A Comparison between simulations of different techniques 
User Age Gender k-NN  k-NN with Fuzzy 

FAR FRR EER  FAR FRR EER 

User1 27 Male 0.015 0.014 1.45%  0.017 0.015 1.6% 

User2 32 Male 0.023 0.05 3.65%  0.012 0.017 1.45% 

User3 27 Female 0.092 0.093 9.25%  0.013 0.017 1.5% 
User4 24 Female 0.031 0.014 2.25%  0.021 0.018 1.95% 

User5 28 Female 0.092 0.093 9.25%  0.01 0.011 1.05% 

User6 31 Male 0.023 0.021 2.20%  0.015 0.015 1.5% 
User7 42 Male 0.031 0.029 3.00%  0.013 0.015 1.39% 

User8 25 Male 0.008 0.021 1.45%  0.01 0.010 1.00% 

User9 29 Male 0.062 0.043 5.25%  0.010 0.019 1.44% 
User10 22 Male 0.054 0.064 5.90%  0.012 0.015 1.35% 

User11 22 Female 0.026 0.032 2.9%  0.020 0.019 1.95% 

User12 23 Female 0.014 0.029 2.1%  0.010 0.012 1.1% 
User13 24 Female 0.026 0.005 1.6%  0.010 0.014 1.20% 

User14 25 Male 0.043 0.008 2.6%  0.018 0.020 1.90% 

User15 22 Male 0.005 0.02 1.46%  0.009 0.013 1.1% 
User16 23 Female 0.02 0.023 2.19%  0.012 0.020 1.6% 

User17 24 Female 0.023 0.017 2.0%  0.027 0.012 1.95% 

User18 23 Male 0.020 0.026 2.3%  0.020 0.020 2.0% 

User19 22 Male 0.011 0.029 2.04%  0.057 0.027 4.2% 

User20 23 Female 0.014 0.002 0.8%  0.034 0.035 3.45% 

User21 22 Male 0.035 0.023 2.9%  0.037 0.033 3.5% 
User22 22 Male 0.026 0.002 1.4%  0.021 0.025 2.3% 

User23 27 Female 0.017 0.017 1.75%  0.01 0.020 1.5% 

User24 25 Male 0.043 0.017 3.0%  0.025 0.03 2.75% 
User25 27 Male 0.038 0.023 3.0%  0.022 0.025 2.35% 

 

 

In this performance evaluation, we have found out that using only the k-NN model over the biometric 

input features had a limitation in that the model does not take into account the variance in the keystroke 

latencies among the multiple attempts of the single user. From the results, we can observe that k-NN model the 

average EER 3.03% and this is the best result we found with our experiments when the value of k was set to 5. 

We can observe that the EER has shown improvement and it’s decreased from 3.03% to 1.88% when fuzzy 

was applied with k-NN. Out of 25 users we have observed that 12 users the EER results were less than 1.5%. 

Best results were observed for user5 (female) with EER 1.05% with k-NN and fuzzy combined model. In 

Figures 14, 15 and 16 we have analyzed the FAR, FRR and ERR for 25 users with k-NN, k-NN with fuzzy 

methods. It can be observed from our experiments that k-NN and fuzzy model when combined have performed 

better for most of users and its results are superior from k-NN.  
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Figure 14. FAR with k-NN, k-NN with fuzzy for 25 

different users 

Figure 15. FRR with k-NN, k-NN with fuzzy for 25 

different users 

 

 

 
 

Figure 16. EER with k-NN, k-NN with fuzzy for 25 different users 

 

 

In Table 2 we have shared the comparison of the proposed work with existing work in keystroke 

dynamics from other researches is covered. In the proposed work, we have considered 60 patterns from each 

user and 25-users participated in experiments. Our study is competitive as its network trained with combination 

of k-NN with fuzzy method with EER rate of 1.88% when experiments were performed with 25 participants 

on feature phone Samsung on 7 Pro at Samsung India labs.  

 

 

Table 2. Comparison with existing work 
Study Input Data # Of 

Participants 

# of Inputs 

Training 

Classifier EER (%) 

Clarke and Furnell [12] 4-digit PIN 32 30 Neural networks 12.8% 

Hwang et al. [13] 4-digit PIN 10 5 Artificial rhythm with Cues 
4% to 

13% 

Wang et al. [19] 4-digit PIN 104 20 Support vector machine (SVM) 8.70% 
Chang et al [20] 200 words 114 3 Statistical classifier 7.89% 

Mondal et al [21] 
All keys of 

keyboard 
53 7*105 ANN and CPANN 2.35% 

Lee et al. [22] 6-digit PIN 22 100 
Manhattan and Euclidean 

Distance 
7.89% 

Kim et al. [23] 6-digit PIN 6 100 Statistical classifier 13.44% 

Frolova et al. [24] alphanumeric 15 30 
LOF, Manhattan and Euclidean 

ensemble 
8.00% 

Proposed Work 4-digit PIN 25 60 k-NN 3.07% 
Proposed Work  4-digit PIN 25 60 k-NN with fuzzy 1.88% 

 

 

In the litreture, there are many research works done for keystroke dynamics [25]-[36] from last three 

deacdes, however with the proposed keystroke dynmaics study for feature phones we have proposed k-NN 

classifier with fuzzy logic model to provide enhanced security when data from different users can be overlapping. 
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4. CONCLUSION AND FUTURE WORK 

Behavior biometrics is the future of security domain, and using the keystroke modality can be a 

simplest way to achieve this efficiently and precisely. With the developed study the accuracy of EER 1.88% is 

achieved by training model with 60 samples with 25 users. With proposed study the accuracy rate is increased 

as we used combination of k-NN with fuzzy to improve the results with sufficient samples to train the model. 

Building multiple models for different keywords that are frequent in usage can help us to monitor the user 

while typing in a generic scenario of chatting platform and suspicious operation over the handheld device can 

be tracked and prevented. To increase the scope of this security, other modalities such as touch analytics, 

battery charging patterns and walking patterns of an individual can be explored as future research work for 

mobile phone security under behavioral biometric research scope. For future work we intend to increase the 

concept with smartphone devices and there we would like to develop multimodal framework based on 

keystroke dynamics and user swipe pattern to recognize the user. This can further be connected using cloud 

support to deploy the keystroke machine learning models with better internet connection which help to improve 

the security further by processing the data on the web servers and keeping client devices light and handy. 
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