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 We describe the lifting dual tree complex wavelet transform (LDTCWT), a 

type of lifting wavelets remodeling that produce complex coefficients by 

employing a dual tree of lifting wavelets filters to get its real part and 

imaginary part. Permits the remodel to produce approximate shift invariance, 

directionally selective filters and reduces the computation time (properties 

lacking within the classical wavelets transform). We describe a way to 

estimate the accuracy of this approximation and style appropriate filters to 

attain this. These benefits are often exploited among applications like 

denoising, segmentation, image fusion and compression. The results of 

applications shrinkage denoising demonstrate objective and subjective 

enhancements over the dual tree complex wavelet transform (DTCWT). The 

results of the shrinkage denoising example application indicate empirical and 

subjective enhancements over the DTCWT. The new transform with the 

DTCWT provide a trade-off between denoising computational competence 

of performance, and memory necessities. We tend to use the PSNR (peak 

signal to noise ratio) alongside the structural similarity index measure 

(SSIM) and the SSIM map to estimate denoised image quality. 
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1. INTRODUCTION 

The discrete wavelet transforms (DWT) is with success applied to numerous issues in signal and 

image processing. Data compression, data interpretation, data hiding, audio signal processing, motion 

tracking, and machine learning. It has been recognized that the DWT suffers from shift variance [1], [2] and 

high computational competence, and memory necessities. Dual tree complex wavelet transform and lifting 

wavelet transform (LWT) are developed to beat these drawbacks. LWT was started as a way to boost a given 

DWT to get specific properties. Later it became an active algorithm to calculate any wavelet transforms as a 

sequence of easy lifting steps. Digital signals are usually a sequence of integer numbers, whereas wavelet 

transforms end in floating purpose numbers. For an efficient reversible implementation, it's of nice 

importance to possess a transform algorithm that converts integers to integers [3], [4]. Fortunately, a lifting 

step may be changed to work on integers, whereas preserving the reversibility [3]. Thus, the lifting scheme 

became a way to implement reversible integer wavelet transforms. More recently, the improved directional 

selectivity and complex subbands (DTCWT) has offered a more compact representation in two and higher 

dimensions, while providing near-shift invariance and directionally selective [5]. This paper proposes lifting 

scheme form of the DTCWT which combines the benefits of the LWT and the DTCWT. 
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2. LIFTING SCHEME 

The basic idea back the lifting scheme is to begin with an initial wavelet named the “Lazy Wavelet”. 

There is no function connected with these lifting wavelets, except that it has the properties of a wavelet [6], [7]. 

The lifting scheme then tries to structure new wavelet by adding new basis functions. The lifting scheme then 

ameliorates the properties of the builder wavelet by finding a close liaison between the low and high 

frequency components. This is the revelation back the name “lifting scheme”. Daubechies and Sweldon [8], [9] 

proved that a new construction of wavelet transform can be builder from any orthogonal and biorthogonal 

filters by using factorization of a polyphase matrix. So the lifting scheme starts with a well-known collection 

of filters, say (h, g), and the filters are section into even and odd. 

 

𝑃(𝑧) = (
ℎ𝑒 𝑔𝑒

ℎ𝑜 𝑔𝑜
) (1) 

 

The polyphase matrix has more than one factorization. The quotient can be chosen in a variety of 

ways, and the division can then check a completely different set of lifting coefficients [10]. The goal of the 

factorization is to exemplify the polyphase matrix as a collection of upper and lower triangular matrices. This 

can be written as (2). 

 

𝑃(𝑧) = (
𝐾 1
1 1 𝐾⁄

) ∏ (
1 𝑆𝑖(𝑧)
0 1

) (
1 0

𝑡𝑖(𝑧) 1
)𝑚

𝑖=1  (2) 

 

where, K is a non-zero constant and the Laurent polynomials. 

𝑆𝑖(𝑧) and 𝑡𝑖(𝑧) make up the primal and dual lifting stages respectively. The polyphase matrix 

corresponding to the forward transform is now given by: 

 

�̃�(𝑧) = (
1 𝐾⁄ 1

1 𝐾
) ∏ (

1 0
−𝑆𝑖(𝑧−1) 1

) (1 −𝑡𝑖(𝑧−1)
0 1

)𝑚
𝑖=1  (3) 

 

In the case of orthogonal filters �̃�(𝑧) = 𝑃(𝑧) many primal and dual lifting steps can exist depending 

on the factorization. Figure 1 presents the lifting based forward and inverse transform with m lifting steps. 

 

 

 
(a) 

 

 
(b) 

 

Figure 1. These figures are; (a) forward transform with m primal and dual lifting steps, (b) inverse transform 

with m primal and dual lifting steps 

 

 

3. LIFTING DUAL TREE COMPLEX WAVELET TRANSFORM 

The techniques of lifting are a radically simpler alternative to classic methods for the structure of 

particular classes of wavelets. there is a good deal of information referring to wavelets easily available from 

varied sources; many of the newer sources describe the lifting technique for constructing wavelets, it lacks 

directivity and has solely real coefficients for analysis and processing. Kingsbury [11] formulated the 

DTCWT to provide near shift invariance and improved directionality with a more compact representation.  
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The CWT structure uses a Hilbert transform first applied to the information. The real wavelet 

transform is then applies to every the original information and also the David Hilbert transformed 

information, and so the coefficients of every wavelet transform are combined to get a CWT. The DTCWT is 

a relatively new enhancement to the DWT, with additional properties necessary: it is almost invariant and 

directionally selective in tow and higher dimensions [5], [12]. These properties underpinned good 

performance in applications for the image processing (fusion, denoising).  

The transform scale in the DTCWT increases, as the size of the subbands decreases in octave steps, 

in accordance with classic wavelet transformations [13]. This gives each level a trade-off between resolution 

and redundancy. This does not, however, contribute to a one-to-one relationship across scales between co-located 

coefficients. Cross-scale relationships are used in fusion, denoising and segmentation applications [13], [14]. In 

both of those applications the association between a coefficients and its parent is used. Though sub-sampling 

is reasonable for denoising applications, the DTCWT's subsampled sub-bands have a limited number of 

coefficients directly linked to each spatial location in the image or signal, a relationship that often contradicts 

the needs of applications for analysis [15], [16]. To can such analysis we define a lifting form of the 

DTCWT.  

The lifting dual tree complex wavelet transform (LDTCWT), with every sub-band having the same 

resolution as the signal. It exhibits shift invariance because the LDTCWT includes subsampling (odd and 

even). It also provides a one-to-one relation between the original samples and each co-located coefficients 

[17]. The LDTCWT analysis level and synthesis level are shown in Figure 2. Filters at each level are based 

on the filters used in the CWT. 
 

 

 
(a) 

 

 
(b) 

 

Figure 2. The LDTCWT analysis level and synthesis level are; (a) analysis for 1-D LDTCWT, (b) synthesis 

for 1-D LDTCWT 
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4. TOW DIMENSIONAL TRANSFORMS 

The lifting scheme structures for both LDTCWT are identical. Figure 2 shows 1-D analysis and 

synthesis lifting schemes spanned over three levels. It is evident from the lifting scheme structure of DT-

DWT that it resembles the lifting scheme structure of LWT with twice the complexity. It can be seen as two 

LWT trees operating in parallel. One is referred to as a true tree, while the other is referred to as an imaginary 

tree. The form of conjugate filters used in 1-D LDTCWT is given as (4). 

 

𝑃(𝑥) + 𝑗𝑃1(𝑥) (4) 

 

Where, P(x)
 
is the set of the primal and dual lifting {t, S}, and P1(x) is the set of the primal and dual lifting 

{t1, S1} both sets in only x-direction (1-D). 

2D structure requires four trees for analysis as well as for synthesis. The pairs of conjugate Filters 

are applied to two dimensions (x and y) directions, which can be expressed as (5). 

 

(𝑃(𝑥) + 𝑗𝑃1(𝑥))(𝑃(𝑦) + 𝑗𝑃1(𝑦)) = 𝑃(𝑥)𝑃(𝑦) − 𝑃1(𝑥)𝑃1(𝑦) + 𝑗(𝑃1(𝑥)𝑃(𝑦) + 𝑃(𝑥)𝑃1(𝑦)) (5) 

 

If we take the real part of this complex wavelet, then we get the aggregate of two separable wavelets. 

 

𝑃(𝑥)𝑃(𝑦) − 𝑃1(𝑥)𝑃1(𝑦)  (6) 

 

The lifting scheme structure of tree (𝑥)𝑃(𝑦), similar to 2-D LWT spanned over 3-level, is shown in 

Figure 3. All other trees- 𝑃1(𝑥)𝑃1(𝑦), 𝑃1(𝑥)𝑃(𝑦) and 𝑃(𝑥)𝑃1(𝑦) have identical structures with the 

appropriate combinations of filters for row-and column-filtering. The overall 2-D dual-tree structure is  

4-times redundant than the 2-D LWT. The tree 𝑃(𝑥)𝑃(𝑦)and tree 𝑃1(𝑥)𝑃1(𝑦) form the real pair, while the 

tree 𝑃1(𝑥)𝑃(𝑦) and tree 𝑃(𝑥)𝑃1(𝑦) form the imaginary pair of the analysis lifting scheme. Trees �̃�(𝑥)�̃�(𝑦), 

�̃�1(𝑥)�̃�1(𝑦) and trees�̃�1(𝑥)�̃�(𝑦), �̃�(𝑥)�̃�1(𝑦) are the real and imaginary pairs respectively in the synthesis 

lifting scheme similar to their corresponding analysis pairs. 

 

 

 
 

Figure 3. The lifting scheme structure of tree 𝑃(𝑥)𝑃(𝑦) 

 

 

5. APPLICTION: IMAGE DENOISING USING SHARINKAGE FUNCTION 

5.1.  Denoising algorithm 

Wavelet Shrinkage is extremely straightforward nonlinear technique that operates on one wavelet 

coefficients at a time. In its most simple type, every coefficient is Shrinkage by compare against Shrinkage, if 

the coefficient is smaller than Shrinkage, set to zero; otherwise it is kept or modified. Reconstruction with the 

basis signal characteristics and less noise could be achieved by commuting all small noisy coefficients by 

zero and applying the inverse wavelet transform to the result [5], [18]. 

Let 𝑠 = 𝑠𝑖,𝑗 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ and 𝑗 = 1, 𝑁̅̅ ̅̅ ̅ is an image of 𝑀 × 𝑁 pixels, which is corrupted by independent 

and identically distributed (i.i.d.) zero mean, 𝑛𝑖,𝑗 are independent standard normal 𝑁(0,1) random variables 
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and 𝜎 the noise level might be known or unknown [19]. The noise signal can be denoted as 𝑛𝑖,𝑗~𝑁(0, 𝜎2). 

This noise might corrupt the signal in a transmission channel. The observed, noise contaminated, image 

is𝑥 = 𝑥𝑖,𝑗 , 𝑖 = 1, 𝑀̅̅ ̅̅ ̅̅ and 𝑗 = 1, 𝑁̅̅ ̅̅ ̅.  Therefore, the noised image can be expressed as (7). 

 

𝑥 = 𝑠 + 𝜎𝑛𝑖𝑗 (7) 

 

The wavelet coefficients Shrinkage is primarily ruled by either «soft» or «hard» Shrinkage functions 

as shown in Figure 4. The first function in Figure 4(a) is linear function that does not alter the coefficients 

and hence is useless for denoising. Within the Figure 4, the linear characteristic is provided only to compare 

the non-linearity of the two different functions. The hard Shrinkage function is given as (9). 

 

{
𝑧 = ℎ𝑎𝑟𝑑(𝜔) = 𝜔, |𝜔| > 𝜆

𝑧 = ℎ𝑎𝑟𝑑(𝜔) = 0, |𝜔| ≤ 𝜆
 (8) 

 

Where 𝜔 and 𝑧 are the wavelets coefficients of the input and output wavelets, respectively. 𝜆 is a Shrinkage 

value selected. Similarly, soft thresholding function is given as (9). 

  

{
𝑧 = 𝑠𝑜𝑓𝑡(𝜔) = 𝑠𝑔𝑛(𝜔)max (|𝜔| − 𝜆, 0), |𝜔| > 𝜆

𝑧 = 𝑠𝑜𝑓𝑡(𝜔) = 0, |𝜔| ≤ 𝜆
  (9) 

 

 

 
 

(a) (b) 

 

 

 
(c) 

 

Figure 4. Shrinkage functions; (a) linear, (b) hard, (c) soft 

 

 

Shrinkage methods can be grouped into two categories, global Shrinkages and level dependent 

Shrinkages. The former approach applies a single Shrinkage λ value to all empirical wavelets coefficients 

globally, while the latter method uses different Shrinkages for different levels [5], [20]. We use the universal 

Shrinkage in this research, which is a simple entropy measure that is proportional to the signal size.  

 

𝜆 = σ√2log (𝑘),  
 

Where k is the size of the signal and 𝜆 is the Shrinkage value. 
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5.2.  Experimental results 

The comparison can be accomplished using mathematical equations to rank each methods 

performance at a given peak signal to noise ratio (PSNR) [21]. The PSNR has been computed using the 

formula (10). 

 

𝑃𝑆𝑁𝑅 = 10 log10 (
2𝐵−1

√𝑀𝑆𝐸
) (10) 

 

The structural similarity index measure (SSIM) [15], [22], [23] is a perceptual measure that 

compares image pixel severity style based on local luminance and pixel disparity. Let x and y be two data 

vectors which should only contain non-negative values and represent the pixel values to be compared with. 

The mean and standard deviation of x and y, respectively, estimate the luminance and disparity of those 

pixels. The SSIM index of x to y is then given by, 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
  (11) 

 

Where; 

𝜇𝑥, 𝜇𝑦 : Average of x, average of y. 

𝜎𝑥
2, 𝜎𝑦

2 : Variance of x, variance of y. 

𝑐1 = (𝑘1𝐿)2, 𝑐2 = (𝑘2𝐿)2 : Two variables to stabilize the division with weak denominator. 

L : The dynamic range of the pixel-values (typically is 2𝐵𝑏𝑖𝑡𝑠𝑝𝑒𝑟𝑝𝑖𝑥𝑒𝑙 − 1). 

𝑘1 = 0.01 and 𝑘2 = 0.03  (are taken by default). 

The SSIM maps [24], [25] suggest that the proposed approach distributes the image quality more 

evenly over the image space, and the resulting SSIM index map is perceived as the distorted image quality 

map. Finally, the quality of all images is determined by using a mean quality map SSIM index. The 

experiments are conducted on medical image of size 256×256 at different noise levels σ=5, 10, 15, 20, 25 and 

30. To assess the best possible performance of LDTCWT, it is compared with DTCWT. The PSNR and 

SSIM from various methods are compared in Tables 1 and 2. The LDTCWT outperforms DTCWT most of 

the time in terms of PSNR and SSIM as well as in terms of visual quality. Moreover LDTCWT is faster than 

DTCWT. The choice of hard Shrinkage over soft Shrinkage is justified from a soft threshold estimator’s 

results of best possible efficiency. 

 

 

Table 1. Hard thresholding (PSNR and SSIM for various denoising methods  

with parameter ‘db8’ family wavelets) 
σ 5 10 15   20 25 30 

DTCWT 38.1501 
0.8474 

38.1315 
0.8469 

38.1191 
0.8456 

38.0990 
0.8449 

38.1351 
0.8447 

38.0864 
0.8434 

LDTCWT 39.9571 

0.8738 

39.9407 

0.8721 

39.9134 

0.8685 

39.879 

 0.8657 

39.8216 

0.8624 

39.7643 

0.8563 

 

 

Table 2. Soft thresholding (PSNR and SSIM for various denoising methods  

with parameter ‘db8’ family wavelets) 
σ 5 10 15   20 25 30 

DTCWT 38.0813 
0.8479 

38.0898 
0.8472 

38.0808 
0.8468 

38.0805 
0.8463 

38.0550 
0.8460 

38.0038 
0.8457 

LDTCWT 39.7315 

0.8664 

39.7061 

0.8635 

39.6874 

0.8636 

39.6848 

0.8630 

39.6565 

0.8610 

39.5918 

0.8603 

 

 

To evaluate the subjective effect of LDTCWT and DTCWT, Figure 5 shows the denoising medical 

images of size 256×256. It is certain that the image for LDTCWT preserves many local structures best and 

thus provides the better quality of perceptual image. The visual quality improvement is additionally reflected 

within the corresponding SSIM map that provides helpful directing on how local image quality is ameliorated 

over space. In comparison to the SSIM maps for DTCWT, the SSIM map for LDTCWT shows that the areas 

that are comparatively more organized gain more clearly. The use of larger DWT base functions or wavelets 

filters causes blurring and ringing noise near edges in images in Figure 5(d), which is one disadvantage of 

DTCWT. This disadvantage of DWT is overcome in LWT in Figure 5(f). 
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(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

 

Figure 5. Evaluation of the subjective effect of LDTCWT and DTCWT, these figures are shows denoising 

medical images of size 256×256; (a) original image, (b) noisy image with σ=30, (c) denoised image using 

DTCWT with hard threshold, (d) SSIM map for DTCWT with hard threshold, (e) denoised image with 

LDTCWT with hard threshold, (f) SSIM map for LDTCWT with hard threshold 

 

 

6. CONCLUSION  

We are proposing a new lifting version of the dual tree complex wavelet transform: the LDTCWT. 

Compared with the Lifting Wavelet transform, the LDTCWT adds improved directionality and phase detail. 

The LDTCWT also offers an exact invariance compared with the DTCWT, rather than approximate 

translation invariance. Within a denoising algorithm, all of these attributes are exploited wherever the precise 

parent of a denoising coefficient is used within a medical image shrinkage system. Firstly, we estimate the 

noise level of the image. For denoising as a second stage, based on LDTCWT and DTCWT. Using both hard 

and soft thresholding to shrink wavelet coefficients, their efficiency compared to PSNR (peak signal to noise 

ratio), SSIM (structural similarity index measure) and SSIM map in image denoising. 
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