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 Employing simultaneous information and power transfer (SWIPT) 

technology in cooperative relaying networks has drawn considerable 

attention from the research community. We can find several studies that 

focus on Rayleigh and Nakagami-m fading channels, which are used to 

model outdoor scenarios. Differing itself from several existing studies, this 

study is conducted in the context of indoor scenario modelled by log-normal 

fading channels. Specifically, we investigate a so-called hybrid time 

switching relaying (TSR)-power splitting relaying (PSR) protocol in an 

energy-constrained cooperative amplify-and-forward (AF) relaying network. 

We evaluate the system performance with outage probability (OP) by 

analytically expressing and simulating it with Monte Carlo method. The 

impact of power-splitting (PS), time-switching (TS) and signal-to-noise ratio (SNR) 

on the OP was as well investigated. Subsequently, the system performance of 

TSR, PSR and hybrid TSR-PSR schemes were compared. The simulation 

results are relatively accurate because they align well with the theory. 
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1. INTRODUCTION 

For conventional energy-constrained wireless networks, it is occasionally hard or even impossible to 

recharge or replace batteries [1], [2]. Instead, we can exploit the natural resources (wind energy, solar energy) 

by EH modules to keep the networks energized, although with some limitations because of their fluctuating 

properties [3], [4]. Thereby, the research community has developed the simultaneous information and power 

transfer (SWIPT) technology to alter the renewable energy with radio frequency (RF), [5]-[8]. 

Rayleigh fading channels have been utilized for studies about the adaptive relaying protocol of two-

hop amplify-and-forward (AF) relaying networks with exceptional throughput performance [9], [10]. 

Besides, in [11] where the outage probability (OP) of decode-and-forward (DF) PSR system was analyzed, 

we can see that EH relaying network is more beneficial than conventional networks. Additionally, it is 

essential to deploy hybrid concepts to study and effectively improve system performance. For example, from 

the aspect of controlling cooperative multi-agent direct networks, a hybrid system is a mix of discrete-time 

and continuous-time systems [12]. For cooperative relaying networks, the hybrid concept is employed for 
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either the combination of different relay selection schemes or different relaying protocols. Using hybrid full-

duplex (FD) and half-duplex (HD) relay selection scheme, authors in [13], [14] discovered the upper and 

lower bounds for OP of DF systems. Additionally, we can find a so-called hybridized power-time splitting-

based relaying (HPTSR) protocol in [15]-[17] where the OP and maximum throughput were studied. 

Moreover, in [18], [19], the OP and outage capacity of a so-called joint time allocation and power splitting 

(JTAPS) scheme over the Rayleigh fading channels were studied concerning the statistical and instantaneous 

channel state information (CSI). Additionally, in [20], [21], the system performance in terms of the average 

channel capacity was investigated. We can find some other studies such as [22]-[25], that used the instantaneous 

CSI to determine the PS factor for a namely dynamic power splitting scheme (DPSS). The OP and throughput 

for multi-user cooperative relaying networks over Nakagami fading channels were studied in [26], [27]. Last but not 

least, [28]-[30] investigated the performance of time switching relaying (TSR) and power splitting relaying 

(PSR) protocols for dual-hop relaying networks in the indoor scenario modelled by log-normal fading 

channels. 

It is noted that several existing studies were conducted mainly over outdoor scenarios which are 

modelled by Rayleigh and Nakagami-m fading methods. Indeed, there is scarcely recent studies regarding the 

SWIPT systems for indoor scenarios modelled by log-normal fading channels. Among them, there are  

papers [28], [29] where the HD AF and DF SWIPT networks were analyzed. Moreover, log-normal fading fits 

better for modelling shadowing effect from indoor moving objects and human bodies, as mentioned in [31]-[33]. 

Besides, as in [34], log-normal fading can be employed to model the small-scale fading of indoor ultra-

wideband (UWB) communications, and in [35]-[37] to model the short and long-term fading of slowly-

varying indoor channels. To overcome all of these constraints, it is essential to deploy cooperative relays for 

indoor networks, especially for internet of things (IoT) applications [38]. 

Thereby, in this paper, we study the performance of a hybrid TSR-PSR scheme over log-normal 

fading channels in a cooperative AF relaying network. We evaluate the system performance in terms of its 

outage behaviour. It is proven that the proposed hybrid protocol can deliver significantly lower OP than the 

two separate protocols. Furthermore, we describe the system model in section 2. In section 3, we analyze the 

performance of the hybrid PSR-TSR AF system over log-normal fading channels. We report the simulation 

results and discuss them in section 4. The conclusion is in section 5. 

 

 

2. SYSTEM MODEL 

Illustrated in Figure 1(a) (see in appendix) is the system model of a dual-hop network including a 

base station (BS), a relay (R) and a destination (D). Assumed without direct link, the BS-to-D 

communication can only be realized via R, with BS's transmission power of 𝑃𝐵. A part of the RF signal that 

BS sends is harvested by R for relaying task. We denote the BS-to-R, R-to-D distances, respectively, with 𝐼1 

and 𝐼2, and according channel coefficients of ℎ1 and ℎ2. Additionally, we have two random variables (RVs) 

|ℎ1|2and |ℎ2|2which are independently and identically distributed (i.i.d.) over the block time following the 

log-normal distribution, respectively, with parameters 𝐿𝑁(𝜇ℎ1, 𝜎ℎ1
2 ) and 𝐿𝑁(𝜇ℎ2, 𝜎ℎ2

2 ). Moreover, we have 

the mean value of 10 log (|ℎ𝑖|
2) denoted as 𝜇ℎ𝑖, and the standard deviation of 10 log (|𝜎ℎ𝑖|

2), 𝑖 ∈ {1,2}, 

denoted as 𝜎ℎ𝑖
2 . BS-to-R and R-to-D have complex Gaussian background noise, 𝑛𝑅 and 𝑛𝐷, the former has 

zero mean and the latter has variance 0N . Last but not least, we have m  which is the path-loss exponent. 

Considering a hybrid PSR-TSR in Figure 1(b) (see in appendix), we have a two-time-slot block 

time, T , which is split by TS factor, 𝛼2, to 𝛼2𝑇 and (1 − 𝛼2)𝑇 given that 𝛼2 ∈ [0,1]. In 𝛼2𝑇, R receives 

signal from BS. We divide this 1st time slot into two segments which are √𝛼1 and √1 − 𝛼1, with the PS 

factor, 𝛼1, given that 𝛼1 ∈ [0,1]. We use the segment √𝛼1  for RF EH, and the segment √1 − 𝛼1 for receiving 

information from BS. Then, within the 2nd time slot (1 − 𝛼2)𝑇, the harvested energy we have at R is used up 

to decode and forward the signal via the BS-to-D link. Besides, we assume that the processing power of R is 

neglected because it is relatively small in comparison with the transmission power of R-to-D [11], [39]. 

 

 

3. PERFORMANCE ANALYSIS HYBRID PSR-TSR SCHEME 

Within the 1st time block, we have signal transmitted from BS to R for decoding given by (1). 

 

1 B 1 1 R1 ,m
r xy P l h s n     (1) 

 

where we normalize the transmitted signal from BS and denote it with 𝑠𝑥 , 𝐸 = [|𝑠𝑥|2] = 1. Then, we have the 

received signal for EH in the 1st time slot as (2). 
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2

2 1 1 1 ,m
BE T P h l    (2) 

 

where there is the energy conversion efficiency , (0,1).  

Within the 2nd time slot, we have signal transmitted from R to D as (3). 

 
2 1

2 1 1 1 2
2

(1 ) .
(1 )

m
R B

EP P h l
T

  


   


 (3) 

 

After the base-band processing and amplifying processes at R, the R transmit signal is 

 

1
1

1

(1 )
,B R

r x R Rm

P P
s Gh s P Gn

l


   (4) 

 

where we have the R gain, G of the HD-AF system as (5), 

 

𝐺 = (√
(1−𝛼1)𝑃𝐵

𝑙1
𝑚 ℎ1

2 + 𝑁0)
−1

≈ (√
(1−𝛼1)𝑃𝐵

𝑙1
𝑚 ℎ1

2)
−1

 (5) 

 

From (5), we can formulate the received signal at D as (6). 

 

R 1
2 D 1 2 2

2 1 2 2

.
(1 ) B R R

d r x R Dm m m m

P P P P
y h s n Gh h s Gh n n

l l l l


      (6) 

 

Consequently, we substitute (3) and (5) into (6) then manipulate it to get the signal-to noise ratio 

(SNR) at D as (7), 

 
2 2

1 1 2

2

2 2 3

,D

a h h

a h a
 


 (7) 

 

where 1 1 2 1(1 ) ,a      2 1 2 1 ,ma l  3 1 2 1 2(1 )(1 ) m ma l l    , and 0/SP N  . 

We evaluate the system performance by analyzing the achievable date rate and the OP. Therefore, 

firstly, we derive the achievable data rate at D as (8). 

 

 2 2

1
(1 )log 1 .

2
D DR      (8) 

 

where we have the HD relaying factor of 1 2 . 

The probability that the instantaneous data transmission rate declines below the source transmission 

rate of 0 2 2 0(1/ 2)(1 )log (1 )R     ( bits/sec/Hz), with a pre-specified threshold value of 0 , is named OP. 

We can obtain the OP at D for the AF hybrid PSR-TSR systems as (9), 

 

 0Pr ,D    (9) 

 

where 0 22 /(1 )
0 2 1

R  
  , and Pr(.)  is the probability function. We can express the OP analytically as (10). 

 

𝑂𝑃 = 1 −
10

𝐼𝑛(10)√8𝜋𝜎ℎ1
2

∫
1

𝑥
𝜚

∞

𝛾0𝛼2
(

10

𝐼𝑛(10)
𝐼𝑛(𝜗(𝑥))−2𝜇ℎ2

2𝜎ℎ2

) × 𝑒𝑥𝑝 (
(

10

𝐼𝑛(10)
𝐼𝑛(𝜗(𝑥))−2𝜇ℎ2−

10

𝐼𝑛(10)
𝑖𝑛(𝛼1))

2

8𝜇ℎ1
2 ) (10) 

 

where  0 3 0 2( )x a x a    . 

Proof: 

With (7) and (9), we can formulate the OP for the HD-AF hybrid PSR-TSR network as (11). 
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2 3 0
2 2

1 1 2 0

Pr .
a

h
a h a





 
  
  

 (11) 

 

Since 
2

2h  is always a positive value, we can re-express the probability as (12). 

 

𝑂𝑃 = {
Pr (|ℎ2|2 >

𝛾0𝛼2

𝛼1|ℎ1|2−𝛾0𝛼3
) = 1, |ℎ1|2 ≥

𝛾0𝛼3

𝛼1

Pr (|ℎ2|2 <
𝛾0𝛼2

𝛼1|ℎ1|2−𝛾0𝛼3
) ,        |ℎ1|2 <

𝛾0𝛼3

𝛼1

 (12) 

 

Thus, we rewrite the OP in (12) as (13). 

 

0 3 1

2 2

1 10 3 1

2 0 3
2

0
1 0 2

( )d ( ) Pr d .
a a

h ha a

a
f x x f x h x

a x a









  
   

 
   (13) 

 

We express the probability density function (PDF), 2

1

( )
h

f x , and the cumulative distribution 

function (CDF), 2

2

( )
h

F x , of the two RVs
2

1h , 
2

2h , respectively, as (14), 

 

 
1

2

1

11

2

1

22

10 10
ln( ) 2 ln

ln(10) ln(10)10
( ) exp ,

8ln(10) 8
 

h

h
hh

x a

f x
x





  
   
  

  
 
 
 

 (14) 

 

and 

 

𝐹|ℎ2|2(𝜗(𝑥)) = 1 − 𝜚 (

10

𝐼𝑛(10)
𝑖𝑛(𝜗(𝑥))−2𝜇ℎ2

2𝜎ℎ2
) (15) 

 

where following the same in [26], [28], with the Gaussian Q-function, 𝜚(𝑥) = ∫
1

√2𝜋
𝑒𝑥𝑝 (−

𝑡2

2
) 𝑑𝑡

∞

𝑥
 

Substituting (14) and (15) into (13), we obtain the OP of the HD hybrid PSR-TSR network in (10). 

This is the end of the proof. 

 

 

4. RESULTS AND DISCUSSION   

In this section, we investigate the impact of the TS factor, the PS factor and SNR on the OP of the 

hybrid PSR-TSR systems over the log-normal fading channel via the Monte Carlo simulation results of the 

previously derived expressions. We use the following system parameters in the simulations as shown in 

Table 1 unless specified otherwise. 

 

 

Table 1. Parameter setting 
Symbol Value Symbol   Value 

𝑃𝐵 1 (Walts) 𝜎ℎ1 = 𝜎ℎ2 4(dB) 

𝜂 1 𝜇ℎ1 = 𝜇ℎ2 3(dB) 

𝑀 2 𝑙1 = 𝑙2 5(m) 

𝑁0 1 𝑅0 2(bps/Hz) 

 

 

Figures 2 and 3 depict the OP of the hybrid PSR-TSR systems versus, respectively, TS factor of 𝛼2, 

and PS factor of 𝛼1. As in Figure 2, if we fix 𝛼1 = 0.5 and vary 𝛼2, we will obtain the lowest curve which 

yields the best system performance. It is interesting that all the curves in Figure 2 reach their optimal values 

at 𝛼2 = 0.25. On the other hand, as illustrated in Figure 3, for fixed 𝛼2 = 0.5 and varied 𝛼1, the curve is the 

highest indicating the worst system performance. The optimal values for the curves in Figure 3 distributed 
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from 𝛼1 = 0.7 𝑡𝑜 0.9. Another obvious trait for both figures is that as TS and PS factors approach either zero 

or one, we have a 100% probability of system shutdown. This is because as 𝛼2and 𝛼1 are too small or too 

large during the 1st time slot, the transmit power from EH process in the 2nd time slot becomes, respectively, 

insufficient or unnecessarily large leading to poor system capacity [28].  
 

 

  
 

Figure 2. Outage performance versus the EH TS 

factor, 𝛼2 

 

Figure 3. Outage performance versus the EH PS 

factor, 𝛼1 

 

 

Besides, Figures 4 and 5 plot the OP versus the SNR, χ, with, respectively, three pairs of EH PS and 

TS factors, i.e., (α2 = 0.3, α1 = 0.5), (α2 = 0.3, α1 = 0.3), (α2 = 0.5, α1 = 0.3), and two data transmission 

rates, i.e., R0 = 2 (bps/Hz), and R0 = 4 (bps/Hz). In general, we can see that the OP decreases as the SNR 

increases. The hybrid PSR-TSR scheme with higher TS factor performs better. Additionally, the OP gets 

worse as the transmission rate grows because the power for EH and the transmission time decrease in the 2nd 

slot [11]. Generally speaking, the simulation results and theory agree well with each other. Thereby, we can 

use the derived expressions for further studies. 
 

 

  
 

Figure 4. OP versus SNR under various dynamic 

switching condition 

 

Figure 5. OP versus SNR with various data 

transmission rate 

 

 

5. CONCLUSION  

To summarize, we study a namely hybrid PSR-TSR protocol employed in a cooperative EH AF 

relaying network over log-normal fading channels by assessing the analytical expression of the OP. From the 

simulation results, we are able to conclude that the hybrid PSR-TSR scheme remarkably outperforms the 

standalone PSR and TSR schemes. Moreover, we prove that the system performance can be raised in 

association with the increase of EH TS factor and the decrease in data transmission rate. 
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APPENDIX 
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(b) 

 

Figure 1. This figure are; (a) system model, (b) hybrid PSR-TSR protocol 
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