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 This paper proposes the fundamental aspects of hybrid nonlinear control 

which is composed of the super twisting algorithm (STA) based second order 

sliding mode control applying fuzzy logic method (FSOSMC), with pertinent 

simulation results for a doubly fed induction machine (DFIM) drive. To 

minimize chattering effect phenomenon due to Signum function employed in 

sliding mode algorithm, a new method is proposed. This technique consists 

in replacing the signum function by fuzzy switching function in the SOSMC 

to minimize flux and torque ripples. This FSOSMC is associated to the 

double direct torque control DDTC of the doubly fed induction machine 

(DFIM) by combining the advantages of fuzzy logic (FL) and the advantages 

of super-twisting sliding mode. The FSOSMC-DDTC strategy is compared 

with a PI-DDTC and SOSMC-DDTC. Simulation results demonstrate good 

efficiency and excellent robustness of the hybrid nonlinear controller. 
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NOMENCLATURE 

),(),( ,  rs VV  Stator, rotor voltage vectors in 𝛼, 𝛽 reference 

),(),( ,  rs II  Stator, rotor current vectors in 𝛼, 𝛽 reference 

),(),( ,   rs
 Stator, rotor flux linkage vectors in 𝛼, 𝛽 reference 


 

Mechanical speed 

rs RR ,  Stator and rotor resistances 

rs LL ,  Stator and rotor self Inductances 

𝜌𝑠,𝑟 Stator and rotor flux angular positions 

  leakage coefficient 

J Moment of inertia 

𝜔𝑠, 𝜔𝑟  Stator and rotor pulsations 

𝜇 𝛿 Constant positive 

Te Electromagnetic torque 
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1. INTRODUCTION 

Since the middle of the eighties, the development of the efficiency of induction machines has not 

been stalled, several previous studies allowed toapplying diverse control technique, and the most common of 

them, the direct torque control (DTC) [1], [2], because of its many advantages, like fasterdynamic response 

and less complexity. In [3], Ourici the author proposed to introduce the dual-FOC used inthe rotor and stator 

of the DFIM simultaneously. Bonnet [4], and Boumaraf [5] use the flux model of DFIM with second 

switching table in the rotorto improve the DDTC. The DDTC suffers from disadvantages ofvariation in the 

switching frequency, flux and torque ripples. Recently methods have been proposed to resolve this 

drawbacks; some papers focus on control optimization of a DFIM [6], some paper focus on low-speed 

sensorless double DTC for DFIM [7], and other papers propose the introducingof fuzzy logic technique [8], 

[9], while [10] propose the artificial neural network in DDTC of DFIM. Nevertheless, there are a few 

difficulties that limit the use of these kinds of controllers, such as a variable switching frequency, torque and 

flux ripple. In many research papers, these effects are minimized by using space-vector modulation (SVM) 

method [11], algorithm genetic strategy [12] and feedback linearization [13], but until now, the realization of 

these algorithms in practice remains more complicated and more expensive than conventional DTC. 

Recently, sliding mode control (SMC) was integrated largely in the command of nonlinear systems. 

[14], [15] have been focused out the remarkable dynamic performances who own SMC in term of improving 

DTC against the parametric variation. However, this strategy law represents the chattering phenomenon 

caused by using the sign function. For that, further research is required to eliminate these disadvantages, 

some authors [16]-[22] proposed the SOSMC, other researchers have been proposed associate the SMC with 

other techniques like SMC-SVM [23], [24], SMC-feedback control [25], SVM-PID [26] and FL-SMC [27]-

[30]. However, this paper presents the DDTC for DFIM using a novel hybridization between FL and SOSMC 

technique. The main contributions of this work are:  

 The new control technique is introduced by embedding a FL strategy into the SOSMC. 

 The switching frequency is limited and also the ripples inthe torque, stator and rotor flux are reduced. 

 The performance of the DFIM controlled by FSOSMC is comparedto that of the DFIM controlled by PI 

and SOSMC so as to prove the improvements made. 

The rest paper part is structured is being as: The DFIM model is described in section 2. Section 3 

gives a basic idea of the DDTC. In section 4, the STAisexplained,while theFSOSMC is discussed in section 

5. Section 6 presents the simulation results using the MATLAB/Simulink. Finally, conclusion is drawn in 

section 7. 

 

 

2. MATHEMATICAL MODEL OF DFIM 

The traditional model of DFIM in the laboratory frame (𝛼, 𝛽) is written is being as in (1) [6]. The 

parameters of DFIM shows in the appendix. 
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The expression of electromagnetic torque for the DFIM is defined as in (2) [7]: 

 

 e s rT K φ . φ sin γ
  


 

(2) 

 

 

3. DDTC STRATEGY 

The DDTC strategy involves the separate control of �⃗� 𝑠 and �⃗� 𝑟 through the selection of optimums 

inverters switching modes. To decrease or increase the flux amplitudes 𝜑𝑠,𝑟  and the angular position 𝜌𝑠,𝑟 in 

each sector, two adjacent voltage vectors can be used. The voltage vectors control of 𝜑𝑠,𝑟 planes are shown in 

Figure 1 [6]. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 5, October 2021:  3782 - 3790 

3784 

 
 

Figure 1.


rs,φ control in six angular sectors 

 

 

4. SUPER-TWISTING DUAL DIRECT CONTROL OF DFIM 

The STA is an exceptional case of SOSMC, where this method is specially developed to control the 

non linear systems with relative degree 1, respecting the sliding surface [17]. Two parts compose the STA; a 

discontinuous and continuous part. The sliding surface is defined [18]: 

 

 refs  (3) 

 

 

J
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By replacing (4) into (3) we obtain: 
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Then the (5) became: 
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The SOSMC contain two parts [18]: 
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if 0S we can simplify the algorithm [23]: 
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The closed loop diagram of STA is presented in Figure 2 [18]. 

 

 

 
 

Figure 2. SMC diagram 

 

 

5. RELATED WORK 

5.1.  Fuzzy logic-SOSMC 

The FSOSMC have been adopted to solve the problem of chattering, where the sign function has 

been replaced by an inference fuzzy system. The shapes of all membership functions are defined in Figure 3. 

In FSOSMC, in (11) becomes (12): 
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Figure 3. Membership functions (e, ∆e, ∆u) 

 

 

5.2.  Stability analysis 

The analysis and the proof of stability will be exposed to guarantee the system stability. The 

Lyapuno derivative candidacy is defined by (13): 

 

0.
.

 SS  (13) 

 

We replace this in (5) we get: 
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And the stability condition according to Lyapunov will be [18]: 
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The Lyapunov condition S


. Ṡ


< 0 is assured only with coefficients (  ,  ) positives. 

 

 

6. SIMULATION  

We have simulated the proposed FSOSMC on the MATLAB/Simulink as shown in Figure 4, where 

the FSOSMC consists in replacing the classical regulator PI by the FSOSMC controller, and a series of tests 

were done to prove the effaiciency of this new technique of control. Therefore, a comparative results between 

FSOSMC-DDTC and both PI-DDTC and SOSMC-DDTC techniques have been presented. 

 

 

 
 

Figure 4. Block diagram of FSOSMC-DDTC scheme for DFIM 

 

 

6.1.  First test (speed reversal) 

This test consists on varying the speed reference cycle startingfrom the zero value to 180 rad/s, and 

changingaccording to the time variation to t=[1 2 3 4] s with respectively 𝑟𝑒𝑓=[-180 50 -50 157]. Also, 

anintroduction of load torque at t=2.5 s value to 25 Nm is presented. The comparative curves between PI, 

SOSMC and our approach are presented in Figures 5 and 6. It can be noticed that the speed variation cycle 

produces an important effect on electromagnetic torque, rotor and stator flux curves. While the use of the 

FSOSMC controller give a good performance: Allows the speed to judiciously follow its different reference 

values with better transient response time. The improvement of the FSOSMC in terms of overshoot, settling 

time, this result is indicated in Table 1, the rejects of the load disturbance is very rapid with a negligible 

steady state error, and FSOSMC minimize the chattering effect in the flux and torque ripple compared to the 

results obtained in [6]-[10]. 

 

6.2.  Second test (variation of the load torque) 

The imposed profile of the load torque changes from 0 Nm value to 25 Nm, this variation is done 

respectively is being as for a time value t=[1 2 3 4] s and a torque value eT =[10 25 30 15] Nm. Figures 7 and 

8 show that the FSOSMC control law is robust to the variations and the presence of disturbances. Moreover 

the results obtained in Figure 5, Figures 7, 8, 9 and 10 show that the toque has less ripple of 2 Nm and 1.3 

N.m compared to PI, SOSMC, and to the results obtained in [8]-[10]. The rotor and stator flux ripples are 

also considerably reduced. 
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Figure 5. FSOSMC, SOSMC and PI strategy responses (under speed variation) 

 

 

  
  

Figure 6. FSOSMC, SOSMC and PI strategy responses (under speed variation) 

 

 

 

 
  

Figure 7. FSOSMC, SOSMC and PI strategy responses (under load torque variation) 

 

 

  
 

Figure 8. FSOSMC, SOSMC and PI strategy responses (under load torque variation) 
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6.3.  Third test (robustness test) 

For testing the performances of the new FSOSMC in our strategy, 𝑅𝑟 , 𝑅𝑠 have been reduced to 50% 

of their real valuesinthe intervals of time t=1 s to t=1.5 s and from t=2.9 s to t=3.5 s respectively, then we 

increased their value to the double at time fixedto t=2 s to 2.5 s for the stator resistance, and between 3.9 and 

4.5 s for the rotor resistance as shown in Figure 9. Figures 10 and 11 shows a comparison between different 

techniques of control under parametric variation. We observe the effect of these variations on the torque and 

also on both stator and rotor flux. This comparison proves clearly that the performance of the proposed 

algorithm under parametric variations is better than both the PI and SOSMC controller. Table 1 summarizes 

the comparison between different techniques. 

 

 

 
 

Figure 9. sR and rR resistance variations 

 

 

  
  

Figure 10. FSOSMC, SOSMC and PI strategy responses (under parameter variations) 

 

 

  
 

Figure 11. FSOSMC, SOSMC and PI strategy responses (under parameter variations) 

 

 

Table 1. Performances comparison of the three approachs 
Approach PI-DDTC SOSMC-

DDTC 
FSOSMC-

DDTC 
Improvement compared 

to PI (%) 
Improvement compared 

to SOSMC (%) 
Torqueripple (N.m) 4.5 3.8 2.5 44.44 34.21 

Stator flux ripple (Wb) 1.02 0.5 0.3 70.58 40 
Rotor flux ripple (Wb) 0.48 0.35 0.25 47.92 28.57 

Rising time of the speed 0.218 0.215 0.213 2.3 0.9 
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7. CONCLUSION  

In this paper, FSOSMC-DDTC for DFIM has been presented to improve the DDTC of DFIM 

performance. The suggested control has been compared to the PI-DDTC and SOSMC-DDTC. The simulation 

results demonstrate that the DDTC using FSOSMC worked well especially with regard to torque and flux 

ripples minimization, less performance degradation due to machine parameter variations, robustness to load 

changes andsystem disturbances, which demonstrate the feasibility of the FSOSMC method. The superiority 

of the suggested FSOSMC-DDTC isemphasized by the following points: (1) FSOSMC is developed to 

efficiently control a DFIM. Compared with existing control techniques such as previous studies, the rate of 

effectiveness presents interesting attributes, such as, high tracking performances and low chattering; (2) The 

practical realization of the suggested methods will wish be conducted in the future. 

 

 

APPENDIX 
 

 

A. DFIM parameters 
Symbol Value 

nP  4 KW 

sL  0.163 H 

rL  0.021 H 

sR  1.417 Ω 

rR  0.163 Ω 

  0.055 H 

𝑃 2 

J  0.066 Kg m2 
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