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 Aim of demand response (DR) programs are to change the usage pattern of 

electricity in such a way that, beneficial to the consumers as well as to the 

distributors by applying some methods or technology. This way additional 

cost to erect new energy sources can be postponed in power grid. Best 

method to implement demand response (DR) program is by influencing 

consumer through the implementation of real time pricing scheme. To 

harness the benefit of DR, automated home energy management system is 

essential. This paper presents a comprehensive demand response system with 

real time pricing. The real time price is determined after considering price 

elasticity of various classes of consumers and their load profiles. A real time 

clustering algorithm suitable for big data of smart grid is devised for the 

segmentation of consumers. This paper is novel in its design for real time 

pricing and modelling and automatic scheduling of appliances for home 

energy management. Simulation results showed that this new real time 

pricing method is suitable for DR programs to reduce the peak load of the 

system as well as reducing the energy expenditure of houses, while ensuring 

profit for the retailer. 
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1. INTRODUCTION 

Demand response (DR) programs are playing a pivotal role in balancing the supply and demand of 

electricity by introducing load flexibility instead of only adjusting generation levels during different time 

slots of the day [1]. In the DR, homes with energy storage and automated home energy management system 

(HEMS) can schedule appliances according to variation in prices and contribute to the load reduction. The 

primary objective of the home energy management system (HEMS) is to minimize the total cost of energy 

consumption of an entire day, by considering the operating constraints. The success of a home energy 

management system depends on the effective scheduling of controllable loads [2].  

Demand response programs are classified into two categories: incentive-based programs and price 

based programs [3]. The price based programs give customers time varying rates which reflect the value and 

cost of electricity in different time periods so that customers tend to consume less electricity during peak-

price periods. Typical price based programs include real-time pricing, critical-peak pricing, variable peak 

pricing and time of use pricing (ToU) [4]. Typical incentive based programs include: direct load control, 

interruptible/curtailable programs, demand bidding, emergency demand response, capacity market, ancillary 

service market and critical time rebate. Among the DR techniques, price based methods are widely accepted 
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because of ease of implementation. Real time pricing methods are more attractive because of its effectiveness 

compared to other methods. 

Real time pricing for DR and home energy management system is the focus of many research 

works. RTP can be determined in different ways, considering the generating cost, network congestion, 

demand levels or a combination of these factors [5]. In [6] utility maximization of a smart grid is set as the 

objective of real time pricing strategy. Dynamic tariff can be predicted for DR programs using different 

methods like relevance vector, artificial neural networks or support vector machines [7], [8]. Many works on 

home energy management system (HEMS) to reduce energy expenditure according to RTP is available in the 

literature. One approch in HEMS is the optimal scheduling of appliances of a home for varying price signals [9]. 

The operational goals considered can be overall cost reduction, climatic comfort, user comfort or balanced 

load. Chen [10] an RTP based power scheduling algorithm is used. The final decision on the starting time of 

the home appliances in each home is decided based on the decision from the retailer or service provider and 

require huge computing capability at the retailer side. Bapat [11] ’jplugs’ are used to derive usage pattern of 

appliances and will be mined for optimal solutions at varying prices. Time varying price along with appliance 

scheduling can reduce the energy expenditure for the consumers [12], [13]. 

The literature review revealed the importance of real time pricing with energy management 

solutions in the design of a demand response program. In smart homes, electrical appliances are connected 

with a proper communication mechanism to a control center in the house. The accumulated usage data of 

millions of consumers at the control centre will be of the size of big data. Analysis of this big data can reveal 

the diverse nature of the energy usage of consumers. The result of real time behaviour analysis can be used in 

the real time price design and can effectively alter the usage pattern for DR programs. But none of the work 

addressed the problem of building RTP based on the actual dynamic load profiles taken in the perspectives of 

both consumers and utilities. Segmentation of consumers based on energy usage pattern and real-time price design 

based on typical load profiles (TLPs) of consumers is an efficient method for retailers to ensure profit [14]. But 

there is uncertainty about achieving the estimated profit because of the elasticity of consumers against the 

price increase. For example, in the United States, long-term price elasticity by industries is 1.2 or greater, 

which is higher than often believed [15]. Hence, a more realistic optimization formulation for expected profit 

is needed and must address the elasticity of consumers [16]. To reduce the uncertainty of profit, price 

elasticity of consumers can be included in the RTP design. Also consider the large number of consumers and 

hence consumption data analysis method must be suitable to be implemented through stream computing and 

ensemble methods to support big data. At the same time, in load management activities, the involvement of 

distributor must be avoided or minimized to reduce computation burden for distributors and to protect 

consumers from privacy threats. 

This paper presents a real time price (RTP) design considering real time load profile and price 

elasticity of consumers. The method is suitable for incorporating the behaviour of consumers from a big data 

environment and protecting the privacy of consumers. Home energy management system proposed here is 

capable to obtain optimum load scheduling strategy considering the consumer preferences without the 

intervention of distributors. Results clearly indicate that the solution is capable to reduce peak load of the 

system and energy bills in a DR program. This paper is organized as follows. Section 2 presents the 

comprehensive model of the DR system. Real time price design and home energy management are the two 

components of this system. Section 3 gives the results of the implementation and section 4 presents the conclusions. 

 

 

2. RESEARCH METHOD  

2.1.  Load profile based RTP design for DR programs 

In this section, a model for determining the real time price (RTP) that can be used by retailers are 

given. The target of the retailer is to set the real time price by considering the purchase price and real time 

response of the consumer. For this the Load Profile of different class of consumers is required. Towards this 

find the number of clusters among the consumers, from consumption history, based on an algorithm suitable 

for big data processing [17]. Then, determine the typical load profile (TLP) for each cluster relevant for the 

day and the retail price for each cluster based on price elasticity and the size of the cluster. In this step, 

stream computing technology can be used for data analysis and principles of ensemble clustering for 

clustering and TLP construction. Details of real time clustering for TLP construction using the ensemble 

method is given in [18]. This method is a 2-stage clustering algorithm, which can work well with big data to 

generate real time clustering of objects. In the first step, a set of cluster labels are created from the 

same/different view of the data with different/same algorithm/s. In second stage cluster labels are made by 

applying a consensus function over the previous set of cluster labels. In smart grid, the first stage can be used 

to create the clusters of each day using daily consumption data. Typical load profiles can be made in the 

second stage, which needs only cluster labels of a selected period (window). The retailer will announce the 
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price for each cluster. Consumers will respond to real time prices either through automated energy management 

systems or manually reducing their loads. After announcing the price, receive the energy consumption data from 

each consumer and calculate the total energy consumption of the day. At the end of each day, reconstruct the 

typical load profile (TLP) by including current data and use this in next day price calculation.  

The objective of real time pricing strategy is to determine the optimal price for different time slots 

considering the generation cost and demand of that time slot. Variation in prices for different groups of 

consumers is allowed based on their usage pattern. While varying prices, retailers cannot expect the 

calculated profit because of the random behaviour of consumers to variation in prices. This random 

behaviour can be best modelled by the introduction of price elasticity (βk) of consumers in the profit 

function. The objective function to maximize the profit of the retailer is given in (1). 

 

( ) ( )

1 1 1 1 1 1

( )
1K NC k H K NC k Hk kh h

k c h kh kh k c h kh h

h

R R
P E R E R

R


= = = = = =

 −
=    + −   

 
 (1) 

 

In (1), the term P represents the profit, and the first term represents the revenue generated by the 

retailer while selling electricity to consumers of different clusters according to their load profile. The second 

term gives the purchasing cost of energy from the wholesale market. Ekh denotes the load profile of cluster k 

at hour h, where k varies from 1 to K (the number of clusters), and Rkh indicates the selling price at hour h to 

a cluster member k of K. βk denotes the price elasticity of consumer in cluster k. As of price increases, 

consumption decreases and hence, price elasticity is usually negative and ranges from -0.01 to -0.25 [19]. 

NC(k) denotes the number of members in cluster k. Rh is the purchasing cost for energy incurred to the 

retailer. Constraint for the objective function is defined by (2). The constraint for profit is denoted in terms of 

profit percentage (PP) of the (2) which can be decided by the distributor after considering the overall 

expenses and investments. If Ekh is the load profile at price value Rh then the expecting load by varying the 

price can be denoted by (3). 

 

∑ 𝐸𝑘ℎ𝑅𝑘ℎ𝑁𝐶(𝑘) ≤ ∑ 𝐸𝑘ℎ𝑅ℎ𝑁𝐶(𝑘)𝐾
𝑘=1 ∗ 𝑃𝑃, ∀ℎ ∈ [1 − 𝐻]𝐾

𝑘−1  (2) 

 

Ekhnew = 𝐸𝑘ℎ (1 +
βk(Rkh−Rh)

𝑅ℎ
) (3) 

 

2.2.  Design of an automated home energy management system 

Home energy management system aims to minimize the energy expenditure of a smart home by 

controlling the operations of various home appliances. For this purpose, an objective function is needed to be 

formulated to find the optimal operation schedule for various types appliances/loads such as to minimize the 

total cost. Based on the mode of working, different home appliances can be broadly classified into three: 

shiftable appliances, nonshiftable/critical loads and adjustable/curtailable loads [20], [21]. In some homes, 

renewable generation (eg.PV) facilities may be integrated, and the battery storage system can be used to store 

surplus energy and power, which can be consumed at high price hours. For each controllable load, the time 

slot during which they should operate is found by considering the operational constraints related to the 

controllable loads. Modelling of various types of appliances is given below. 

 

2.2.1. Load modelling 

Mathematical model of various types of loads and their constraints are specified in this section. Non-

shiftable loads consume a fixed amount of energy at each hour during a working slot, and there is no 

flexibility to adjust the energy consumption in response to the price and hence no mathematical constraints 

are existing [22]. This leads to the possibility of some fixed load in each time slot irrespective of the rate of 

energy. Once started the operation of noninterruptible appliances will continue till the end of the job, while 

interruptible appliances can suspend its operation and can resume the job at low price hours. Non-

interruptible loads represents shiftable, but not interruptible once it has begun. Non-interruptible loads will 

not suspend its operation, once it has started. While scheduling, we have to specify the number of continuous 

slots required by the appliance. Let Xij denote the on/off state of appliance j at time slot i. pwj denote the 

rating of device j and nt indicate the number of time slots in a day. dpwj denote the power consumed by the 

appliance during a time slot. Let NIn be the number of non-interruptible devices in a home and ns be the 

number of time slots per hours. Let Lj denote the number of continuous time slots the device to be on 

between the specified starting and ending time (αj: βj). Let Sj denotes the scheduled starting time of an 

appliance. Then the appliance will be off during hours outside of the scheduling window. The equality 

constraints for non-interruptible load is specified in (4) and (5), and (6) gives the objective function. 
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∑ 𝑋𝑖𝑗 = 𝐿𝑗 , 𝑠. 𝑡 𝛼𝑗 ≤ 𝑠𝑗 ≤ 𝛽𝑗 − 𝐿𝑗 
𝑠𝑗+𝐿𝑗
𝑖=𝑠𝑗  (4) 

 

Xij = 0;  [ .. ]j ji s s Lj  +  (5) 

 

𝑚𝑖𝑛𝑓𝑁𝐼(𝑋) =  ∑ 𝑐𝑜𝑠𝑡𝑖 ∗ (∑ 𝑑𝑝𝑤𝑗 ∗ 𝑋𝑖𝑗
𝑁𝐼𝑛
𝑗=1 )𝑛𝑡

𝑖=1  (6) 

 

For the case of interruptible devices, let In denote the number of interruptible devices in a home and 

ns be the number of time slots per hours. Let Lj indicate the number of time slots the device to be on between 

the specified starting and ending time (αj: βj). No operation is required for hours outside the scheduling 

window. The equality constraints for the interruptible load is specified in (7) and (8), and (9) gives the 

objective function. 

 

∑ 𝑋𝑖𝑗 = 𝐿𝑗  
𝛽𝑗
𝑖=𝛼𝑗  (7) 

 

Xij = 0;  [ .. ]j ji       (8) 

 

𝑚𝑖𝑛𝑓𝐼(𝑋) =  ∑ 𝑐𝑜𝑠𝑡𝑖 ∗ (∑ 𝑑𝑝𝑤𝑗 ∗ 𝑋𝑖𝑗
𝐼𝑛
𝑗=1 )𝑛𝑡

𝑖=1    (9) 

 

For adjustable/curtailable loads fix a working window and specify the minimum and maximum 

acceptable consumption levels (Cjmin; Cjmax ). For adjustable appliances, consumer may choose either comfort 

based scheduling or budget based scheduling. Hence two types of the optimization model are possible for 

adjustable appliances. If the objective is to minimize the expenditure, then consumer specifies a minimum 

level of comfort to bring the expenditure to the lowest possible value. This minimum comfort level can be 

ensured by imposing a constraint that within the scheduling window, the appliance should work in a 

minimum duration, i.e, Ljmin ≤. ∑ 𝑋𝑖𝑗  .
𝛽𝑗
𝑖=𝛼𝑗  The corresponding objective function can be specified as (10), 

where Cn is the number of adjustable appliances in a home. 

 

𝑚𝑖𝑛𝑓𝐶1(𝑋) =  ∑ 𝑐𝑜𝑠𝑡𝑖 ∗ (∑ 𝑑𝑝𝑤𝑗 ∗ 𝑋𝑖𝑗
𝐶𝑛
𝑗=1 ) 𝑆. 𝑇 𝑛𝑡

𝑖=1  Cj 𝑚𝑖𝑛  ≤ 𝑑𝑝𝑤𝑗 ≤ 𝐶𝑗𝑚𝑎𝑥  
 

𝐴𝑁𝐷  𝐿𝑗
𝑚𝑖𝑛

≤  ∑ 𝑋𝑖𝑗  .
𝛽𝑗
𝑖=𝛼𝑗  (10)  

 

If the objective is to maximize the life quality of consumers for a given budget, then the consumer 

will specify an expenditure limit for the given appliance as Expnjmax. Then the objective function can be 

modelled as given in (11). 

 

𝑚𝑖𝑛𝑓𝑐2(𝑋) = ∑ 𝑐𝑜𝑠𝑡𝑖
𝑛𝑡
𝑖=1 ∗ (∑ 𝑑𝑝𝑤𝑗 ∗ 𝑋𝑖𝑗

𝐶𝑛
𝑗=1 ) 𝑠. 𝑡 ∑ 𝑐𝑜𝑠𝑡𝑖

𝑛𝑡
𝑖=1 ∗ (𝑑𝑝𝑤𝑗 ∗ 𝑋𝑖𝑗) ≤ 𝐸𝑥𝑝𝑛𝑚𝑎𝑥    

𝑎𝑛𝑑 𝐶𝑗𝑚𝑖𝑛 ≤ 𝑑𝑝𝑤𝑗 ≤ 𝐶𝑗𝑚𝑎𝑥                    (11) 

 

Even though, energy storage system come under the category of curtailable loads, objective function 

and constraints for ESS have to be formulated separately because there are two types of operation exist for 

this device; charging and discharging. In scheduling problem, separate vectors are needed to specify the 

charging and discharging cycle of ESS. If Xj denote the vector of charging schedule and Xj+1 denote the 

vector of discharging schedule, then 𝑋𝑗. 𝑋𝑗 + 1 =  0. Also at each time slot, the charge of battery should be 

greater than the minimum required. DPWJ is the charging/discharging power of ESS in a fixed time slot. 

ESSij denotes the charge in the battery at time slot i and it is specified in (12). If PV is integrated then the 

battery should be scheduled to be charged during day time only. If αj and βj denotes the sunrise and sunset of 

the day, (13) denotes the required criteria. Another constraint for ESS is that the number of slots the battery 

charged should be equal to the number of discharge slots and is specified in (14). 

 

ESSmin ≤   ESSi − 1j + (Xij − Xij + 1) ∗ dpwj ≤  ESSmax , ∀𝑖 ∈ [1. . 𝑛𝑡]  (12) 

 

𝑋𝑖𝑗 = 0, ∀𝑖 [αj. . βj] (13) 

 

∑ 𝑋𝑖𝑗 = ∑ 𝑋𝑖𝑗+1 𝑛𝑡
𝑖=1

𝑛𝑡
𝑖=1  (14) 
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The objective function of ESS is given in (15). Here we aim to minimize the charging cost by 

appropriately scheduling charging and discharging to maintain a desired level of charge in the battery in 

desired cycles [23]. 

 

𝑚𝑖𝑛𝑓𝐸𝑠𝑠(𝑋) = ∑ (𝑐𝑜𝑠𝑡𝑖 ∗ 𝑑𝑝𝑤𝑗 ∗ (𝑋𝑖𝑗 − 𝑋𝑖𝑗+1))𝑛𝑡
𝑖=1   (15) 

 

2.2.2. Objective function of HEMS 

Optimization problem to reduce energy expenditure in a smart home can be formulated as (16). 

 

𝑚𝑖𝑛𝑓 𝑜𝑏𝑗
(𝑋), 𝑤. 𝑟. 𝑡. 𝐴𝑒𝑞 . 𝑋 = 𝐵𝑒𝑞  𝑎𝑛𝑑 𝐴𝑖𝑛𝑒𝑞 . 𝑋 = 𝐵𝑖𝑛𝑒𝑞   (16) 

 

where fobj(X) is the objective function, which is the total cost of operation for the day. Aeq denotes the 

permissible time slots for each appliance. The number of rows of Aeq is equal to the number of devices and 

the number of columns of Aeq = na * nt. For e.g. if we have 5 devices and 48 time slots/day, then the number 

of rows of Aeq = 5 and the number of columns is 240. Set the cells 𝐴[𝑗;  (𝑗 −  1)  ∗  48] 𝑡𝑜 𝐴[𝑗;  𝑗 ∗  48]  =
 0/1 to make the appliance j to be off/on during time slots 1 to 48. 𝑋[(𝑗 −  1)  ∗  48] 𝑡𝑜 𝑋[𝑗 ∗  48] denotes 

the schedule of device j. Binary integer programming is used to solve the optimization problem formulated 

[24]. The total cost of energy traded with the grid is found out by summing up the cost of energy exchanged 

with the grid during individual time slots. Cost of energy exchanged with the grid during an individual time 

slot is found by multiplying the power exchanged with the grid by the cost of energy during the time slot and 

duration of a time slot. Our objective function can be formulated as, 

 

𝑚𝑖𝑛𝑓 𝑜𝑏𝑗
(𝑋) = ∑ 𝑐𝑜𝑠𝑡𝑖 ∗ (∑ 𝑝𝑤𝑗 ∗ 𝑋𝑖𝑗

𝑛𝑎
𝑗=1 )𝑛𝑡

𝑖=1   (17) 

 

where nt is the number of time slots, and na is the number of appliances and costi is the cost of energy at time 

slot i. pwj is the power of appliance j and Xij 2 f0=1g which indicate the status of appliance j at time i. Xij = 

0 if the device is off and 1 if the device is on. But our load consists of different kind of loads and each has 

different constraints and formulation. So our final objective function can be formulated as a combination of 

optimization of different models. There are two types of optimizations for adjustable loads. Hence the user 

can finally select either (18) or (19) based on their preference on adjustable loads.  

 

𝑚𝑖𝑛𝑓 𝑜𝑏𝑗1
(𝑋) = min (𝑓𝑁𝐼(𝑋) + 𝑓𝐼(𝑋) + 𝑓𝐸𝑆𝑆(𝑋) + 𝑓𝐶1(𝑋))  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑐𝑜𝑛𝑠𝑡𝑟. [(15), ( 6 ), (9), (11)]    (18) 

 

𝑚𝑖𝑛𝑓𝑜𝑏𝑗2(𝑋) = min (𝑓𝑁𝐼(𝑋) + 𝑓𝐼(𝑋) + 𝑓𝐸𝑆𝑆(𝑋) − 𝑓𝐶2(𝑋))   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑐𝑜𝑛𝑠𝑡𝑟. [(15), ( 6 ), (9), (11)] (19) 

 

 

3. RESULTS AND DISCUSSION 

Real time price is fixed from real time load profiles (RTLP) of consumers. We used consumption 

data from 200 residential consumers in half hour intervals collected from smart meters installed as part of the 

smart grid pilotproject in Mysore, India to construct the real time load profile [25]. There are 48 data points 

in a day for each consumer, as the meter data is reported in 30 minutes interval. As the initial step to 

construct RTLP, load values from the consumers are clustered using ensemble clustering. Ensemble 

clustering is a promising method to cluster real time big data for analysis. The optimum number of clusters 

resulted from the data is 3. Cluster 1 contains 47.5% consumers with a monthly consumption of below 50 

units. Cluster 2 contains 44.5% consumers with a monthly consumption between 50 to 250 units. Cluster 3 

contains 8% consumers with a monthly consumption of between 250 to 325 units. The real time load profiles 

(RTLP) of clusters are given in Figure 1(a). Real time retail price is calculated from real time purchasing 

price by solving the profit maximization function given in (1). The maximum limit for the profit set for 10% 

of the purchasing cost and the objective function solved for different values of price elasticity (β). Energy 

profile of different clusters is given in Figure 1(a) and price profile of different clusters with varying β is 

shown in Figure 1(b). From the graph, it is clear that as elasticity decreases price is increasing. In an 

environment with clusters having different elasticity, price will be high for clusters with low elasticity. 

Comparison of Figure 1(b) and Figure 1(a) reveals that prices are according to the energy profiles of different 

clusters. Cluster 2 has the highest energy usage, and hence the maximum price is assigned. 

Home energy management is done using real time price announced by the distributor. Amount of 

monthly house hold energy consumption depends on the appliance penetration in each home. Energy is 

consumed by appliances like lights (21%), fans (16%), refrigerator (11%), TV (11%), air coolers (1%), AC 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Demand response program for smart grid through real time pricing and home… (Shibily Joseph) 

4563 

(16%), water heater (12%) and others (13%). Based on this data and the load profile obtained from the 

clustering algorithms, we modelled three types of homes. Cluster one is modelled by a household consuming 

less than 50 units/month consumption (say Type-I). In such houses, we considered only non-schedulable 

loads. That type of homes assumed to have zero price elasticity. Cluster of type 2 represents houses with an 

average consumption of less than 250 units of electricity per month (say Type-II) and have schedulable loads 

along with the loads present in cluster 1 houses. The third cluster represents houses with a usage of less than 

325 units per month (say Type-III), which consists of high energy consuming loads like AC and water 

pumps. Along with appliances included in cluster 2 houses. Table 1 give the schedule of loads considered in 

the three types of houses. We have done optimized scheduling of appliances for real time prices without 

considering load profile, based on load profile and flat price and calculated the average energy expenditure 

for three types of houses and the expected profit for the retailer based on load profile and the real profit after 

scheduling of the appliances. 

 

 

  
(a) (b) 

 
Figure 1. These figures are; (a) cluster based load profile of consumers, (b) RTP for different values of β 

 

 

Table 1. Loads installed in three type of houses 
Load Rated Power Working Time Working Duration Installed in Homes 

Lighting load (bulb) 60W 5 AM to 9 AM 4 hrs Type I, II, III 
Lighting load (bulb) 60W 5 PM to 9 PM 4 hrs Type I, II, III 

Lighting load (CFL) 20W 5 AM to 9 AM 4 hrs Type I, II, III 

Lighting load (CFL) 20W 5 PM to 10 PM 5 hrs Type I, II, III 
Lighting load (tube) 40W 7 AM to 9 AM 2 hrs Type I, II, III 

Lighting load (tube) 40W 9 AM to 12 PM 12 hrs Type I, II, III 

Lighting load (tube) 40W 6 AM to 8 AM 2 hrs Type I, II, III 
Ceiling Fan 80W 7 PM to 10 PM and  1 AM to 6 AM 5 hrs Type I, II, III 

Ceiling Fan 80W 7 AM to 9 AM 2 hrs Type I, II, III 

Battery Charger 7W 6 AM to 8 AM 2 hr Type I, II, III 
Telivision 200W 5 PM to 9 PM 2 hrs Type II, III 

Laptop Computer 50W 7 PM to 11 PM 2 hrs Type II, III 

Fridge 350W 1 AM to 12 AM 15 hr Type II, III 

Iron Box 500W 7 AM to 9 AM and 5 PM to 8 PM 1 hr Type II, III 

Washing Machine 450W 12 AM to 12 PM 1.5 hr Type II, III 

Pump Motor 750W 8 PM to 11 PM 0.5 hrs Type III 
Air Conditioner 1000W 10 PM to 12 AM and 1 AM to 6 AM 4 hrs Type III 

Microwave Oven 850W 7 PM to 8 PM 0.5 hr Type III 

Desktop Computer 270W 4 PM to 10 PM 3 hr Type III 
Toaster 900W 7 AM to 8 AM 0.5 hr Type III 

 

 

After running the scheduling algorithm, Figure 2(a) shows the schedule of loads in a type-I home 

based on the operating slots given in Table 1 and Figure 2(b) shows the energy price versus total load in a 

house belonging to type-I under RTP. Similarly, Figure 3(a) shows the schedule of loads and Figure 3(b) 

shows the energy price versus total load in a type-II house after optimized scheduling of appliances according 

to Table 1. Figure 4(a) shows the optimized schedule of loads based on Table 1 and Figure 4(b) shows the 

energy price versus total load in a type-III house under RTP. From Figure 3(b) it is clear that when the price 

is above the average of the day (Rs. 4/KWh), the total load of the house made the minimum to reduce the 

expenditure. This reduction in load shows the good performance of the optimization algorithm. Table 2 
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shows the energy expenditure per day in the three types of houses for RTP and flat pricing scheme. From 

Table 2 it is clear that expenditure of homes with shiftable/adjustable loads (Type-II, Type-III) is less in RTP 

based tariff scheme. This shows the positive effect of RTP on DR programs. 

 

 

  
(a) (b) 

 

Figure 2. These figures are; (a) appliance schedule of type-I homes, (b) cost vs total load of type -1 homes 

 

 

  
(a) (b) 

 

Figure 3. These figures are; (a) schedule of major appliancesof type-II homes,  

(b) cost vs total load oftype-II homes 

 

 

  
(a) (b) 

 

Figure 4. These figures are; (a) Schedule of major appliances of type-III homes,  

(b) cost vs total load of type-III homes 
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Table 2. Energy expenditure of houses per day (in Rs.) 
Type of 

House 

Flat 

price(Rs) 

RTP( without 

considering 

Load Profile, 
β=0) 

RTP(Considering 

Load Profile, β =0) 

RTP(Considering 

Load Profile, β 

=-0.1) 

RTP(Considering 

Load Profile, β =-

0.2) 

RTP(Considering 

Load Profile, β = -

0.1,-0.2,-0.3) 

50 KW 10.078 10.7317 10.7312 10.7317 10.7317 10.7316 

250 KW 41.8367 40.5805 40.5800 40.5815 40.5801 40.5801 
325 KW 69.6285 66.5356 66.5343 66.5274 66.5310 66.5310 

 

 

3.1.  Impact of RTP on DR program 

The profit for the retailer calculated against real time pricing without considering load profile, 

considering load profile and flat pricing in different cases (by the varying beta value for each clusters). Flat 

price is fixed as the 10% increased value of average purchase price. In another case RTP is fixed without 

considering the load profile and elasticity of clusters. Here, same price is fixed for each slot among clusters, 

which is 10% increased value of real time purchase price. In other cases varying selling price is fixed for 

each cluster depending on the load profile and elasticity of clusters using our formulation mentioned in (1). 

Table 3 shows the minimum profit ensured by the distributor based on flat pricing and real time pricing for 

the above described cases. One significant result is that, daily expenditure for consumers are reduced once 

prices are offered based on their load profile. A minimum profit is ensured in all cases with varying β. 

Another significant result is that the peak load of the system is reduced, comparing to flat pricing. Figure 5 

shows the total load of the system when RTP implemented against flat pricing. In all cases with suitable beta 

values (price elasticity), RTP scheme has a lower peak compared to a flat pricing scheme. 

 

 

Table 3 Profit gained by retailer (in Rs.) 
Profit RTP (without 

considering TLP, β 

=0) 

RTP (Considering 

Load Profile, β = -

0.1) 

RTP (Considering 

Load Profile, β = -

0.2) 

RTP (Considering 

Load Profile, β  = -

0.1,-0.2,-0.3) 

Flat price (Rs) 

Expected Profit 556.68 495.44 434.21 430.58 413.90 
Profit After 

Scheduling 
128.8488 128.9194 128.8524 128.8429 228.1483 

 

 

 
 

Figure 5. Total load of the system under RTP 

 

 

4. CONCLUSION  

A practical solution for DR beneficial for both consumers and utilities is a major issue in a smart 

grid. In this paper, we proposed a comprehensive DR model based on real time pricing (RTP) for the big data 

environment of the smart grid and analysed the impact of RTP on DR programs. A real time load profile 

(RTLP) based RTP for DR programs was designed with a real time clustering algorithm suitable for big data. 

Real consumption data collected from a smart grid pilot project in India was used in the simulations. RTLP is 

generated from real time metering data by the ensemble clustering method. Simulation results show that 

optimal RTP strategy along with optimal scheduling of home appliances is suitable for the demand response 

program to reduce the peak load of the system and energy expenditure of houses while ensuring a minimum 

profit for the retailer. In future the integration of renewable energy sources in smart buildings to reduce the 

dependence on grid power is to be considered. Work can be extended to interface IoT and big data analytics 

for monitoring and data visualization. Also objective function can be formulated to minimize the 

inconvenience for the consumer. Interfacing of this scheduling algorithm with proper communication method 

in advanced metering infrastructure (AMI) can leverage the system to commercial level. 
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