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 A fast and accurate iris recognition system is presented for noisy iris images, 

mainly the noises due to eye occlusion and from specular reflection. The 

proposed recognition system will adopt a self-customized support vector 

machine (SVM) and convolution neural network (CNN) classification 

models, where the models are built according to the iris texture GLCM and 

automated deep features datasets that are extracted exclusively from each 

subject individually. The image processing techniques used were optimized, 

whether the processing of iris region segmentation using iterative 

randomized Hough transform (IRHT), or the processing of the classification, 

where few significant features are considered, based on singular value 

decomposition (SVD) analysis, for testing the moving window matrix class if 

it is iris or non-iris. The iris segments matching techniques are optimized by 

extracting, first, the largest parallel-axis rectangle inscribed in the classified 

occluded-iris binary image, where its corresponding iris region is cross-

correlated with the same subject’s iris reference image for obtaining the most 

correlated iris segments in the two eye images. Finally, calculating the iris-

code Hamming distance of the two most correlated segments to identify the 

subject’s unique iris pattern with high accuracy, security, and reliability. 

Keywords: 

Biometrics 

Iris segmentation 

Iterative randomized Hough 

transform 

Largest inscribed rectangle 

Normalized cross-correlation 

Occluded iris classification 

Self-customized SVM 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Hiam Alquran 

Department of Biomedical Systems and Informatics Engineering 

Yarmouk University 

566 Shafiq Irshidat Street, Irbid 21163, Jordan 

Email: heyam.q@yu.edu.jo 

 

 

1. INTRODUCTION  

The security is a crucial issue; it needs precise and robust alternatives or support to password and 

personal identification number (PIN) because the computer hacking is greatly rising permanently [1]. 

Biometric technology treats such problems, because of an individual's biometric data uniqueness and cannot 

be converted nor transferred [2]. One of the most common techniques in biometric recognition systems is iris 

recognition [3]. It utilizes pattern recognition methods based on high-quality iris images [4]. The diversity of 

the iris texture is appropriate for using it in biometric systems; in addition to its intrinsic isolation and 

protection from the external environment [5]. The iris texture pattern is a phenotypic feature (genetically 

independent) and is stable over time [6], [7].   

Several methods have been proposed to segment the iris and classify it from the non-iris region. Paul 

[8] extracted iris features using Gabor filter after utilizing Hough transform for iris region localizing and then 

feed the proposed features to Hamming distance classifier. Radu [9] designed multiple classifiers to enhance 

the iris recognition of noisy eye colored images by extracting the iris colored features. Kekre [10] used Haar 

https://creativecommons.org/licenses/by-sa/4.0/
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wavelets to extract the iris features at different levels of decompositions. Sushilkumar [11] utilized a 1D 

Gabor filter to specify the features in two different classifier algorithms, the support vector machine (SVM) 

classifier and the neural network classifier for comparison. 

There are two major approaches for iris segmentation; Daugman’s integrodifferential operator and 

Hough’s transform [12], [13]. Daugman’s operator is the most common method in iris recognition [14]. Wild 

utilized the canny edge detection followed by circular Hough transform to localize the iris region [15]. Tissue 

et al. proposed the integrodifferential operator (IDO) followed by Hough transform to localize the iris region, 

their approach reduced the computation time, but without considering the eyelids and eyelashes in their 

computation [16]. 

Puhan and Kaushalram used a different approach for detecting the iris of noisy frontal view eye 

images based on Fourier spectral density [17]. Grabowski et al. proposed a solution for iris segmentation that 

their images were taken near-infrared light, their algorithm is depending on analyzing the histograms of the 

images [18]. Image statistics was one of the active tools in iris localization used by Ibrahim et al. [19], 

whereas, Jan et al. enhanced the previous approach by adding the HT to the algorithm to localize the iris [20]. 

Hough transform is the most commonly used method to detect regular shapes in binary images [21]-[27]. 

Circular Hough transform detects the circular shape boundaries. The characteristic equation of any circle is 

represented by the (1) [28]: 

 

(𝑥 − 𝑥𝑜)
2 + (𝑦 − 𝑦𝑜)

2 = 𝑟2 (1) 

 

where 𝑥 = 𝑥𝑜 + 𝑟𝑐𝑜𝑠(𝜃) and 𝑦 = 𝑦𝑜 + 𝑟𝑠𝑖𝑛(𝜃) 
This method is complex, and it needs high computation time, therefore the accumulator points can 

be generated by selecting n points from the edge points randomly to generate the cone in Hough space, this is 

called a randomized Hough transform [29]. The accuracy of this approach depends mainly on the number of 

randomly chosen points [30]-[34]. 

Several authors suggested another algorithm for Hough transform which is called iterative Hough 

transform. It is started with forming an accumulator vote cells with a coarse and uniform resolution in 

parametric space [35], [36], where the cells that are registered with higher votes at this resolution, will be 

investigated in the higher resolution and soon until it converges to an acceptable level of accuracy in a course 

to a fine adaptive approach. This approach has been used by Adiv [37] to search for motion parameters in 

high-dimensional spaces, and by Silberberg [38] to identify the parameters that determine the shape model. 

One main disadvantage of high resolution in the parameter space is that the votes are distributed sparsely, 

therefore, clustering them is needed. Silberberg et al. [38] described an iterative Hough procedure where 

“initially, a sparse, regular subset of parameters and transformations is evaluated for goodness-of-fit, and 

then the procedure is repeated by successively subdividing the parameter space near current best estimates of 

peaks”. Different applications have been developed using iterative random Hough transform IRHT, such as 

in fetal head part detection in ultrasound images [39]. 

Before applying the Hough transform to the iris images, several pre-processing techniques are 

applied to discriminate against the iris region from the non-iris region precisely. Controlling on the 

conditions during capturing iris images makes the iris localization and recognition more efficient. These 

conditions are including lighting, eyelids, eyeglasses, and occlusion [20], [40], [41]. Iris segmentation means 

localizing the actual part of the iris, and excluding the eyelids, occluded parts, shadows, reflections, or 

eyelashes [42]. Failure in iris matching has resulted mainly from inaccurate segmentation [43]. Kumer et al. 

[13] proposed a method that uses circular Hough transform and the IDO for binarizing the pupil then using 

CHT to find the iris outer boundaries.  

Daugman’s IDO is used mainly for denoising the given image by removing the upper and lower 

eyelids and localizing the iris portion [44]. The operator evaluates the partial derivative of the average 

intensity of the circular points concerning the radius r. For detecting the upper and lower eyelids, a 

modification on the contour integration is performed for localizing the iris region as a parabolic curve [14], 

[45]. Wildes used both edge detection and Hough transform to define the eyelids using the parabolic curve 

and Hough transform parameter instead of using a circular Hough transform [15]. Eyelashes detection was 

the main goal of Kong et al. algorithm, where they used the Gabor filter and variance of intensity to 

categorize the eyelashes into separable and multiple. The separable eyelashes were detected by the 1D Gabor 

filter, whereas multiple eyelashes were discriminated against by the variance of intensity [46]. Cui et al. [47] 

used a different approach based on texture segmentation to detect the upper and lower eyelids. They 

compared the energy spectrum of each region with the eyelashes, and they noticed that the region of 

eyelashes is characterized by a high spectrum, whereas, the upper eyelashes are detected as a parabolic curve. 

Proenca and Alexandre proposed an iris segmentation algorithm based on the Fuzzy-k-mean 

clustering classifier algorithm and intensity features extracted from the iris region followed by using a Hough 
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transform for iris localizing [48]. Richard et al. proposed an algorithm to compensate four types of noises 

[49], their algorithm started with localizing the pupil by thresholding and circular Hough transform, defining 

the outer iris boundaries to localize the outer iris, detecting the upper and lower eyelids, removing eyelashes, 

reflection, and pupil noises by thresholding. Mahmoud and Ali utilized the linear Hough transform for 

localizing the boundaries between upper and lower eyelids in the occluded iris images [50].  

Another group of researchers focused on finding the largest rectangle in the iris region [51], [52], 

therefor defining the largest rectangle (LR) that can be inscribed in geometrical shape is an optimization issue 

[53]. Many researchers have extensively addressed this problem; Chazelle et al. [54], [55] proposed an 

algorithm to find LR that its sides are parallel to the n given points with computational time O(n log3 n) and 

O(n log n) space. Aggarwal et al. [56] enhanced Chazelle’s group algorithm by reducing the space to O(n), 

but Daniels et al. developed the algorithm to find LR within n-vertex general polygon and they also 

optimized the largest rectangle for orthogonal and non-orthogonal polygons with running time O(n log2 n). 

In addition, the proposed algorithm to find the largest empty rectangle in both self-intersecting polygon and 

general polygons with holes with running time O(n log n) [57]. McKenna et al. [58] used a divide-and-

conquer algorithm to optimize the largest rectangle within geometrical shape with time O(n log5 n). They 

also find the largest rectangle in polygons with holes in O(n log n) time. The authors of this paper will use 

their enhanced approach for finding the largest inscribed rectangle in the iris region based on course to the 

fine hierarchical approach which runs in O(log2 n) time [59]. 

The novel contribution of the present study is to enhance the accuracy and the speed of the occluded 

iris recognition, where the proposed approach of designing the classifier model is customized for each 

subject’s unique texture to build its SVM classifier model, where the accuracy of segmenting the iris non-

occluded region is subject to that individually-tailored SVM classifier model and therefore optimizing the 

specificity of the designed model. 

 

 

2. RESEARCH METHOD  

The developed methodology captures a grayscale image of the human iris, then the acquired image 

will be subjected to different processing techniques to detect the iris even when it occluded. The sequence of 

processing algorithms is shown in the flowchart of Figure 1. 

 

 

 
 

Figure 1. Developed metholdogy flowchart 

 

 

2.1.  Experimental setup and image acquisition 

The experiment was conducted on 30 volunteers from our institute, with ages range 20-30 years old 

and healthy, normal eyes. For each subject, the images were acquired for both eyes (right and left) using the 

IrisGuard IG-AD100 iris camera connected to the computer by USB connection. It captures eye images with 

distance 21-37 cm (8.3"-14.6") [60]. Each subject was asked once to open his eyes fully to acquire his 

reference eye images, and next was asked to occlude his eyes partially to acquire the occluded eyes images. 

 

2.2.  Features extraction and selection 

Iris features must be extracted to discriminate between the iris and non-iris region [61]. In this 

paper, texture features (Halarick features) were extracted using the Grayscale co-occurrence matrix (GLCM) 

[62]. GLCM contains information about the frequency of the occurrence of two neighboring pixels 

combination in an image, and it is better than other texture discriminations methods [63]-[65]. To reduce the 

number of features to the most significant ones, singular value decomposition was applied to the whole data 

of the iris and non-iris regions [66]. The subject asked to capture the eye image with full eye-opening 

(reference image). The iris was localized by IRHT. Then the iris region was segmented, and the moving 

window size was 15 with step 7 sliding over the iris region where the most five significant features are 

evaluated and stored in a matrix. 

 

2.3.  Support vector machine (SVM) classifier design 

Support vector machine (SVM) is one of the most commonly used and known supervised machine 

learning algorithms in general and especially in biometrics. It is originally used for the classification of data 
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into two major classes and later on a generalized model proposes for multi-class classification [67]. A pre-

defined training dataset is used to construct a model that represents a hyperplane model used to predict a new 

testing partition of the class. In this paper a customized classifier model for each subject is built by using 

radial basis (RBF) SVM has been built.  

 

2.4.  Convolutional neural network (CNN) 

The deep learning algorithm in this research is utilized in two scenarios, in the first one it is used to 

classify the iris region and in the second one, it is used in features extraction for each subject and use it in 

building a self-customized SVM model. A convolutional network is a kind of neural networks that employ 

the convolution operation at least one time in their layers. It is utilized the machine learning algorithms in 

various fields such as segmentation, classification and regression as well. The pre-processing stage here is 

not required as other classification algorithms. It consists of an input layer, an output layer, and many hidden 

layers. The most distinguished feature of CNN is the architecture of hidden layers. These hidden layers are 

convolutional layer, which is responsible for detecting high details of the image, by specifying the number of 

filters and the stride. The pooling layer reduces the dimension and extracting the most important features by 

applying one of two methods, max pooling or average pooling. The rectified layer guarantees that all values 

are positive. The most commonly used function in that layer is the rectified linear unit (RELU) function [68]. 

Finally, a fully connected layer which is used to describe the best label for the given image [69]. A fully 

connected layer is often ended by a softmax layer which applies a softmax function to its input, which is 

expressed by the (2). 
 

𝑓(𝑥𝑖) =
exp⁡(𝑥𝑖)

∑ exp⁡(𝑥𝑖⁡)𝑗
 (2) 

 

Softmax function bounded the output between 0 and 1, therefore, the output can be interpreted as a 

probability. In this paper, we employed the corresponding CNN architecture in the iris segmentation region 

and in extracting its distinguished features. Figure 2 shows the architecture of the used CNN model. 

 

 

 
 

Figure 2. Used convolutional neural network (CNN) architecture [69] 

 

 

The input is a grayscale image with size 32×32, and the first convolutional layer uses 32 filters with 

size 3×3 and padding zeros is one, whereas the rest convolutional layers use 16 filters with the same size, 

except the third one uses 8 filters only. To accelerate the training stage in CNN, and to decrease the 

sensitivity of the network initialization, the batch normalization layer is added between the convolutional 

layer and the nonlinearity layer (RELU) [10], [69]. Max pooling layer is employed in the suggested CNN 

with window size 2×2 and increments 2 pixels as well. The output layer consists of a fully connected layer 

with an output size 10, a softmax layer, and a classification layer.  
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2.5.  Self-customized hybrid model 

Instead of handcraft GLCM features extraction, CNN is utilized in extracting the deep features 

automatically for each subject individually. By storing the labeled windows for the iris region of the 

reference image. The features are extracted from the fully connected layer. These features are most 

distinguished for each person exclusively. The extracted descriptors are fed to the SVM classifier to build the 

model for each subject independently. This model is tested using the occluded iris region that is segmented in 

the previous scenario and the hamming distance is computed between two regions. 

 

2.6.  Classifier training 

The training stage is started by extracting five features from window size 15 ∗ 15 in iris and non-iris 

region in the reference image for each subject individually. The iris region is labeled as 1 and the non-iris 

region is labeled as 0 as well. The cross-validation procedure is exploited in this paper by partitioning the 

training two equal subsets, one subset is used for training and the other for testing. The initial input value for 

the kernel width  and 𝐶⁡(constraint parameter) which is called box constrain is 1, the optimization procedure 

is employed to choose the most optimal parameters to achieve stricter separation between two classes [67]. 

The optimum value was obtained from the cross-validation procedure is passed into the training stage to get 

the final subjective SVM model, which is used to classify the test data. 

 

2.7.  Occluded eye classification 

The occluded eye is passed to the IRHT to localize the iris region, which includes the iris and the 

non-iris partitions. Then five features are extracted from the selected region using a moving window of size 

15𝑥15 and step size 7. These features are stored in a matrix and it is tested using a model structure that was 

computed in the training stage for the same subject. The output image shows the iris region and excludes the 

non-iris part. Figure 3 shows the occluded iris segmentation using iterative random Hough transform (IRHT). 

 

 

 
 

Figure 3. Occluded Iris region segmentation using IRHT 

 

 

2.8.  Occluded iris segmentation and classification 

Once the user’s eye image (occluded in general) is acquired, the processing for finding both the 

pupillary boundary and the outer (limbus) boundary of the iris will start, first by determining the three 

parameters defining the pupillary circle. Before obtaining the circle parameters of the pupil using Hough 

transform, a pre-processing stage is required, where the eye’s image is converted to a binary image and then 

computing the image complement of the result which is followed by applying opening morphological 

operation with proper structuring element shape and size to remove any remaining protrusions, then filling 

the holes in the white regions is applied followed by removing any small objects. The white objects in the 

image from the previous step will be labeled for finding the white object with the lowest Eccentricity which 

indicates a circular shape. Also, of finding the Eccentricity, the centroid and diameter of each object will be 

calculated exploiting the function region props. The object with the lowest Eccentricity will be separated and 

then its convex hull will be obtained to make the pupil white object shape closer to the circle where then the 

canny edge detection algorithm is applied for finding the pupil boundary.  

The result of using is the optimal circles surrounding the iris region after finding the optimal 

parameters of the pupillary boundary and the outer (limbus) boundary of the iris. To accelerate the HT 

processing running time, a 3-D Accumulator grid with size: 5×5×5 was generated using the "ndgrid" function 

contains the three-circle parameter ranges, where 5 is the resolution of each parameter range. The 53 

Accumulator grid elements are calculated as:  

 

(𝑥 − 𝑥𝑜)
2 + (𝑦 − 𝑦𝑜)

2 − 𝑟2 (3) 
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where x and y are the coordinates of boundary pixels respectively, xo, yo, and rare the ranges of the x-canter, 

the y-center, and radius respectively each with resolution 5 for each iteration, and these ranges will be 

progressively finer precision at successive iterations. This step will speed up the processing time to a higher 

rate instead of using three for-loops at each iteration. As the iris region is precisely determined, the 

classification stage using the adopted self-customized SVM algorithm will start after retrieving the user’s two 

stored files of the classification model structure and the eye reference image (non-occluded iris eye image). 

For accelerating the classification phase, the classification algorithm will be applied only to the region that is 

confined in between the two red circles and above and below the green dashed lines. The result of applying 

this self-tailored algorithm using the user’s classification model parameters. The algorithm will be applied on 

a white matrix with the same size as the eye original image and the black pixels shown are for the classified 

pixels as non-iris pixels which are supposed to indicate to the occluded partition of the iris region. 

As it was explained in the section of “Occluded Eye Classification”, the five classifier features are 

extracted from the moving window submatrix of size 15x15 and step size 7 and then fed to the SVM 

classifier algorithm to classify the submatrix center as iris pixel and given a value one (white) or non-iris 

pixel and given a value zero (black). The opening morphological operator is applied with a structuring 

element of disk shape and size greater than the moving window step size to connect between the neighbor 

black pixels. The small black regions from the previous result are then removed after computing the 

complement of the image and applying the function “bwareaopen” with proper size and then taking the 

complement of the result. Also, to eliminate the impact of the specular reflection, the indices of the pixels in 

the original eye image with intensity above a certain threshold will be identified for zeroing the 

corresponding pixels in the classification result. Once the iris region is successfully classified, the doughnut-

shaped iris region pixels are remapped from Cartesian coordinates to the normalized non-concentric polar 

coordinates using the homogeneous rubber sheet model suggested by Daugman [7]. The result of remapping 

the pixels of the image that are confined between the two red circles and then normalization the result by 

resizing the resultant matrix to 50×500 where the remapping starts at the green dashed line which indicates 

the mapping angle zero position. The normalization process will produce iris region with always the same 

dimensions regardless of pupil dilation due to various illumination level. Figure 4 describes the segmentation 

and classification result. 
 

 

 
 

Figure 4. Iris region classification into iris and non-iris region 
 

 

2.9.  Finding largest inscribed rectangle and iris segments matching 

Next, the algorithm of detecting the largest parallel-axis rectangle inscribed in the white region of 

the image is applied where the largest rectangle is shown in gray color. The algorithm used for this process 

was coarse-to-fine hierarchical approach proposed by the authors [59]. The iris region in the original eye will 

be remapped using the rubber sheet model and the same IRHT circle parameters used before. The calculated 

largest parallel-axis rectangle coordinates that were assigned before will be used to segment the iris non-

occluded partition in the remapped iris region of the original eye image and its segment, and this segment 

supposed to represent the iris region that is free from any type of noise such as occlusion or specular 

reflection. 

Finally, the iris matching stage between any future acquired eye image (occluded in general) and its 

reference image (not-occluded) is starting by determining the best matching partition in the reference 

remapped iris image with the remapped iris partition in the occluded eye image, which is done by applying 

the normalized cross-correlation algorithm. The result of normalized cross-correlation between the images. 

The position of the maximum normalized cross-correlation in the reference iris image is then obtained and 

the coordinates of the corresponding matching segment in the reference remapped iris image is determined. 

The two matched segments from the maximum normalized cross-correlation are then extracted for the final 

phase of biometric iris recognition which is calculating the iris-code Hamming distance employed by 

Daugman [7]. Figure 5 shows the largest rectangle that is containing the iris region.  
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Figure 5. Largest rectangle 

 

 

2.10.  Iris segmentation 

The previously mentioned CNN architecture is employed in this paper to classifying the iris region 

from the non-iris region. The database for each class was generated by applying windows with size 15×15 for 

both regions from different subjects with full eye-opening, and each one is stored in a folder with its region 

name. The total number of extracted regions are 17258 for both labels. The output after applying the deep 

learning strategy on the reference eye is as shown in figures. 

 

 

3. RESULTS AND DISCUSSION 

This section will show the results of each step discussed in the research methodology, then we will 

discuss these results. Figure 6 shows the process of detecting the pupil boundary using the IRHT algorithm 

and canny edge detection. After the detection of the pupil, the occluded iris will be detected using the 

proposed methodology using IRHT on the eye image where the features extraction and classification process 

will be applied on the area outside the pupils Figure 7 shows the region for features extraction and 

classification for occluded iris detection and segmentation. After detection of the region of interest for iris 

detection and segmentation, the GLCM features are extracted and fed to the SVM classifier which is used for 

iris detection for segmentation purposes. Figure 8 shows the classification results of iris region features using 

the SVM classifier. 

 

 

 
 

Figure 6. Preparing stage before applying the IRHT algorithm; (a) Eye original image, (b) Binarization of the 

image in (a) using the proper threshold, (c) The complement of the image in (b), (d) Separating the object 

with the lowest eccentricity, (e) Computing the convex hull for the image in (d), (f) Obtaining the pupil 

boundary using a Canny edge detector 

 

 

 
 

Figure 7. The iris region of the eye image is precisely positioned using IRHT and surrounded with two red 

circles, the iris region classification using adaptive SVM algorithm will be confined in between the two red 

circles and above the upper green dashed line and below the lower dashed line only 
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(a) (b) (c) 

 

Figure 8. The classification result of using three adaptive classification algorithms (SVM, CNN, and hybrid 

between them) with parameters corresponding to the user only, the black pixels indicate the non-iris region or 

the occluded partition of the iris region; (a) Represents the classification using SVM with GLCM features,  

(b) Represents the CNN model with deep features, (c) Represents SVM with automated deep features 

 

 

After detection and classification of the iris region, it is time to extract the iris region of interest for 

similarity finding purposes, Figure 9 shows the detected and segmented region of iris that will be used for 

similarity finding. The small black regions and the specular regions are removed using proper removing size 

and threshold respectively. The green dashed line indicates the starting mapping angle 0 in the angle mapping 

direction of the rubber sheet model. Then, when after we detect the region of the iris, we remap it to 

Cartesian coordinates for the largest rectangle area detection for similarity finding and calculation purposes 

which are by removing the eyelashes area. Figure 10 shows the remapped area of the iris area in Figures 9 

and 11 shows the largest rectangle area detected on the remapped image. 

 

 

 
 

Figure 9. The classification result after applying opening morphological operator with a structuring element 

of size 10 and shape disk 

 

 

 
 

Figure 10. The homogeneous rubber sheet model is assigned to each pixel in the iris region for remapping, 

and the resultant matrix is always resized to 50×50, the surrounding black frame is only for illustration 

 

 

 
 

Figure 11. Detection the largest inscribed parallel-axis rectangle in the white region, displayed in gray color, 

which corresponds to iris partition in the iris region, the surrounding black frame is only for illustration 

 

 

Finally, the detected largest rectangle area will be used for extracting the iris details from the 

remapped segmented original iris region. Figure 12 shows the remapped segmented iris region from the 

original eye image where Figure 10 shows the selected largest rectangle from the remapped original eye 

image. Finally, Figure 11 shows the cropped iris region based on the selected area. The homogeneous rubber 
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sheet model is assigned to each pixel in the iris region for remapping using the same IRHT circle parameters, 

and the resultant matrix is always resized to 50×50 as shown in Figure 12. 

 

 

 
 

Figure 12. The homogeneous rubber sheet model is assigned to each pixel in the iris region for remapping 

using the same IRHT circle parameters, and the resultant matrix is always resized to 50×50 

 

 

The The largest parallel-axis rectangle coordinates shown as blue frame corresponds to the iris non-

occluded partition as it is clear in Figure 13. The resultant image is shown in Figure 14, which is the non-

occluded segment of iris in original image. Then for similarity finding and calculating using hamming 

distance purposes we use a non-occluded iris image as a reference for measuring the hamming distance and 

the same process for cropping the iris area will be applied. Figure 15 shows the detected iris area on the 

reference image and Figure 16 shows the cropped iris area for hamming distance calculation purposes. After 

we have two regions one from the reference image with non-occluded iris and the other from the occluded 

iris image, we can calculate normalized cross-correlation between the two regions. Figure 17 shows the 

normalized cross-correlation between the two regions. 

 

 

 
 

Figure 13. The largest parallel-axis rectangle coordinates shown as blue frame corresponds to the iris non-

occluded partition 

 

 

 
 

Figure 14. The iris non-occluded segment in the original eye remapped image 

 

 

 
 

Figure 15. The user’s reference eye image for Subject 1 with localizing of the iris region is shown in between 

two red circles using the IRHT algorithm 

 

 

 
 

Figure 16. The homogeneous rubber sheet model remapping is applied to the user’s reference eye image and 

resized to 50×500 

 

 

Based on the calculated normalized cross-correlation we can find the maximum cross-correlation 

region between the two images (the reference and the occluded image). Figure 18 shows the maximum cross-

correlation area selected from the non-occluded (reference) and Figure 19 shows a comparison between the 

reference and the occluded images. Finally, after finding the maximum normalized cross-correlation are 
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between the occluded and non-occluded areas we use these two areas to find the hamming distance between 

them for identification purposes. Table 1 shows a comparison between the three used models based on the 

resultant hamming distance. 

 

 

 
 

Figure 17. The result of applying a normalized cross-correlation algorithm between the iris not-occluded 

partition image and the reference iris image, the result displays a peak value for the position of the two 

images matching 

 

 

 
 

Figure 18. The blue frame displays the position of the maximum normalized cross-correlation between the 

iris segment of the occluded eye image and the iris image of the entirely full-iris eye image 

 

 

 
 

Figure 19. The two matched iris segments from the reference and occluded images respectively, local 

histogram equalization was implemented for display enhancement purposes and the surrounding black frame 

is only for illustration 

 

 

Table 1. The hamming distance between occluded and non-occluded based using three models 

Subject's number 
Hamming distance using 

SVM and GLCM 

Hamming distance using 

CNN 

Hamming distance using 

SVM and deep features 

Subject 1 0.131 0.225 0.113 
Subject 2 0.169 0.163 0.153 

Subject 3 0.141 0.108 0.127 

Subject 4 0.125 0.257 0.111 

Subject 5 0.146 0.112 0.128 

Subject 6 0.191 0.162 0.186 

Subject 7 0.18 0.271 0.163 
Average 0.155 0.185 0.140 

 

 

As shown in Table 1 the hamming distance varies between 0.1-0.3, this range is acceptable when it 

is compared with previous studies. Due to the large iris texture variety among people, the contribution of 

texture and deep features in describing the iris texture is large as well for different subjects. This large 

variance will necessarily require different construction to the hyperplane of the support vector machine 

(SVM) classifier to get the best hyperplane that represents the largest separation, or margin, between the two 

classes or the hyperplane that the distance from it to the nearest data point on each side is maximized. The 

designing of the SVM model using a large dataset of iris segments from many different people in the training 

stage, will not achieve the desired goal of constructing a hyperplane with a high margin between the two 
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classes of iris and non-iris. Therefore, it is more reasonable and reliable to build an SVM and CNN models 

associated with each subject exclusively, where the related SVM and CNN models and therefore, the 

classifier hyperplane will be built according to the contribution of the most significant five texture features or 

two deep using CNN features for each subject’s iris uniquely. The successful classification will necessarily 

lead to an accurate iris largest parallel-axis rectangle segmentation result which in turn be matched 

successfully to the associated partition in the retrieved reference iris polar image, and therefore, very low iris-

code Hamming distance value in recognizing the same subject. Table 2 describes the comparison between the 

proposed method and the existence methods in literature. 

 

 

Table 2. A comparison between proposed methods and literature 
Reference Method Accuracy % 

[70] Template Fusion 99.70 
[71] Template Matching and ANN 98.77 

[72] Bidirectional Memory Model 98.00 

[73] CNN 97.32 

[74] Modified Logistic Map 99.08 

This Paper 

GLCM and SVM 98.63 

CNN 97.12 
SVM and Deep Features 99.89 

 

 

4. CONCLUSION  

The proposed noisy iris recognition system is fast and accurate and that by improving and 

optimizing the used image processing techniques, whether in processing the iris region segmentation using 

IRHT or in designing the classification model, where few significant subjective GLCM and deep features are 

selected for testing the skipped moving window matrix using the subjective SVM and CNN models. Also, 

only small iris partitions are selected for classification in the iris region that are most likely exposed to 

occlusion in general, which significantly accelerates the computation time. The time complexity of the used 

RBF kernel in the SVM classifier is O (nSV×d) where nSV is the number of support vectors and d is the 

number of selected features. When the number of support vectors is large the complexity is reduced to O(d)  

The novelty of the proposed approach lies in exploiting the complexity, uniqueness, and stability of human 

iris texture and accordingly, its classifier descriptors uniqueness which varies significantly depending on the 

eye-iris texture where some persons have more textured irises than others and therefore, the number of the 

most independent features may vary significantly as well. The adopted algorithm using the SVD method in 

selecting the most independent with independence. Because of the identification security and 

authentication issues are crucial for ensuring the successful adoption of an appropriate biometric 

identification security system, this approach provides such a secure and authenticated system. 
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