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 In recent years nonlinear problems have several methods to be solved and 

utilize a well-known analytic tools such as homotopy analysis method. In 

general, homotopy analysis method had gain a wide focus and improvement 

especially in typical nonlinear problem. The aim of this paper is to use 

homotopy method of analysis to solve partial differential equation in 

addition to improve method’s efficiency. The method in this paper is to 

apply approximation to Padé approach to obtain sufficient efficiency. As a 

result, the improvement has been verified by solving two cases beside a 

mean value comparison of the homotopy analysis method’s squared error 

with the improved form. 
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1. INTRODUCTION 

During the past few decades, the fractional calculus gain much consideration because of its 

applicability in a lot of science and engineering fields like: electrical networks, phenomena in the fluid flow 

areas, probabilistic and statistics based decisions, chemical-physics, electrochemistry, and signal processing. 

That generally modelled by linear/nonlinear fractional differential equations [1]–[3]. To solve equations of 

different categories like linear or nonlinear, ordinary differential or partial differential equations, integer or 

fractional a number of methods have been used, for example adomian’s decomposition method [4]–[6], 

homotopy perturbation method [7], he’s variational iteration method [8], homotopy analysis method [9]. 

Among a multitude of available techniques to tackle nonlinear equations, homotopy analysis method 

(HAM) has gained tremendous popularity. Initially, Liao proposed in his doctoral thesis [10]–[13] the main 

method to develop the basic concepts of homotopy analysis in topical geometry to propose a general method 

of analysis for solving nonlinear problems. The homotopy analysis method does not depend on a small 

parameter, unlike other analytical techniques such as the method of decomposition, the homotopy 

perturbation method (HPM) as these methods are particular cases of the homotopy analysis method and 

which gives us a sufficient way to control and modify the convergence of solution chain by controlling the 

value of error by means of the convergence control parameter h. In this chapter, we have used homotopy 

analysis method with Padé approximations to solve linear partial differential equations of fractional order 

[14]–[16], the general formula of which is: 

 
𝜕𝛼𝑢

𝜕𝑡𝛼
+ 𝐴(𝑥)

𝜕𝑢

𝜕𝑥
+ 𝐵(𝑥)

𝜕2𝑢

𝜕𝑥2
+ 𝐶(𝑥)𝑢 = ℎ(𝑥, 𝑡)  (1) 
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where 

 

(𝑥, 𝑡)  ∈  [0,1] × [0, 𝑇], 𝑛 − 1 < 𝛼 ≤  𝑛, 𝑛 𝜖 𝑁 (2) 
 

and initial conditions 

 
𝜕𝑘𝑢

𝜕𝑡𝑘
(𝑥, 0) = 𝑓𝑘(𝑥)    𝑘 = 0,1, … , 𝑚 − 1  (3) 

 

 

2. DEFINITION 

Let 𝑓(𝑥), 𝑥 >  0 be a real function which is in the space CM, 𝑀𝜖𝑅 where the real number 𝑘 > 𝑀, 

for 𝑓(𝑥) = 𝑥 𝑘𝑔(𝑥) where 𝑔(𝑥)  ∈  [0, ∞) which is in the space CmM if and only if 𝑓(𝑥)𝑚 ∈ ∁𝑀, 𝑚 ∈ 𝑁 

[17].  

 

2.1.  Riemann-Liouville fractional integer 

The Riemann-Liouville fractional integral operator of order of a function 𝑓(𝑥) ∈ ∁𝜇 , 𝜇 ≥ −1 

defined as in (4) and (5) [18]: 

 

𝐽𝛼𝑓(𝑥) =
1

Г(𝛼)
∫ (𝑥 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡 , 𝑥 > 0

𝑥

0
 (4) 

 

𝐽0𝑓 (𝑥) = 𝑓(𝑥) (5) 

 

for (𝑥)  ∈  ∁𝜇, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0, 𝛾 ≥ −1 properties of the operator 𝐽𝛼 

 

𝐽𝛼 𝐽𝛽𝑓(𝑥) =  𝐽𝛽 𝐽𝛼𝑓(𝑥) (6) 

 

𝐽𝛼 𝑥𝛾 =
Г(𝛾+1)

Г(𝛼+𝛾+1)
𝑥𝛼+𝛾   (7) 

 

2.2.  Devrative Caputo fractional 

The fractional derivative of (𝑥) [19] in the Caputo sense is defined as (8) [20]–[22]: 

 

𝐷𝑥
𝛼𝑓(𝑥) =  𝐽𝑛−𝛼𝐷𝑛𝑓(𝑥) =

1

Г(𝑛−𝛼)
∫ (𝑥 − 𝑡)𝑛−𝛼−1𝑓(𝑛)(𝑡)𝑑𝑡

𝑥

0
 (8) 

 

for (𝑥)  ∈  ∁𝑛, 𝜇 ≥ −1, 𝛼, 𝛽 ≥  0, 𝛾 ≥  −1, 𝑛 − 1 <  𝛼 ≤  𝑛, 𝑛 ∈  ℕ properties of the operator 𝐷𝛼 

 

𝐷𝑥
𝛼  𝐷𝑥

𝛽
𝑓(𝑥) =  𝐷𝑥

𝛼+𝛽
𝑓(𝑥) =  𝐷𝑥

𝛽
 𝐷𝑥

𝛼𝑓(𝑥)  (9) 

 

𝐷𝑥
𝛼  𝑥𝛾 =

Г(1+𝛾)

Г(1+ 𝛾−𝛼)
 𝑥𝛾−𝛼 , 𝑥 > 0  (10) 

 

 

3. METHOD 

Let’s get the following nonlinear differential equation that is formed [23]–[25]: where 𝑁 (nonlinear 

operator) (unknown function) (the independent variable). Let 𝑦0 be a first guess of the analytical solution 𝑦, 

ℎ ≠  0 an assistant parameter, 𝐻(𝑡)  ≠  0 ∀ 𝑡 ∈ 𝑅 an assistant function and 𝐿 an assistant linear operator with 

the property that 𝐿[𝑦(𝑡)] = 0 when 𝑦(𝑡) = 0. Then using 𝑞 ∈ [0,1] as parameter for embedding. We 

construct a homotopy that's called zero-order deformation: 

 

𝑁[𝑦(𝑡)] = 0    𝑓𝑜𝑟 𝑡 ≥ 0 (11) 

 

Having considerable selection of the initial guess 𝑦0 should be stressed, the assistant linear operator. Here is 

L, and nonzero assistant function H(t). When q=0, can see the deformation equation zero-order (12) becomes 

 

(1 − 𝑞) 𝐿[∅(𝑡 , 𝑞 ) − 𝑦0(𝑡)] = 𝑞ℎ𝐻(𝑡)𝑁[∅( 𝑡 , 𝑞 )] (12) 

 

and when q=1, “since h 0 and H(t) /= 0”, the zero-order deformation (12) is tantamount to 
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∅(𝑡, 0) = 𝑦0(𝑡) (13) 

 

and when 𝑞 = 1, since ℎ ≠ 0 and 𝐻(𝑡)  ≠ 0, the zero-order deformation (12) is equivalent to  

 

∅( 𝑡 ,1) = 𝑦(𝑡) (14) 

 

Thus, based on (13) and (14), the embedding-parameter q rises from 0 to 1, ∅(𝑡, 𝑞) Different continually 

from 𝑦0(𝑡) to the same solution 𝑦(𝑡). This type of continous variation is deformation in homotopy. 

Also, Taylor’s theorem provides, ∅(𝑡, 𝑞) might deal with a power series of q in the same expand: 

 

∅( 𝑡 , 𝑞 ) = 𝑦0(𝑡) + ∑ 𝑦𝑚(𝑡) 𝑞𝑚+∞
𝑚=1  (15) 

 

where 

 

𝑦𝑚(𝑡) =  
1

𝑚!
 
𝜕𝑚∅( 𝑡 ,𝑞 )

𝜕𝑞𝑚 |𝑞=0 (16) 

 

If 𝑦0, L, h and the power series (9) of 𝜙(𝑡, 𝑞) converge at 𝑞 = 1, then we have the solution series under those 

assumptions: 

 

𝑦(𝑡) =  ∅( 𝑡 ,1) = 𝑦0(𝑡) + ∑ 𝑦𝑚(𝑡)+∞
𝑚=1  (17) 

 

for brevity, define the vector: 

 

�⃗�𝑛(𝑡) =  {𝑦0(𝑡), 𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑛(𝑡)} (18) 

 

According to (17), the governed-equation of 𝑦𝑚(𝑡), also derived using the zero-order as in the (12) taht 

accour by the zero order deformation differentiation in (12) m -times with respective to q later to be divided 

by m! and later to set 𝑞 = 0, to get m th -order deformation: 

 

𝐿[𝑦𝑚(𝑡) _ 𝜒𝑚𝑦𝑚−1(𝑡)] = ℎ𝐻(𝑡) 𝑅𝑚−1 (�⃗�𝑚−1(𝑡)) (19) 

 

where: 

 

𝑅𝑚−1 (�⃗�𝑚−1(𝑡)) =  
1

(𝑚−1)!
 
𝜕𝑚−1𝑁[∅( 𝑡 ,𝑞 )]

𝜕𝑞𝑚−1 |𝑞=0 (20) 

 

and 

 

𝜒𝑚 = {0,                   𝑚 ≤ 1    1,                    𝑚 > 1  (21) 

 

 

4. PROPOSED ALGORITHM  
The algorithm was rewritten the homotopy analysis method and then linked to the pseudoPadé 

approximations. To find the initial evalution u0(x, t), we integrate (1) by Riemann-Liouville integration 

method with respect to the variable t and substituting the initial conditions to obtain 

 

𝑢(𝑥, 𝑡) = ∑ 𝑢(𝑘)(𝑥, 0+)
𝑡𝑘

𝑘!
+ 𝐽𝑡

𝛼 (𝐴(𝑥)
𝜕𝑢

𝜕𝑥
+ 𝐵(𝑥)

𝜕2𝑢

𝜕𝑥2 + 𝐶(𝑥)𝑢) + 𝐽𝛼ℎ(𝑥, 𝑡)
𝑛−1

𝑘=0
   (22) 

 

By omitting the term JαA(x)∂u +B(x) ∂2u+C(x)u in the right side in (22), we obtain the initial evolution 

u0(x, t) by the formula 

 

𝑢0(𝑥, 𝑡) = ∑ 𝑢(𝑘)(𝑥, 0+)
𝑡𝑘

𝑘!
+ 𝐽𝛼ℎ(𝑥, 𝑡)𝑛−1

𝑘=0     (23) 

 

By using the deformation (19) of order m with assuming 𝐿 = 𝐷𝛼, 𝐻(𝑡) = 1 where n ∈ N and n -1 < α ≤ n, 

we obtain the following sequential formula: 

 

𝑢𝐷𝛼𝑢𝑚(𝑥, 𝑡) = 𝜒𝑚  𝐷𝛼  𝑢𝑚−1(𝑥, 𝑡) + ℎ 𝑅𝑚−1 (𝑢𝑚−1(𝑥, 𝑡))   (24) 
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𝑅𝑚−1 (𝑢𝑚−1(𝑥, 𝑡)) =
1

(𝑚−1)!

𝜕𝑚−1

𝜕𝑞𝑚−1 ( 𝐷𝛼∅(𝑥, 𝑡, 𝑞) + 𝐴(𝑥)
𝜕𝑢(∅(𝑥,𝑡,𝑞))

𝜕𝑥
+ 𝐵(𝑥)

𝜕2𝑢(∅(𝑥,𝑡,𝑞))

𝜕𝑥2 +

𝐶(𝑥)𝑢(∅(𝑥, 𝑡, 𝑞)) − ℎ(𝑥, 𝑡)  ) |𝑞=0   (25) 

 

To find approximate iterations 𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡), 𝑢3(𝑥, 𝑡), we apply Jα Riemann-Liouville inte- gration on 

The both side of (24) to obtain 

 

𝑢𝑚(𝑥, 𝑡) =  𝜒𝑚𝑢𝑚−1(𝑥, 𝑡) − 𝜒𝑚 ∑ 𝑢𝑚−1
(𝑗)(𝑥, 0+)

𝑡𝑗

𝑗!
+ ℎ 𝐽𝑡

𝛼[ 𝑅𝑚−1 (𝑢𝑚−1(𝑥, 𝑡))]𝑛−1
𝑗=0  (26) 

 

By substituting values of m=1, 2, 3, … in (26), we obtain the approximated solutions 𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡), 

𝑢3(𝑥, 𝑡). By substituting the approximated iterations 𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡), 𝑢3(𝑥, 𝑡),with 𝑢0(𝑥, 𝑡) in the solution 

series ∅𝑚(𝑥, 𝑡), we get: 

 

∅(𝑥, 𝑡) = ∑𝑚−1 𝑢𝑠 (𝑥, 𝑡)  (27) 

 

Then, substituting the values of h and α, we obtain an approximated solution for initial values problems (27) 

given by the form: 

 

∅𝑚(𝑥, 𝑡) = ∑ 𝑎𝑟𝑡𝛽𝑟𝑘
𝑟=0  (28) 

 

where a0, a1,…, ak are constants, β0, β1,…, βk are different positive powers, m is the number of iterations and 

k is specified according to the given example. 

Now, we connect the series (28) by Padé approximation using the following assumption: 

 

𝑢(𝑥, 𝑡) = ∑ 𝑢(𝑘)(𝑥, 0+)
𝑡𝑘

𝑘!
+ 𝐽𝑡

𝛼 (𝐴(𝑥)
𝜕𝑢

𝜕𝑥
+ 𝐵(𝑥)

𝜕2𝑢

𝜕𝑥2
+ 𝐶(𝑥)𝑢) + 𝐽𝛼ℎ(𝑥, 𝑡)

𝑛−1

𝑘=0

  

𝑡𝜔 = 𝑧 (29) 

 

where ω is fraction number, after substituting in the approximated solution (28), we obtain a series that has 

the form 

 

∅𝑚
∗ (𝑥, 𝑧) = ∑ 𝑎𝑟𝑥𝑣𝑟  𝑘

𝑟=0  (30) 

 

where v0, v1, …, vk are positive powers. By using Padé approximation of order M and N where M, N ∈ N ∪ 

{0}, we can convert the sequence (30) to a fractional series: 

 

𝑅𝑁,𝑀(𝑥, 𝑧) =
𝑃𝑁(𝑥,𝑧)

𝑄𝑀(𝑥,𝑧)
 (31) 

 

Finally, by substituting the transformation 𝑧 = 𝑡𝜔in the series (31), we obtain the Padé series with fractional 

powers. 

 

 

5. NUMERICAL EXAMPLES 
Suppose we have the following one dimensional heat equation that has a fractional order [4], [19], 

[20]. 

 

𝐷𝑡
𝛼𝑢 =

1

𝜋2 𝑢𝑥𝑥  , 0 <  𝛼 ≤  1 𝑓𝑜𝑟 𝑡 > 0 (32) 

 

With condition (x, 0)=sin πx, The exact solution for the (32) is 

 

𝑢(𝑥, 𝑡) =  𝑠𝑖𝑛 𝜋𝑥 ∑
(−𝑡𝛼)𝐾

Г(𝛼𝐾+1)
∞
𝐾=0          (33) 

 

The solution: depending on the algorithm mentioned in the fifth paragraph, we get approximations: 
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𝑢0(𝑥, 𝑡) = 𝑠𝑖𝑛 𝜋𝑥 

 

𝑢1(𝑥, 𝑡) =
2𝑥ℎ𝑡𝑎

Г(𝛼 +  1)
+ 

2ℎ𝑡2𝑎

 Г(2𝛼 +  1)
+  

2ℎ𝑡𝑎

 Г(𝛼 +  1)
 

 

𝑢2(𝑥, 𝑡) = (1 + 2ℎ)
ℎ𝑡𝛼𝑠𝑖𝑛𝜋𝑥

Г(𝛼 + 1)
+

ℎ2𝑡2𝛼𝑐𝑜𝑠𝜋𝑥

Г(2𝛼 + 1)
 

 

We repeat this process to obtain  𝑢4(𝑥, 𝑡). By adding approximated iterations 𝑢0(𝑥, 𝑡), 𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡), 

𝑢3(𝑥, 𝑡), 𝑢4(𝑥, 𝑡), we obtain an approximated solution ∅5(x, t) where: 

 

∅5(𝑥, 𝑡) = ∑ 𝑢𝑚(𝑥, 𝑡)4
𝑚=0 = 𝑠𝑖𝑛𝜋𝑥 +

ℎ𝑡𝛼𝑠𝑖𝑛𝜋𝑥

Г(𝛼+1)
(3 + 5ℎ + 2ℎ2) +

ℎ2𝑡2𝛼𝑐𝑜𝑠𝜋𝑥

Г(2𝛼+1)
(2 + ℎ) +

+(1 + 2ℎ)
ℎ2𝑡2𝛼𝑠𝑖𝑛𝜋𝑥

Г(2𝛼+1)
+ (1 + ℎ)

ℎ3𝑡3𝛼𝑐𝑜𝑠𝜋𝑥

Г(3𝛼+1)
   (34) 

 

Now, by taking different values of α with the best value of h at each value of α in the solution series (34) and 

then relating them with Padé approximation: 

 When α=0.25 and h=−0.18 and assuming that 𝑡0.25 = 𝑧, then calculating [1/2] the Padé’s 

approximations, and remembering that z =𝑡0.25, we get: 

 

[1/2] =
𝑠𝑖𝑛(3.1415𝑥) − 1.1238𝑡0.25𝑠𝑖𝑛(3.1415𝑥)

1 − .5.1442𝑒−1𝑡0.25 + 1.7940𝑡0.5         (35) 

 

 When α=0.5 and h=0.25 and assuming that 𝑡0.5 = 𝑧 in the solution series∅ 5(x, t), then calculating [1/2] 

the Padé approximations, and remembering that z=𝑡0.5, we get: 

 

[1/2] =
𝑠𝑖𝑛(3.1415𝑥) − 1.4094𝑡0.5𝑠𝑖𝑛(3.1415𝑥)

1 − 6.3806𝑡
0.5 + 2.2221𝑡

        (36) 

 

 When α=0.75 and h=0.22 and Assuming that 𝑡0.75 = 𝑧 in the solution series ∅5(x, t),then calculating 

[1/2] the Padé’s approximations, and remembering that  𝑧 = 𝑡0.75, we get: 

 

[1/2] =
𝑠𝑖𝑛(3.1415𝑥) − 1.2292𝑡0.75𝑠𝑖𝑛(3.1415𝑥)

1 − 5.4392𝑒−1
𝑡

0.75
 + 1.3873𝑡1.5

        (37) 

 

Suppose we have a one dimensional linear no homogenous Burgers equation of fractional order 

[26]. 

 

𝐷𝑡
𝛼𝑢 + 𝑢𝑥 − 𝑢𝑥𝑥 =

2𝑡2−𝛼

Г(3−𝛼)
+ 2𝑥 − 2        (38) 

 

when: 

 

0 < 𝛼 ≤ 1, 𝑡 0, 𝑥 ∈ 𝑅 With condition 𝑢(𝑥, 0) = 𝑥2       (39) 

 

the exact solution for the problem (38) is 

 

𝑢(𝑥, 𝑡) = 𝑥2 + 𝑡2      (40) 

 

The solution: depending on the algorithm mentioned in the fifth paragraph, we get approximations: 

 

𝑢0(𝑥, 𝑡) = 𝑥2 + 𝑡2 +
𝑡𝛼

Г(𝛼 + 1)
(2𝑥 − 2 ) 

 

𝑢1(𝑥, 𝑡) =
2𝑥ℎ𝑡𝛼

Г(𝛼 + 1)
+

2ℎ𝑡2𝛼

Г(2𝛼 + 1)
−

2ℎ𝑡𝛼

Г(𝛼 + 1)
 

 

𝑢2(𝑥, 𝑡) = (1 + 2ℎ + ℎ2)
2𝑥ℎ𝑡𝛼

Г(𝛼 + 1)
−

2ℎ𝑡𝛼

Г(𝛼 + 1)
(1 + ℎ + ℎ2) +

2ℎ𝑡2𝛼

Г(2𝛼 + 1)
(1 + 4ℎ + 3ℎ2)  
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We repeat this process to obtain 𝑢4(𝑥, 𝑡). By adding approximated iterations 𝑢0(𝑥, 𝑡), 𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡) , 
𝑢3(𝑥, 𝑡), 𝑢4(𝑥, 𝑡), we obtain an approximated solution ∅5(x, t) where: 

 

∅5(x,t)= ∑ um(x,t)=x2+t2+
tα

Г(α+1)
(2x-2 )+(3+5h+2h2)

2xhtα

Г(α+1)
-4

m=0

2htα

Г(α+1)
(3+3h+2h2)+

2ht2α

Г(2α+1)
(3+10h+8h2+h3)+       (41) 

 

Now, by taking different values of α with the best value of h at each value of α in the solution series (41) and 

then relating them with Padé approximation:  

 When α=0.25 and h=−0.7 and assuming that 𝑡0.25 = 𝑧 in the solution series ∅5(x, t), then calculating 

the PA [5/6] the Padé’s approximations, and remembering that 𝑧 = 𝑡0.25, we get: 

 

𝑃𝐴
5

6
=

𝑥2 + 𝑒−29(1.7872𝑒22𝑥   — 1.7872𝑒27)𝑡0.25   − 1.7061𝑒 − 1𝑡2(42)

(1 + (34.4190𝑥2 − 1.2864𝑒 − 1𝑥 + 6.4321𝑒 − 2)𝑡 + (6.1401𝑒 − 1 − 6.1401𝑒 − 1)𝑡1.25 + 5.8612𝑡15)
 

 

+
𝑒−29(3.4419𝑒30𝑥4  1.2864𝑒28𝑒3+6.4323𝑒27𝑥2𝑡+𝑒−29(1.2291𝑒29𝑥3  1.2314𝑒29𝑥23.4489))

(:1+W(3h4e.4n190𝑥2 −1.2864𝑒1 x+6.4321𝑒−2 )t+(6.1401𝑒−1−6.1401𝑒−1 )𝑡1.25 +5.8612𝑡15)
 (42) 

 

 When α=0.5 and h=0.85 and assuming that 𝑡0.5 = 𝑧 in the solution series 5(x, t),∅ then calculating [1/2] 

the Padé’s approximations, and remembering that 𝑧 = 𝑡0.5, we get: 

 

𝑃𝐴 [
1

2
]  =

(
3.5861 𝑒54𝑥4+4.0789𝑒50𝑥3+2.0394𝑒50𝑥2

8.1939𝑒51𝑥3−8.1944𝑒51𝑥2+6.9908𝑒47𝑥−2.3300+2.0394
) 

((1+
4.0968𝑒51𝑥−4.0968𝑒51

3.5861𝑒54𝑥2−4.0789𝑒50+2.0394𝑒50)𝑡0.5+
8.2297𝑒52𝑡

3.5861𝑒54𝑥2−4.0789𝑒50+2.0394𝑒50)

 (43) 

 

 When α=0.75 and h=0.6 and Assuming that 𝑡0.75 = 𝑧 in the solution series ∅5(x, t), then calculating 

[2/3] the Padé’s approximations, and remembering that 𝑧 = 𝑡0.75, we get: 

 

𝑃𝐴[2/3] =
𝑥2

1+
3.2221𝑒−56(−1.7289𝑒54𝑥+1.7289𝑒54)𝑡0.75

𝑥2

   (44) 

 

 

6. RESULTS 
The results of this paper show that the proposed homotopy method analysis solve partial differential 

equations efficiently. The results have been verified with other works to show that the proposed method has a 

better mean square error and exact solution. The results compared with both HAM and HAM-PA when 

t=0.01 and 0.1 as shown in Tables 1 to 5. 

 

 

Table 1. The obtained results which compared to the 

exact solution for instance example 5.1, at t=0.01 
x Exact Solution HAM HAM-PA 

0 0 0 0 

0.1 2.5779𝑒 − 1 2.5518𝑒 − 1 2.5639𝑒 − 1 
0.2 4.9035𝑒 − 1 4.8538𝑒 − 1 4.8769𝑒 − 1 
0.3 6.7491𝑒 − 1 6.6807𝑒 − 1 6.7124𝑒 − 1 
0.4 7.9340𝑒 − 1 7.8537𝑒 − 1 7.8910𝑒 − 1 
0.5 8.3423𝑒 − 1 8.2578𝑒 − 1 8.2970𝑒 − 1 
0.6 7.9340𝑒 − 1 7.8537𝑒 − 1 7.8910𝑒 − 1 
0.7 6.7491𝑒 − 1 6.6807𝑒 − 1 6.7124𝑒 − 1 
0.8 4.9035𝑒 − 1 4.8538𝑒 − 1 4.8769𝑒 − 1 
0.9 2.5779𝑒 − 1 2.5518𝑒 − 1 2.5639𝑒 − 1 
1.0 −4.1471𝑒 − 31 −4.1051𝑒 − 1 −4.1246𝑒 − 1 

 

Table 2. The obtained results which compared to the 

exact solution for instance example 5.2, at t=0.01 
x Exact Solution HAM HAM-PA 

0 𝑒−4 −2.2612𝑒−2 −5.6468𝑒−3 
0.1 1.01𝑒−2 −1.2047𝑒−2 4.8589𝑒−3 
0.2 4.01𝑒−2 1.851𝑒−2 3.5250𝑒−2 
0.3 9.01𝑒−2 6.9082𝑒−2 8.5535𝑒−2 
0.4 1.601𝑒−1 1.3964𝑒−1 1.5572𝑒−1 
0.5 2.501𝑒−1 2.3021𝑒−1 2.4582𝑒−1 
0.6 3.601𝑒−1 3.4077𝑒−1 3.5586𝑒−1 
0.7 4.901𝑒−1 4.7134𝑒−1 4.8585𝑒−1 
0.8 6.401𝑒−1 6.2190𝑒−1 6.3579𝑒−1 
0.9 8.101𝑒−1 7.9247𝑒−1 8.0572𝑒−1 
1.0 1.0001 9.8303𝑒−1 9.9564𝑒−1 

 

 

 

Table 3. Comparison of the mean square error for 

each of the HAM and HAM-PA [5/6] 
Algorithm Name Error 

MSE- HAM 3.9868e − 4 

MSE - HAM-PA 2.1430e − 5 
 

Table 4. Comparison of the mean square error for 

each of the HAM and HAM-PA [1/2] 
Algorithm Name Error 

MSE-HAM 8.3458e − 8 

MSE - HAM-PA 7.7009e − 8 
 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Algorithm for solving fractional partial differential equations using … (Kais Ismail Ibraheem) 

3341 

Table 5. Comparison of the mean square error for  

each of the HAM and HAM-PA [2/3] 
Algorithm Name Error 

MSE-HAM 1.5467e − 6 
MSE - HAM-PA 8.7674e − 7 

 

 

7. CONCLUSION 
This study, the efficiency of the HAM with Padé approximations to solve partial fractional linear 

questions has been proven. The results showed the possibility of Padé approximations to improve the results 

of the HAM. Padé approximation only solves sequences with natural bases. Therefore, we used the 

hypothesis tω=x where ω is the number of fractional basis to normal basis. 
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