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 Falls have long been one of the most serious threats to elderly people's 

health. Detecting falls in real-time can reduce the time the elderly remains 

on the floor after a fall, hence avoiding fall-related medical conditions. 

Recently, the fall detection problem has been extensively researched. 

However, the fall detection systems that use a traditional internet of things 

(IoT) architecture have some limitations such as latency, high power 

consumption, and poor performance in areas with unstable internet. This 

paper intends to show the efficacy of detecting falls in a resource-

constrained microcontroller at the edge of the network using a wearable 

accelerometer. Since the hardware resources of microcontrollers are limited, 

a lightweight fall detection deep learning model was developed to be 

deployed on a microcontroller with only a few kilobytes of memory. The 

microcontroller was installed in a low-power wide-area network based on 
long range (LoRa) communication technology. Through comparative testing 

of different lightweight neural networks and traditional machine learning 

algorithms, the convolutional neural network (CNN) has been shown to be 

the most suited, with 95.55% accuracy. The CNN model reached inference 

times lower than 37.84 ms with 61.084 kilobytes storage requirements, 

which implies the capability to detect fall event in real-time in low-power 

microcontrollers. 
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1. INTRODUCTION 

Since 2000, the medical field has significant advances leading to an increase in life expectancy by a 

rate of 5 years [1]. According to the National Institutes of Health (NIH), the current elderly population is 

8.5% of the world’s population, and by 2050, the percentage will be increased to 20% [2]. Hence in that 

sense, providing healthcare services to the elder to reduce their daily life risks becomes increasingly 

demanding. The fall is one of the most common risk factors for elders that frequently occur in hospitals, 

nursing homes, or homes, with approximately 30% of falls causing injury [3]. According to the World Health 

Organization (WHO), about 30% of the elderly over 65 years get fell one time or more annually, and for the 

elderly over 80 years, this rate increased to 50% [4].  

In such a scenario, automated fall detection can reduce the impact and consequences of falls among 

the elderly by detecting and reporting their occurrence [5]–[8]. Over the last decade, fall detection has 

become a hot topic of research where many researches have been carried on fall detection systems fall 

detection system (FDS) [9]–[15]. Based on the different sensors used in the detection, fall detection systems 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Accelerometer-based elderly fall detection system using edge artificial … (Osama Zaid Salah) 

4431 

can be classified into two major classes context-aware and wearable systems [16]. However, context-aware 

systems are restricted to the deployment area, which usually implies installing devices in the different places 

where the user being monitored. Recently, interest in wearable sensor-based systems has increased rapidly 

due to the emergence of low-cost physical sensors [17]–[20]. The wearable-based devices provide real-time 

monitoring without the use of environment-based devices. Therefore, only user-related data are acquired. In 

such systems, simple and low-power devices are used, commonly microcontroller equipped with inertial 

measurement unit leading to minimize the device's size and increasing the battery life. Wearable devices also 

usually imply lower economic costs compared to context-aware systems [21]. 

For wearable-based fall detection devices, there are two main types of algorithm can be found which 

are threshold-based and machine learning-based approach. Although the threshold-based approach shows 

very low computational complexity, many difficulties are presented when adapted to new fall types. Machine 

and deep learning approaches are considered more advanced techniques where the possibility of fall prevention 

and damage mitigation is available. However, deep learning algorithms required high computational power due 

to the large performed algebraic operations. Therefore, running such models on limited resources 

microcontrollers can lead to high-power consumption and long response times. Consequently, develop a  

real-time wearable fall detection system based on deep learning is an open research problem. 

Every day, the internet of thins (IoT) is the most creative resource in manufacturing, industrial, and 

residential systems, and it plays a critical role [22]–[24]. The research described in this paper aims to develop 

an IoT-based fall detection system to alleviate the elderly fear of not being discovered after a fall which can 

help them to live an active, normal life. Most of the previous works in the literature and existing systems 

utilize conventional IoT architectures where the raw data are collected from the sensing unit and sent to the 

cloud or local server to perform the fall prediction and detection. This type of IoT architecture causes latency, 

power wastage, and not allowing the use of a low-power wide-area network (LPWAN) as they have a low 

data rate. Also, most of the previous works in the literature utilizes conventional machine learning techniques 

such as support vector machine (SVM) and k-nearest neighbors (K-NN) which are not robust and could 

produce many false alarms and have a low detection rate. While the robust fall detection system should have 

fast inference time and long-range to reduce the time that elderly people remain lying on the floor following a 

fall that could have significant consequences. Also, the low-power operation should be ensured to reduce 

cost. 

Torti et al. [25] proposed an embedded fall detection system based on deep learning. In the proposed 

system, long short-term memory (LSTM) (a special type of recurrent neural networks (RNN)) was trained on 

a public fall detection dataset called SisFall. SensorTile board was used in the system for fall detection. An 

accelerometer data was analyzed with the trained LSTM model. The proposed system had a fall detection 

accuracy of 98%. In terms of power consumption, the proposed device could run continuously for about  

20 hours without recharging. 

Yacchirema et al. [26] proposed an IoT-based fall detection system based on the ensemble machine 

learning algorithm. In the proposed methodology, simple moving average (SMA) and sliding-windows 

techniques were used to extract the features from the raw signal of a publicly accessible dataset "SisFall". 

The extracted features were used to train and test four machine learning classifiers, including decision trees, 

ensemble, logistic regression, and deepNet, to find the best model. Then, the IoT fall architecture consists of 

four main stages a wearable device, a wireless communication network, an IoT gateway, and cloud services 

were used. The results revealed that ensemble-random forest (RF) had the best performance with an average 

areas under the curve (AUC) of 0.995, 5.75s training time, 3.48s testing time, accuracy (98.72%). 

Luna-Perejón et al. [27] proposed a wearable fall detector using recurrent neural networks (RNNs). 

In the proposed system, two RNN models were trained using the SisFall dataset. For the performance 

analysis and integration of the trained models, two STM32 32-bit microcontrollers were used. The achieved 

results in terms of accuracy and specificity are 96.3% and 96.4%, respectively. Besides, less than 40ms 

execution times were obtained. 

The major contributions of the project were driven by the limitations of the previous works in the 

literature. The proposed system was based on edge artificial intelligence (AI) IoT architectures where a deep 

learning algorithm is used to process data acquired by a 3D accelerometer sensor at the local level 

(microcontroller) which is new features as the microcontrollers typically are limited in resources. The used 

edge AI architectures eliminate the privacy issue of transmitting millions of data and storing it in the cloud, 

as well as the bandwidth and latency limitations that reduce data transmission capacity. 

 

 

2. RESEARCH METHOD 

2.1. Proposed method 

Figure 1 shows the proposed system architecture for elderly fall detection. The system architecture 

consists of three layers: edge layer, fog layer, and cloud layer. The edge layer is a wearable sensor node 
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equipped with an inertial measurement unit (IMU) and long range (LoRa) transceiver to collect, analyze, and 

transmit the data to an IoT-gateway via LoRa communication technology. The Arduino Nano 33 Bluetooth 

low energy (BLE) Sense microcontroller will be used to implement the edge device. Data from the inertial 

measurement unit will be fed into a deep learning model deployed on the microcontroller to perform 

inference. Then, only information about the elderly's status and instant notification in case of a fall is 

transmitted to the IoT gateway over LoRa. The fog layer is a LoRa gateway, which will be implemented with 

a Raspberry Pi 4 single-board computer and a LoRa transceiver, directly connected to the internet. The LoRa 

gateway is responsible for receiving LoRa packets and hosting the cloud server. The last layer in the 

architecture is the cloud layer used for global storage, cloud services, and web/mobile application servers. 

The proposed architecture solved the research problem by moving the AI processing of the inference from 

the cloud to the edge. Running the inference directly on the microcontroller at the edge allows the system to 

function in poor or unstable internet areas. Also, reducing bandwidth which allows the use of communication 

technologies with high range but limited in bandwidth such as LoRa. Therefore, a high range will be 

achieved, which is essential for fall detection systems. Lastly, latency in conventional architecture is solved 

as the proposed architecture will lower centralized computing power and give more real-time response. 
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Figure 1. Proposed fall detection system architecture 

 

 

2.2. Sesing unit  
The core of the proposed FDS system is the Arduino Nano 33 BLE Sense board which is a 

completely new board. The board comes with a series of embedded sensors such as 9 axes inertial sensor 

which makes this board ideal for wearable devices. The main feature of this board, besides the impressive 

selection of sensors, is the possibility of running edge computing applications AI on it using tiny machine 

learning (TinyML). The Nano 33 BLE Sense board also has a communications chipset that can be both a 

BLE and Bluetooth client and host device which is something unique in the world of microcontroller 

platforms. Since the Nano 33 BLE Sense board has both embedded IMU and BLE communications chip, 

there is no external component needed to be connected to construct the BLE version of the sensing unit 

except for the battery. While the LoRa version of the proposed FDS system consists of Nano 33 BLE Sense 

board, NODEMCU ESP32 board, LoRa RFM95W transceiver module at 915 MHz band, two 18650 lithium 

batteries, a 5 V voltage regulator, and a 10 uF capacitor. The NODEMCU ESP32 board is acting as interface 

between Nano 33 BLE Sense board and LoRa RFM95W transceiver module as the LoRa Arduino library is 

not yet supported by the Nano 33 BLE Sense board. The NODEMCU ESP32 board and Nano 33 BLE Sense 

board are connected using UART serial communication protocol. 

Figure 2 shows the detailed block diagram of the application deployed on the wearable sensing unit. 

The block diagram of the sensing unit can be divided into six main parts. The first part is the main loop of the 

system where the application runs in a continuous loop. The second part of the sensing unit application is the 

accelerometer handler. It is connected directly to the onboard accelerometer of the wearable sensing unit. 

This part of the application is responsible for managing the movement data capture from the accelerometer 
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and writes them to the model’s input tensor. Also, it uses a buffer to hold data during the inference process to 

avoid missing the movement data. The third part of the sensing unit application is the TensorFlow lite 

interpreter. It is connected directly to a TensorFlow lite model. This part of the application is responsible for 

running the inference based on the movement data being fed from the accelerometer handler. The 

convolutional neural network (CNN) model was included in the system in form of a C byte array. The fourth 

part of the sensing unit application is the activity predictor which takes the model’s output and decides 

whether an activity has been detected, based on thresholds for both probability and the number of 

consecutive positive predictions. The final part of the sending unit application is the output handler which 

sends the data from the sensing units to the system gateway via either LoRa or BLE and prints output to the 

serial port depending on the recognized activity. 
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Figure 2. Detailed application block diagram of the wearable sensing unit 

 

 

2.3. IoT gateway  
The IoT gateway is a solution for enabling IoT communication. In the proposed system the gateway 

receives the data packets from the sensing unit and sends them to the cloud for global storage and displays 

the data on the system dashboard. The gateways have been implemented using a Raspberry Pi 4 model B 

running NOOBS software with a LoRa RFM95W transceiver module. The RFM95 LoRa transceiver module 

communicates with the Raspberry Pi using the serial peripheral interface (SPI) communication protocol. 

Figure 3 shows the detailed block diagram of the system IoT gateway. The block diagram of the IoT 

gateway can be divided into three main parts. The first part is the communication initialization of the system 

communication protocol. The second part of the IoT gateway application is the data handler. This part is 

responsible for receiving the data packets that are sent by the edge device (sensing unit) and convert them 

from byte to float format so it can be sent to the node-red to be displayed in the system dashboard. The last 

part of the IoT gateway application is the nod red where the data is split and display in the system dashboard. 

 

2.4. Machine learning for fall detection 

The SisFall dataset [28] was used to train, test, and validate the proposed FDS, as it was deemed the 

most complete. To train the deep learning model with the chosen dataset, some pre-processing steps must be 

done. Firstly, the data was given in bits. In order to convert the acceleration data given in bits into gravity, the 

equation (1) was used. 

 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑔] =
2×𝑅𝑎𝑛𝑔𝑒

2𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 × 𝐴𝐷 (1) 

 

Since the used accelerometer in the SisFall dataset was ADXL345, the values +-16g for Range and 

13 bits for resolution will be substituted in (1). Then, sliding windows have been produced because the 

Neural Network's inputs consist of a sequence of samples with a fixed length. Each window consists of three 

signals corresponding to X, Y, and Z accelerometer axes. The sequence of samples with a fixed width is 

referred to as a block. Therefore, to train the neural network's model, the block must be labeled according to 
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the event class that belongs to it. The proposal established in [25] was used, in which each block is classified 

according to the appearance percentage of most the relevant class. The classes were labeled as FALL for the 

fall event, ALERT for the risk of falling and BKG for other activities. The BKG class includes daily life 

activities that not fall-related, such as walking and jumping. This process was applied for the whole dataset, 

and each block contains 256 samples, equal to 1.28 seconds. The blocks were 50% overlapped. 
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Figure 3. Detailed application block diagram of the system IoT gateway 

 

 

The requirement that drove the design of deep learning architecture is that it should be deployed on 

a resource-constrained and relatively cheap device (a microcontroller equipped with an IMU sensor). As a 

result, five machine and deep learning models were trained on a SisFall dataset for evaluating the fall 

detection accuracy. Firstly, the dataset produced using the sliding window technique was split into training 

(60%), validation (20%), and testing (20%) sets based on data for subjects, e.g. 6 subjects for training, 2 for 

validation, and 2 for testing. For the training process, a graphic processor unit NVIDIA Tesla T4 provided by 

Google Colab was used, implemented in the Keras library. The architecture of the machine and deep learning 

models used is shown in Table 1. 

 

 

Table 1. Architecture of the machine and deep learning models 
Classifiers Architecture 

K-NN 15 neighbors and 5 neighbors 

SVM - 
LSTM Two Stacked LSTM layers with 32 neurons each, batch normalization [29], [30] 

CNN Two convolutional layers with 8 filters each, dropout [31] 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Fall detection performance of machine learning models 

Performance comparative experiments were conducted between the developed lightweight neural 

networks (CNN and LSTM) and traditional machine learning algorithms (SVM and K-NN) where the 

experimental results are listed in Table 2. Among the traditional methods shown in Table 2, the SVM got the 

best accuracy with 82.72%. k-nearest neighbors (K-NN) (5 neighbors) accuracy was 3.61 lower than SVM, 

while the K-NN (15 neighbors) performs the worst with an accuracy of 78.64%. Much better performance 

can be obtained using lightweight neural networks where the CNN neural network has achieved accuracy 

higher than 95.5% which is even higher than the best traditional algorithms (82.27% of SVM). The LSTM 

neural network has achieved the highest performance in detecting falls with an accuracy of 96.78%. This 

significant improvement in accuracy shows the superiority of neural networks over traditional algorithms. 

The extraordinary results of neural networks are partially attributable to their advanced capability of 

modeling, but fundamentally to the high ability of neural networks to extract features and discover patterns. 
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Table 2. The fall detection performance of machine learning models 
Classifiers Conventional methods Neural networks 

Metrics K-NN (15 neighbors) K-NN (5 neighbors) SVM CNN LSTM 

SEN. (%) 81.07 80.06 87.21 95.1 97.87 
SPE. (%) 76.57 78.21 78.48 94.86 95.21 

ACC. (%) 78.64 79.11 82.27 95.55 96.78 

 

 

The proposed solution for this problem was to deploy the deep learning model on a microcontroller 

to run inference locally rather than transmitting the full sequences of raw data to the cloud. Thus, the 

developed CNN model was deployed in the Arduino Nano 33 BLE Sense board using the TensorFlow lite 

Arduino library because it is the only model supported by the board. Hence, further analysis was performed 

on the CNN model. Figure 4 shows the graph of the training history with respect to the loss function. As can 

be seen in the figure, the classification loss was drastically reduced. Finally, Figure 5 shows the confusion 

matrix resulting from training of the CNN model with the optimal hyperparameter. As can be seen, the model 

has achieved high accuracy in classifying the three classes in the training dataset.  

 

 

  
 

Figure 4. Graph of the training history 

 

Figure 5. Confusion matrix 

 

 

3.2.  Inference time (response time) with different sampling rates 

The latency in the traditional IoT architectures was one of the problems that the research intended to 

solve. Therefore, the proposed solution for this problem was to deploy the deep learning model on a 

microcontroller to run inference locally rather than transmitting the full sequences of raw data to the cloud. 

Thus, the developed CNN model was deployed in the Arduino Nano 33 BLE Sense board using the 

TensorFlow lite Arduino library because it is the only model supported by the board. 

The inference time could be further enhanced where it depends on the inputs of the model such as 

the sampling rate and the window widths of the input. Hence, the fall detection inference time test was 

conducted on four different sampling rates. Table 3 shows the achieved inference time at each sampling rate. 

As can be seen from Table 3, the inference time was significantly influenced by the reduction of the sampling 

rate hence, high computational efficiency was achieved. This is due to the decrease in sampling rate leads to 

a decrease in the number of samples to form a 1.28s window of data that is required to make inferences. 

Therefore, the amount of data needed to be processed, computational power, and performed algebraic 

operations would be reduced. By this, the microcontroller would take less time to perform inference. 

 

 

Table 3. Achieved inference time at each sampling rate 
Sampling rate (Hz) Window size(samples) Inference time (μs) 

25 32 37842 

50 64 72347 
100 128 123078 

150 192 223782 

200 256 302887 
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3.3.  Power consumption of the different sensing unit versions 

Figure 6 shows the graph which was plotted for the sensing unit power consumption test which was 

conducted on three sensing unit versions. The x-axis on the graph is representing the battery life in an hour, 

while the x-axis is representing the number of events being transmitted by the sensing unit. It can be noticed 

that with considering a large number of events, up to 40 K, the sensing unit’s battery life is over 53 h when 

implementing the CNN model on the LoRa version of the sensing unit, over 38 h if the model implemented 

on the BLE version and only 8 h in the BLE sensing unit without embedded CNN model. This shows that the 

proposed solution has shown a huge improvement in terms of battery life over the traditional fall detection 

systems. This due to the fact that the proposed system only transmits information about the status of the 

elderly and battery condition rather than continuously transmitting the full sequences of raw data to the 

cloud. 

 

 

 
 

Figure 6. Sensing unit battery life 

 

 

3.4.  Range of the different sensing unit versions 

Table 4 shows the achieved communication range of the two technologies used for each scenario. It 

can be observed that the LoRa technology has achieved a communication range sixty times larger compared 

to BLE. For instance, in the line of sight (LOS) scenario, LoRa has achieved a communication range of  

180 meters while only 2 meters has been achieved with BLE in the same scenario. This is mainly due to the 

lower bandwidth and data rates used in LoRa, as well as the robustness of the LoRa-modulated signal. Also, 

it can be observed that when moving from LOS to the non-line of sight (NLOS) scenario, the communication 

range decreases. For example, the communication range decreased from 180 meters in the LoRa LOS 

scenario to a 150 meter in the NLOS scenario. Thus, it can be concluded that as the number of obstacles or 

barriers between the sensing unit and IoT gateway decreases, the communication range increases. This is due 

to the fact that the link budget is deducted by all sorts of obstacles between the sender and receiver. Thus, if 

the line budget is used up the receiver will only create some noise and no data will be received. 

 

 

Table 4. Achieved range by each communication technology 
Technology Scenario Achieved range (m) 

BLE LOS 3 

NLOS 2 

LoRa LOS 180 
NLOS 150 

 

 

4. CONCLUSION 

This work provides a study of the development of an enhanced accelerometer-based elderly fall 

prediction and detection system using deep learning with edge AI architecture. The obtained results reveal 

that the developed lightweight fall prediction and detection deep learning model was only 61.084 kilobytes, 

allowing the model to be executed into a microcontroller with only a few kilobytes of memory in real-time. 
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The model architecture with two convolutional layers has achieved 95.55% accuracy. Additionally, the 

testing of the inference time (response time) of the deep learning models with different sampling rates reveals 

that the fastest response time was obtained with a CNN model at a 25 Hz sampling rate which was  

(37.84 ms). The tested consumption and range with two versions of the sensing unit LoRa and the BLE 

version indicate that it is possible to use small batteries where the LoRa version has achieved the best 

performance. The LoRa version was able to achieve a range of 180 m, with only 37.72 mA current 

consumption during transmission mode which meets the low-power wide-area network (LPWAN) 

requirements.  
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