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 In the compression of medical images, region of interest (ROI) based 

techniques seem to be promising, as they can result in high compression 

ratios while maintaining the quality of region of diagnostic importance, the 

ROI, when image is reconstructed. In this article, we propose a set-up for 

compression of brain magnetic resonance imaging (MRI) images based on 

automatic extraction of tumor. Our approach is to first separate the tumor, the 

ROI in our case, from brain image, using support vector machine (SVM) 

classification and region extraction step. Then, tumor region (ROI) is 

compressed using Arithmetic coding, a lossless compression technique. The 

non-tumorous region, non-region of interest (NROI), is compressed using a 

lossy compression technique formed by a combination of discrete wavelet 

transform (DWT), set partitioning in hierarchical trees (SPIHT) and 

arithmetic coding (AC). The classification performance parameters, like, dice 

coefficient, sensitivity, positive predictive value and accuracy are tabulated. 

In the case of compression, we report, performance parameters like mean 

square error and peak signal to noise ratio for a given set of bits per pixel 

(bpp) values. We found that the compression scheme considered in our set-

up gives promising results as compared to other schemes. 
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1. INTRODUCTION  

Hospitals and diagnostic centers produce enormous medical image data every year using various 

imaging techniques like, magnetic resonance imaging (MRI), computed tomography (CT) scan, and 

ultrasonography [1]. This has led to use of compression techniques for efficient storage of images in their 

picture archives for future use. Also, there is a growth in telemedicine field [2], wherein the doctor can access 

patient’s information from a remote place. In the ongoing covid19 pandemic [3] kind of situation, 

telemedicine is the best mode of contacting doctors and getting suggestions from them. For transmission of 

patient’s data through a network, the data needs to be compressed in order to reduce transmission time. 

Therefore, medical image compression plays a key role [4] in storage and transmission of patient’s data, 

since most of data comprises radiological scans of a patient. In the case of medical images, hybrid 

compression techniques based on ROI would be advantageous [5]. The diagnostically important region, 

region of interest (ROI) in the image, can be compressed using a lossless technique and the remaining part, 

referred to as non-region of interest (NROI), can be compressed using lossy technique. This leads to high 
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compression ratios of medical images as lossy compression is used and most of the image is NROI, while 

ROI remains undistorted when image is reconstructed, as it undergoes lossless compression.  

We have focused on compression of MRI brain images based on automatic extraction of tumor. In 

this case, one of the common types of brain tumor, the gliomas, which emerge from glial cells of the brain, 

are considered to be ROI. Once the doctor suspects the brain tumor, the patient is suggested to undergo 

radiological brain scan to get it confirmed. MRI is non-invasive, able to provide soft tissue contrast and safer 

for patient’s health [6]. Once the scans are obtained, the expert locates the tumor, determines the size and its 

effect on adjacent tissues, so that a proper planning on treatment can be done. MRI scans are voluminous and 

tumor presence shall be there in many slices and hence, manual delineation of tumor by expert consumes lot 

of time and also varies from one expert to other. Therefore, a computer aided automatic extraction of tumor is 

needed for faster execution of task, reproducibility and being close to manual effort.  

On automatic extraction of ROI and hybrid compression based on ROI, many researchers have 

worked in varied directions. For tumor segmentation, machine learning algorithms [7] are commonly used. A 

combination of k-means and fuzzy c-means (FCM) clustering [8] can be used in automatic segmentation of 

tumor. Improvements in this technique can be seen in [9], [10] with respect to reduction of computational 

load and robustness against noise. When intensity inhomogeneities and tissue overlapping are present, 

clustering is not so effective. Support vector machine (SVM) technique [11], [12] has been used for 

segmentation of tumor, and this has demonstrated great potential in terms of accuracy in detection of tumors 

[7]. Techniques based on deep neural networks are capable of identifying different regions of tumor like 

edema, active cells and necrotic core [13]-[16]. These networks demand a very large dataset, large 

computational power and resources, for handling large number of weights and intermediate results.  

We come across various versions in ROI based hybrid compression techniques. A MAXSHIFT 

operation is applied to ROI coefficients and then entropy coding is carried out in [17]. In Kaura and Wassona 

[18], ROI is compressed using context tree weighting technique and NROI by fractal image compression. A 

combination of discrete wavelet transform (DWT) and set partitioning in hierarchical trees (SPIHT) for ROI 

compression, and discrete cosine transform (DCT) followed by merging based Huffman coding for NROI 

compression can be seen in [19]. In Benyahia et al. [20], Wavelet packet transform combined with SPIHT for 

compression of medical images is considered and it is claimed that this combination works well as compared 

to other wavelet-based implementations. In Lakshminarayana and Mrinal [21], compressive sensing method 

is used for NROI compression. In Sran et al. [22], saliency-based FCM is used for ROI extraction, which is 

followed by encoding of ROI and background using SPIHT. In Dhouib et al. [23], regions of interest in brain 

MRI datasets are extracted hierarchically, then these regions are compressed with different bitrates according 

to their relevance. 

Our work considers a standard dataset, BraTS 2018 [24]-[26], which consists of brain MRI images 

of 285 cases of high grade gliomas (HGG) and low grade gliomas (LGG) attached with ground truth 

segmentation results. For our work, fluid attenuated inverse recovery (FLAIR) modality MRI images, which 

are helpful to outline tumor [24] are considered. In the proposed set-up, extraction of tumor region, the ROI, 

is automatic and is based on initial training. Therefore, performance is expected to be high. We propose 

arithmetic coding (AC) for compression of ROI, as the ROI data points have less variability in their values 

and also size of ROI being relatively small. This is substantiated by compression ratios obtained, which are 

high as compared to Huffman coding and JPEG lossless schemes. For NROI compression we propose DWT-

SPIHT-AC combination. The DWT for NROI is computed up to three levels, resulting large number of 

insignificant coefficients. The transformed NROI is efficiently coded by SPIHT which results in 

compression. Further, SPIHT output is applied to Arithmetic coder to increase compression ratios. Use of 

arithmetic coding allows us to induce less loss in SPIHT, contributing for higher quality in reconstruction. 

The proposed set-up can play an important role in Telemedicine applications. The remainder of the article 

provides details on implementation of compression of MRI brain images based on automatic extraction of 

tumor, performance parameters, results and related discussion, and finally conclusions that can be drawn 

from this work. 
 

 

2. COMPRESSION SYSTEM BASED ON AUTOMATIC EXTRACTION OF TUMOR REGION 

Figure 1 shows the block diagram of proposed compression and reconstruction set-up for brain MRI 

images. This system automatically extracts tumor, the ROI, from input brain MRI slice and separates it from 

the image. Then, the ROI is compressed using Arithmetic coding, a lossless compression technique. The 

NROI, the remaining part of input image after extracting tumor, is compressed using DWT-SPIHT-AC 

combination, a lossy compression technique. After compression, outputs from ROI and NROI are combined 

and stored in memory, or let into the communication channel. At the reconstruction point or at the place of 

expert, the data splitter separates the compressed ROI and NROI parts, then decompression is applied to get 

reconstructed ROI and NROI, which are further superimposed to get the reconstructed image.  
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(a) 

 
(b) 

 

Figure 1. Automatic ROI extraction-based compression system; (a) represents compression of ROI and NROI 

regions, (b) represents decompression leading to reconstruction 

 

 

2.1.  Preprocessing and ROI extraction 
The input to system is a brain MRI image of size 240x240 pixels, which is first fed to a 

preprocessing block. BraTS 2018 [24]-[26] dataset has MRI data obtained from various hospitals or scanning 

centers. Pixel intensity values of various images fall in varied ranges. Therefore, intensity normalization is 

performed to ensure that the input image has pixel intensity values in a common range, 0 to 255. This is done 

by setting the maximum pixel intensity value in the input image as 255 and all other low intensity pixel 

values are scaled by same proportion. Also, there is inherent noise in the image when it is acquired from MR 

scanners. The noise effect is minimized or nullified using anisotropic diffusion (AD) filter [27], [28]. It is a 

scale-space filter, characterized by diffusion equation depending on conductance function and image 

gradient. The performance of the filter depends on factors, like, gradient modulus threshold, conductance 

function and number of iterations, which are carefully selected [29]. This filter aims to blur out the noisy 

region, while preserving region boundaries in the image. The last step in preprocessing is the feature 

extraction, which involves computation of feature vector from neighborhood of each pixel of the input image. 

A feature vector has five elements representing mean, standard deviation, skewness, kurtosis and entropy 

[30]. These parameters are calculated from the neighborhood of every pixel in the input image. The 

neighborhood in this case is the area of 5x5 pixels, with the pixel in question at its center. Boundary 

extension is done for the image by adding two rows at top and bottom, and by adding two columns at left and 

right, which ensures proper neighborhood for the boundary pixels of the image. This leads to calculation of 

features corresponding to boundary pixels in a reasonable way. For an image of size 240x240, there are 

57600 pixels and hence there are 57600 neighborhoods. For each pixel, from its neighborhood, five features 

are calculated, resulting in a five-component feature vector. All these feature vectors are arranged to form 

individual rows of a matrix which has size 57600x5, thus forming the output of preprocessing. The 

preprocessed data is applied to support vector machine (SVM) classifier and ROI extractor.  

The SVM classifier is essentially a learned model which would have undergone training before it is 

incorporated in the compression system and using the same, tumor region/ROI in the input image is detected. 

The training is based on labelled dataset that leads SVM to come up with a decision hyperplane by 

maintaining maximized margin between feature vectors corresponding to different classes [12], [31]. In 

training phase, the training image is applied to preprocessing unit which results in a feature matrix 

(57600x5). The corresponding ground truth image is converted to a column vector, 57600x1. Here, every 
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element has the value +1, if the corresponding pixel in training image represents tumor, or -1, if the pixel 

represents non-tumorous part. The feature matrix and the ground truth vector are applied to SVM trainer. 

SVM operates with radial basis function (RBF) kernel with a scaling parameter of two. RBF helps in 

separation of tumorous and non-tumorous pixels with maximized margin in feature space. Once the training 

gets over based on minimization of squared magnitude of weight vector (leads to maximized margin between 

data points of two classes), the SVM model is stored and then used for classification of new images.  

In the case of classification, the SVM trained model receives the preprocessed data, which are 

feature vectors corresponding to each pixel of the input image. Each support vector (found during training) is 

paired with input feature vector and the corresponding radial basis kernel function is evaluated. Radial basis 

functions evaluated are multiplied to Lagrange multipliers and assigned a sign depending on output 

corresponding to support vectors (If the support vector corresponds to a tumorous pixel, the sign is positive). 

Now, the sum of products related to support vectors is taken which results in a value close to +1 or -1. If it 

results in a value close to +1, the feature vector corresponds to a tumorous pixel in the input image. Thus, all 

the pixels in the input image are classified as tumorous or non-tumorous, by applying corresponding feature 

vectors to SVM classifier. A small number of pixels may be misclassified as tumorous because of presence of 

inhomogeneity during acquisition of image, and they may appear as a separately connected region away from 

main tumor. These small regions are removed by setting appropriate threshold with respect to area. 

Once the tumorous pixels are determined, their positions in the input image can be easily determined 

by rearranging the output of SVM classifier, which is 57600x1. At those positions, the pixel intensity values 

of the input image can be forced to zero, which results in NROI image. Subtracting NROI image from the 

input image results in image consisting of only tumor region, i.e., the ROI image. Thus, the input image is 

split into ROI and NROI images. 

 

2.2.  ROI compression by arithmetic coder 

In this case, ROI is the tumor region which undergoes lossless compression. The ROI image is 

converted to a vector and can be viewed as one message, with pixel intensity values representing symbols. 

Since intensity variation in tumor portion is minimum and this image has a large background with intensity 

value zero, we can achieve very high compression ratios when we use Arithmetic coding instead of Huffman 

coding. We could have considered only tumor related pixels for compression, but then, we need to code the 

coordinate values of tumor pixels in the case of transmission, which becomes an overhead. Moreover, when 

ROI image is reconstructed, first-hand information about the position of tumor is easily available. 

We consider integer arithmetic coding which uses scaling [32] in the code generation. This 

technique finds an integer, ‘num’, which represents the message, whose binary form is transmitted. An 

interval [0, max_val) is created, where max_val is given by 2n – 1. Here, n is the number of bits in the 

codeword used to represent ‘num’, and it is chosen based on the total number of symbols in the message and 

the range required for the interval. When a first symbol is considered, a sub-interval related to this, is 

identified in the interval, with the lower-limit value and upper-limit value as defined in (1) and (2) 

respectively. This sub-interval becomes the new interval to be considered next. 

 

𝐿𝐿𝑛𝑒𝑤 =  𝐿𝐿𝑜𝑙𝑑 + ⌊
(𝑈𝐿𝑜𝑙𝑑−𝐿𝐿𝑜𝑙𝑑+1)×𝐶𝑢𝑚𝐶𝑜𝑢𝑛𝑡(𝑠𝑖−1)

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡
⌋  (1) 

 

𝑈𝐿𝑛𝑒𝑤 =  𝐿𝐿𝑜𝑙𝑑 + ⌊
(𝑈𝐿𝑜𝑙𝑑−𝐿𝐿𝑜𝑙𝑑+1)×𝐶𝑢𝑚𝐶𝑜𝑢𝑛𝑡(𝑠𝑖)

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡
⌋  − 1  (2) 

 

Here, LLold refers to lower-limit of the interval before a symbol is considered, LLnew is lower-limit of 

the new interval after a symbol is considered, ULold refers to upper-limit of the interval before a symbol is 

considered, ULnew is upper-limit of the new interval after a symbol is considered, CumCount(si) is the 

cumulative count of symbols up to symbol si, from s1, TotalCount refers to count of all symbols in the 

message and s0=0. 

When the next symbol is considered, a sub-interval is again identified in the present interval with its 

lower-limit and upper-limit values calculated as in (1) and (2), and this sub-interval becomes new interval. 

This process is continued till the end of the message and finally, the lower-limit of last interval due to last 

symbol transmitted, now referred as ‘num’ is transmitted in the form of binary codeword of n bits. 

Now, when the message length is too long, which is the case here, the interval range becomes 

smaller and smaller, which may result in the convergence of both the limits. To avoid this, rescaling of new 

interval is done in three circumstances; when both upper-limit and lower-limit of the interval lie in upper half 

of the previous interval, when both the limits lie in lower half of the previous interval and when both the 

limits lie in the middle half of previous interval. Whenever it is done, it is indicated by a bit-transmission 

contributing for the code of the message. 
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2.3. NROI compression using DWT-SPIHT-AC 

The NROI is a non-tumorous region of the image, which is compressed lossily but maintaining 

acceptable quality after reconstruction. For this, we consider DWT-SPIHT-AC combination.  

 

2.3.1. Discrete wavelet transform 

We apply 2D-DWT to NROI which at first, involves the convolution of each row of the image with 

hLP(n) (lowpass filter coefficients) and gHP(n) (highpass filter coefficients), then eliminating odd-columns of 

the output array in each case, further concatenate the outputs to form a transformed row. When all rows are 

transformed, we consider the convolution of each column with the same filter coefficients, eliminating odd-

rows of output array in each case, further concatenate the outputs to form a transformed column. When all the 

columns are transformed, we have a transformed image which contains four subbands referred as LL 

(lowpass-lowpass), HL (highpass-lowpass), LH (lowpass-highpass) and HH (highpass-highpass) [33].  

Figure 2 gives an idea of this transformation. 

NROI image has size 240x240 (same as input except the tumor pixels taking zero values). Each of 

the subbands mentioned above has a size 120x120. Thus, the transformed image has 4 quadrants, with top 

left occupied by LL subband, which has average coefficients approximating input image itself, as it is the 

result of lowpass filtering in both horizontal and vertical pass. The top right quadrant represents HL subband, 

which indicates vertical edges in the image, as it is the result of vertical averaging of horizontal differences. 

Interpreting similarly, the bottom left LH subband indicates horizontal edges and the bottom right HH 

subband indicates diagonal edges in the image. This transformation of NROI is referred as single level 

decomposition. Only LL subband has significant coefficient values. Most of the coefficients of remaining 

subbands have insignificant values. We go for three level decomposition wherein we again apply 2D-DWT to 

LL subband only, to see that most of the coefficients in the transformed image are insignificant so that high 

compression ratio can be achieved. After three level decomposition, LL subband has size 30x30.  

 

 

 
 

Figure 2. Position of subband coefficients after first level decomposition by 2D-DWT 

 

 

Lowpass and highpass filter coefficients used are given in Table 1. These are drawn from Cohen-

Daubechies-Feauveau (CDF) Biorthogonal wavelet families [33]. They are symmetric and can offer linear 

phase, which are essential in image applications. 

 

 

Table 1. Lowpass and highpass filter coefficients for decomposition 
hLP(n) = {0.0378  -0.0238 -0.1106  0.3774 0.8527 0.3774  -0.1106  -0.0238  0.0378} 

gHP(n) =  { -0.0645   0.0407   0.4181  -0.7885  0.4181  0.0407  -0.0645}   

 

 

2.3.2. Set partitioning in hierarchical trees (SPIHT) coder 

SPIHT is a hierarchical algorithm [34] that is effectively used to encode the coefficients resulting 

from wavelet decomposition. The coefficients are part of a tree structure, which originates from LL subband 

at the coarsest level of decomposition. Arrays of 2x2 Coefficients are formed and each array is a set of 

offsprings of a parent coefficient residing in the corresponding position in the lower resolution band. 

However, LL subband coefficients at the coarsest level, though grouped as 2x2 do not form offsprings of any 

coefficient. Out of every 2x2 coefficients in LL band of coarsest level, the top left coefficient does not have 

offspring. The parent-offspring relationship is shown in Figure 3 for a two-level wavelet decomposition. The 

algorithm maintains three lists; list of insignificant pixels (LIP), list of insignificant sets (LIS) and list of 

significant pixels (LSP). Apart from these, it maintains four sets, set R, which includes all root nodes, i.e., 

coefficients of LL subband in coarsest level. Set O (m, n) has coordinates of offsprings of coefficient at 

position (m, n). Set D (m, n) has coordinates of descendants of coefficient at position (m, n). The coordinates 
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of descendants span through subbands of finer decomposition levels available at positions corresponding to 

position (m, n), shown in Figure 3. Set L (m, n) for a coefficient at a position (m, n) holds the elements 

obtained by subtracting elements of set O (m, n) from set D (m, n). Initially, LIP is assigned to set R, LIS 

holds set of coordinates of those elements of R which have descendants and LSP is kept empty. An MSB 

(Most Significant Bit) value is calculated which is given by: 

 

𝑏 = ⌊𝑙𝑜𝑔2(𝐶𝑚𝑎𝑥)⌋  (3) 

 

Here, Cmax is maximum among the magnitudes of DWT coefficients. A threshold, 2b, is set based on MSB. 

The encoding is done in passes and in each pass, the first step is sorting, which involves the 

following: 

 Comparison of coefficients whose coordinates are in LIP with threshold is done. If a coefficient 

magnitude is found to be greater than threshold, 2b, then it is considered as significant and is indicated 

by bit ‘1’, followed by one more sign-bit. If insignificant, it is indicated by a bit ‘0’.  

 The coordinate of significant coefficient is sent as element of LSP. After scanning all elements of LIP, 

elements of LIS are considered. 

 If the descendants of coordinates present in LIS are insignificant, then that descendant set is considered 

to be insignificant which is simply indicated by bit ‘0’. 

 If any of the descendants of coordinates present in LIS is significant then that descendant set is 

considered to be significant and is indicated by bit ‘1’. 

 If the significant set is of type D, then offsprings are compared with threshold, coordinates of significant 

ones are sent to LSP and those of insignificant ones are sent to LIP, after indication by suitable code 

bits. Remaining elements of the set is of type L and with a label L, they are moved at the end of LIS. If 

the significant set is of type L, we add each coordinate present in L at the end of LIS and consider them 

to be the roots of set D. 

The next step is refinement step, in which, coefficients of coordinates present in LSP but are not part 

of the current pass are identified, and their bth MSBs are output one by one. Here, the coefficients of 

coordinates which are added to LSP in the current pass are ignored as they are already indicated. This marks 

the end of one pass. After this, MSB value is decreased by one and the next pass in encoding is carried out. 

SPIHT allows us to control the bit rate, by regulating the number of passes in encoding.  

 

 

 
 

Figure 3. Parent-offspring relationship between the coefficients in various subbands 

 

 

2.3.3. Arithmetic coder 

The encoded data coming from SPIHT block is a bit stream, which is compressed using Arithmetic 

coding. This results in increase of compression ratio and also this gives scope for considering a greater 

number of passes in SPIHT, thus contributing for increased quality of reconstruction. 

 

2.4.  Data combiner 

This block just places ROI and NROI compressed bitstreams one after the other and make them 

available for storage or transmission through channel. 
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2.5.  Reconstruction blocks 

The data splitter receives the data from memory or channel, and splits it into ROI and NROI data. 

The ROI compressed bitstream is directed towards arithmetic decoder and NROI compressed bit stream is 

directed towards combination of arithmetic decoder, SPIHT decoder and Inverse DWT. The outcomes of 

ROI and NROI decompressions are superimposed to get reconstructed image. The arithmetic decoder [32] 

for ROI stream considers the same initial interval [0, max_val) as seen in encoder. The first n bits of 

bitstream received is assigned to ‘numR’ in integer form. Now, calculate a number, ‘numS’, given by: 

 

 𝑛𝑢𝑚𝑆 =  ⌊
(𝑛𝑢𝑚𝑅−𝐿𝐿𝑖𝑛𝑡+1)×𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡−1

𝑈𝐿𝑖𝑛𝑡−𝐿𝐿𝑖𝑛𝑡+1
⌋  (4) 

 

Decode that symbol, si such that CumCount(si)≤numS<CumCount(si+1). CumCount and TotalCount 

carry same meaning as discussed in encoder. LLint and ULint refer to lower- and upper-limits of the interval. 

The lower- and upper-limits are updated based on same (1) and (2), which were applicable in encoder. 

Rescaling of new interval is done in the same three circumstances and in the same way as in encoder. But in 

decoder, the value of numR is also scaled in the same way. Next, numS is calculated using Equation (4) and 

the process repeats till all symbols of the message are received. The output of decoder is given to 

Superimpose block. 

The arithmetic decoder for NROI stream is the same kind of decoder as discussed for ROI stream, 

whose output is given to SPIHT decoder. In the SPIHT decoder, the initial threshold that was present in 

encoder is made available. Upon receiving coded bits from each pass, the decoder calculates positions of 

significant coefficients and their signs. The magnitude of a significant coefficient is calculated by multiplying 

1.5 to the threshold of that pass and adding it to its previous value calculated in earlier passes. After receiving 

bits of all passes, the decoder would have found close approximation of DWT coefficients or transformed 

NROI image. This set of coefficients are applied to Inverse DWT block. 

In the Inverse Discrete Wavelet Transform (IDWT) block, the top left portion of the transformed 

image, an area of 60 x 60 coefficients (wherein each subband having an area of 30 x 30) is the result of third 

level decomposition, which is first reconstructed by applying 2D-IDWT, to get the result of second level 

decomposition. Subsequently, the top left portion of transformed image with an area of 120x120 coefficients 

is reconstructed to get the result of first level decomposition and finally, the close estimate of NROI image is 

reconstructed using the whole (240x240) transformed image.  

At a particular decomposition level, the transformed portion of image is processed column after 

column. A column is split into lowpass coefficients and high pass coefficients. Upsampling is done for both 

the sets and then, they are convolved with lowpass filter gLP(n) and highpass filter hHP(n) respectively and 

then added. After processing all columns, same procedure is repeated for rows to get 2D-IDWT of the 

transformed portion. Lowpass and highpass filter coefficients used are given in Table 2, drawn from CDF 

Biorthogonal wavelet families [33]. The output of IDWT is given to Superimpose block. In this block, the 

ROI and NROI images from outputs of respective decoders are superimposed to form reconstructed image. 

 

 

Table 2. Lowpass and highpass filter coefficients for reconstruction 
gLP(n) = {-0.0645  -0.0407 0.4181  0.7885   0.4181 -0.0407  -0.0645}   
hHP(n) = {-0.0378  -0.0238  0.1106  0.3774  -0.8527  0.3774   0.1106  -0.0238 -0.0378} 

 

 

3. PERFORMANCE PARAMETERS OF CLASSIFICATION AND COMPRESSION 

3.1.  Classification performance parameters 

Accuracy: This indicates overall accuracy of the classification. It is defined as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (5) 

 

Here, TP represents the number of true positives, TN represents the number of true negatives, FP represents 

the number of false positives and FN represents the number of false negatives, in the classified pixels. Dice 

Coefficient (DC): This indicates the similarity between pixels detected as tumor by proposed classifier and 

those detected as tumor by ground truth. It is defined as: 

 

𝐷𝐶 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑁 +𝐹𝑃
  (6) 
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Positive predictive value (PPV): This indicates the portion of pixels which are actually tumorous, in 

those identified as tumorous by classifier. It is defined as: 

 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (7) 

 

Sensitivity: This indicates the portion of pixels which are identified to be tumorous by classifier, in 

those identified as tumorous by ground truth. It is defined as: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (8) 

 

Tumor center (TC): This indicates the location at which the tumor region is centered about. It is 

defined as: 

 

(𝑇𝐶𝐻 , 𝑇𝐶𝑉) =
1

𝑁𝑅
(∑ ℎ𝑗𝑗 ∈ 𝑅𝑇

 , ∑ 𝑣𝑗𝑗 ∈ 𝑅𝑇
)  (9) 

 

Here, TCH and TCV represent the horizontal and vertical coordinates of tumor center. NR represents 

the number of pixels in the tumor region, RT. hj and vj represent horizontal and vertical coordinates of jth pixel 

in RT. Lesser the difference between the tumor center obtained by classifier and that obtained by ground 

truth, more accurate the classifier is, in identifying the point where the tumor is concentrated. 

 

3.2.  Compression performance parameters 

Compression ratio: This gives the idea of how much an image is compressed. It is defined as: 

 

𝐶𝑅 =
𝑆𝑖𝑧𝑒 𝑜𝑓 𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐼𝑚𝑎𝑔𝑒

𝑆𝑖𝑧𝑒 𝑜𝑓 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐼𝑚𝑎𝑔𝑒
  (10) 

 

Bits per pixel: This indicates the average number of bits representing a pixel value after 

compression. It is defined as: 

 

𝑏𝑝𝑝 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜
  (11) 

 

Mean square error (MSE): This indicates average of the squared error that exists between 

uncompressed image and reconstructed image after compression. For a P x Q image, it is defined as: 

 

𝑀𝑆𝐸 =
1

(𝑃×𝑄)
 ∑ ∑ (𝐼(𝑥, 𝑦) − 𝐼𝑅(𝑥, 𝑦))

2𝑃
𝑥=1

𝑄
𝑦=1   (12) 

 

I (x, y) and IR (x, y) are intensity values at location (x, y) corresponding to uncompressed image and 

reconstructed image respectively. MSE indicates quality of reconstruction.  

Peak signal to noise ratio (PSNR): This parameter also, reflects the quality of reconstruction. It is 

expressed in terms of decibels (dB); hence we may conveniently specify the quality. It is defined as: 

 

𝑃𝑆𝑁𝑅 = 10 log10 (
𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒

𝑀𝑆𝐸
)  (13) 

 

 

4. RESULTS AND DISCUSSION 

The proposed hybrid compression based on automatic extraction of tumor is implemented on a 

computer system (with Intel i7 processor, 8 GB RAM) using MATLAB 9.2.0 (2017a). The images are axial 

MRI brain scans related to high grade gliomas and low grade gliomas, and are drawn from BraTS 2018 

dataset [24]-[26]. About 120 MRI slices with tumor, concerning various cases were applied to proposed set-

up. From each MRI slice, the tumor (ROI) is automatically extracted using SVM classifier. The ROI is 

compressed using arithmetic coding (AC) and the compression ratio obtained is compared with other lossless 

techniques, Huffman coding and JPEG-lossless. The NROI is compressed using a DWT-SPIHT-AC 

combination. The hybrid compression technique, AC and DWT-SPIHT-AC in the set-up is compared with 

other hybrid techniques, AC and JPEG, and, AC and DWT-SPIHT, based on MSE and PSNR. Figure 4 

shows the automatic extraction of ROI data from six chosen cases. Images of each case are available in a 

row. From the left, we observe the brain MRI slice that is input to proposed set-up, the image of tumor (ROI) 

extracted, followed by remaining part of image (NROI). The boundary of the tumor region is found and is 
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superimposed on the input image to get an image with boundary-marked tumor region, and this is shown next 

to NROI. Finally, the ground truth image in which boundary-marked tumor region can be seen. The proposed 

method is reasonably good in detecting tumors varying in size and positions.  

 

 

 
 

Figure 4. (a) to (f) represent Image_1 to Image_6 and their related results. From left to right: Input image, 

Extracted tumor (ROI), Non-tumorous region (NROI), Tumor region outlined by proposed method, Tumor 

region outlined based on ground truth 

 

 

Values of performance parameters related to classification are shown in Table 3. For the listed cases, 

accuracy is around 0.99, dice coefficient is more than 0.87, positive predictive value (PPV) is 0.82 for only 

one case and is more than 0.95 in all other cases, sensitivity is close to 0.8, and tumor center detected is 

extremely close to that of ground truth. The same variability in values of performance parameters is seen in 

rest of the tested cases. The accuracy is high because of the detection of non-tumorous region almost 

correctly and also, non-tumorous portion occupy larger area in the image. Dice coefficient values signify that 

most of the tumor region detected is in agreement with the ground truth. PPV has excellent values in most of 

the cases indicating that those detected as tumor, are really the portion of tumor. Sensitivity has relatively 

more variation but indicative of false negative number being substantially less. Table 4 provides comparison 

of lossless compression techniques used for ROI (tumor region). We may observe that AC leads to high 

compression ratios as compared to Huffman coding (HC) and JPEG lossless compression. In NROI 

compression using a DWT-SPIHT-AC combination, the DWT is applied up to three levels and the resulting 

image is shown in Figure 5. The DWT results in a large number of insignificant valued coefficients and this 

is exploited by SPIHT. The SPIHT encoding allows the control of bitrate and hence, the loss in compression. 

The AC contributes for increase in compression ratios.  
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Table 3. Parameters indicating performance of classification technique used to extract tumor  
Images Accuracy Dice 

Coefficient 
Positive 

Predictive 

Value 

Sensitivity Tumor Center  
Proposed 

method 

Ground 

truth 

Image_1 0.9896 0.8850 1 0.7937 (105,147) (104,148) 
Image_2 0.9918 0.8781 0.9953 0.7856 (167,105) (164,105) 

Image_3 0.9936 0.9046 0.8270 0.9983 (116,135) (116,133) 

Image_4 0.9965 0.9614 0.9581 0.9647 (162,155) (162,156) 
Image_5 0.9925 0.8916 0.9850 0.8144 (162,104) (144,104) 

Image_6 0.9960 0.9238 1 0.8584 (130,108) (130,109) 

 

 

Table 4. CR and bpp obtained using different lossless compression techniques 
Images Lossless Compression for ROI 

AC HC JPEG Lossless 

CR bpp CR bpp CR bpp 

Image_1 16.36 0.48 6.43 1.24 6.53 1.22 
Image_2 20.6 0.39 6.7 1.19 6.8 1.17 

Image_3 17.06 0.47 6.4 1.23 6.7 1.19 

Image_4 14.03 0.57 6.15 1.3 6.37 1.25 

Image_5 20.16 0.39 6.7 1.19 6.56 1.21 

Image_6 25.07 0.32 6.94 1.15 7.05 1.13 

 

 

 
 

Figure 5. NROI portion of Image_1 after undergoing DWT up to three levels 

 

 

Table 5 indicates that for any given bpp, the MSE and PSNR values obtained using proposed set-up 

are better than other methods indicated, for all images. From the proposed set-up, PSNR varies from 32 to 37 

dB at 0.25 bpp, and from 49 to 60 dB at 1.25 bpp. Also, MSE varies from 12.84 to 37.69 at 0.25 bpp, and 

from 0.06 to 0.79 at 1.25 bpp. The compression ratio is 32 at 0.25 bpp, and is 6.4 at 1.25 bpp.  

Figure 6(a) shows input image, followed by images obtained after reconstruction using different 

compression schemes. Figure 6(b) shows reconstructed image from AC (for ROI) and JPEG (for NROI), 

Figure 6(c) shows reconstructed image from AC (for ROI) and DWT-SPIHT (for NROI), and Figure 6(d) 

shows reconstructed image from AC (for ROI) and DWT-SPIHT-AC (for NROI) compression schemes. 

Reconstruction considered here is for the image compressed at 0.5 bpp. We may observe that the 

reconstructed image using AC and JPEG scheme has distortions at the ROI boundary while the reconstructed 

image using AC and DWT-SPIHT has reduced distortion. The reconstructed image from the proposed set-up 

is almost comparable to input image. The reason for better performance is that a greater number of bits can 

be allowed in SPIHT to reduce loss, but still maintaining high compression ratios because of the presence of 

AC after SPIHT. Though [ 21] deals with ROI based compression, input images used are quite different, and 

so, we compare average MSE and average PSNR values obtained using proposed method with those obtained 

in [21]. Table 6 indicates that PSNR values are significantly high resulting from the proposed method.  
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Table 5. MSE and PSNR obtained for set of bpps for different hybrid compression schemes 
Images  AC and JPEG AC and DWT-SPIHT AC and DWT-SPIHT-AC 

bpp MSE PSNR (dB) MSE PSNR(dB) MSE PSNR(dB) 

Image_1 0.25 61.00 30.27 57.07 30.56 37.69 32.36 
0.5 21.24 34.85 15.14 36.32 10.11 38.08 

0.75 9.02 38.57 6.01 40.34 4.27 41.82 

1 3.89 42.23 2.6 43.96 1.75 45.69 
1.25 1.65 45.93 1.07 47.80 0.79 49.12 

Image_2 0.25 33.57 32.87 28.99 33.56 12.84 37.04 

0.5 8.06 39.06 4.66 41.44 2.7 43.8 
0.75 2.09 44.92 1.54 46.22 1.01 48.08 

1 0.83 48.9 0.64 50.05 0.37 52.42 

1.25 0.46 51.46 0.26 53.97 0.18 55.49 
Image_3 0.25 41.00 31.97 37.53 32.38 19.39 35.25 

0.5 11.44 37.54 6.58 39.94 4.46 41.63 

0.75 3.29 42.94 2.01 45.07 1.36 46.77 

1 1.08 47.78 0.71 49.56 0.45 51.55 

1.25 0.55 50.7 0.32 53.06 0.22 54.61 

Image_4 0.25 39.31 32.18 31.67 33.12 15.7 36.17 
0.5 9.03 38.57 5.82 40.48 3.61 42.55 

0.75 2.47 44.19 1.77 45.64 1.16 47.48 

1 0.80 49.08 0.64 50.02 0.43 51.74 
1.25 0.43 51.78 0.23 54.35 0.15 56.31 

Image_5 0.25 62.66 30.1 51.99 30.97 37.12 32.43 

0.5 23.08 34.51 16.04 36.07 11.69 37.44 
0.75 10.12 38.07 6.72 39.85 5.04 41.1 

1 4.55 41.54 2.95 43.42 2.28 44.53 

1.25 2.24 44.62 1.33 46.88 1.02 48.01 
Image_6 0.25 32.63 32.99 31.03 33.21 13.75 36.74 

0.5 5.93 40.39 4.52 41.57 2.29 44.51 

0.75 1.23 47.21 1.12 47.62 0.61 50.23 
1 0.34 52.69 0.35 52.63 0.15 56.28 

1.25 0.11 57.51 0.1 58.08 0.06 60.14 

 

 

 
(a) (b) (c) (d) 

 

Figure 6. Compressed image is at 0.5 bpp; (a) input image, (b) reconstruction from AC and JPEG,  

(c) reconstruction from AC and DWT-SPIHT, (d) reconstruction from AC and DWT-SPIHT-AC (proposed) 

 

 

Table 6. Comparison of proposed scheme with MICCS [21] 
bpp MICCS [21] Proposed scheme 

PSNR (dB) MSE PSNR (dB) MSE 

0.25 27.479 239.814 34.99 22.74 

0.5 32.885 219.955 41.335 5.81 
1 34.922 208.796 50.36 0.905 

 

 

5. CONCLUSION 

In this article, we propose a set-up for hybrid compression scheme based on automatic extraction of 

tumor. The extraction of tumor (ROI) using SVM classifier happens effectively, which is reflected by 

performance parameters. Arithmetic coding is used for ROI compression, and for NROI compression, DWT-

SPIHT-AC combination is used. The images are effectively reconstructed, with a reasonably good MSE and 

PSNR values, which are evident from comparative analysis. The main contributions of this work are 

automatic extraction of tumor, compression at relatively low bpp leading to reasonably good PSNR and MSE 
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values, and a set-up that reduces memory requirements and aids telemedicine. When we replace the SVM 

classifier by deep neural network based classifier, it may result in significant improvement in tumor 

segmentation and also, various regions in the tumor such as edema, active cells and necrotic core can be 

segmented. The extraction of ROI can be followed by description of tumor which gives the information about 

tumor size and location, which can be preserved or passed on as the side information through the channel 

aiding the expert to draw conclusions swiftly.  
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