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 In operating phases of elevators, accelerating, braking modes occur 

frequently, so braking energy recuperation of elevators has contributed 

considerably to decrease the total electric energy consumption for operating 

elevators in multi-floor buildings. In this paper, the supercapacitor energy 

storage system is used to recover regenerative braking energy of elevators 

when they operate down full-load and up no-load, reducing fluctuation of 

voltage on DC bus as well. Therefore, super-capacitor energy storage system 

(SCESS) will be parallel with line utility to recuperate regenerative braking 

energy in braking phase and support energy for acceleration phase. The 

surplus energy will be stored in the supercapacitors thanks to a DC-DC 

converter capable of exchanging energy bidirectionally in buck/boost modes, 

and designing control strategy including two control loops. Inner loop-

current loop: controlling charge/discharge process of supercapacitors by 

current iL complying with operation characteristic of elevator; Outer loop-

voltage loop: managing UDC-link at a fixed value. Simulation results with 

elevator system of the ten-floor building, Hanoi, Vietnam installed SCESS 

have been verified on MATLAB Simulink, SimPowerSystem with saving 

energy level about 30%. 
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1. INTRODUCTION 

In elevator operation, regenerative braking energy is mainly dissipated on braking resistors [1], [2]. 

Therefore, how to reduce energy consumption in these vertical transportation systems has long been one of 

hot research issues to pay much attention from scientists, engineers. With rapid growth of power electronics 

converters, traction motor making easier for many saving energy solutions in elevator operation to be 

performed [3]–[9]. 

Figure 1 showed three groups of solutions for saving energy in elevator operation: Recuperating 

regenerative braking energy, reducing the energy consumption of comfort functions, enhancing traction 

efficiency. Among them, percentage of recovering regenerative braking energy is the highest. This solution 

group can be divided into two categories: the direct use of regenerative energy by matching time of 

accelerating and braking elevators by timetable optimization using the optimal control theory so that 

regenerative braking energy of elevators operating in power generation state transfers to elevators operating 
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in motoring state [10], [11], and the indirect use of regenerative energy by applying energy storage devices 

recovering braking energy when elevators operate in no-load lifting, and full-load lowering [12]–[17], or 

active rectifiers, reversible rectifiers in order to back the braking energy to the grid source [18]–[20]. This 

paper proposes the method for recovering regenerative braking energy by the super-capacitor energy storage 

system (SCESS) with the saving energy percentage indicated in the simulation results on MATLAB of the 

building ten floor being up to 30%. 
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Figure 1. Block diagram of energy saving solutions in elevator operation 

 

 

2. MODELING ELEVATOR SYSTEM  

The structure for the full elevator system shown in Figure 2 includes the diode rectifier, elevator 

drive system, a bank of supercapacitors with bidirectional DC-DC converter paralleled to the DC bus. 

Modelling some main parts has been performed briefly. 

 

2.1.  Modelling traction motor 

The traction motor is a cage induction motor. The induction motor model in the 𝑑 − 𝑞 reference 

frame is obtained [21], [22]: 

 

{
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(1) 

 

where the parameters are defined as: 𝜓𝑟𝑑
′ = 𝜓𝑟𝑑/𝐿𝑚  và ψ

𝑟𝑞
′ = 𝜓𝑟𝑞/𝐿𝑚, 𝜎 = 1 −

𝐿𝑚
2

𝐿𝑠𝐿𝑟
: leakage factor,  

𝑇𝑠 =
𝐿𝑠

𝑅𝑠
: stator time constant, 𝑇𝑟 =

𝐿𝑟

𝑅𝑟
: rotor time constant, 𝑇𝜎

′ =
𝜎𝐿𝜎

𝑟𝜎
, 𝜔𝑠 = 𝜔 +

𝐿𝑚

𝑇𝑟

𝑖𝑠𝑑

𝜓𝑟𝑑
: slip estimation,  

𝜔: mechanical rotor speed, 𝑧𝑝: number of pole pairs, 𝐽: Moment of inertia, 𝑚𝐿: Load torque, 𝜓𝑟𝑑 , 𝜓𝑟𝑞: rotor 

flux, and 𝐿𝑚, 𝐿𝑟 , 𝐿𝑠: mutual, rotor, and stator inductance. 
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2.2.  Determining static loads 

Calculating static loads in order to determine power of traction motor. The tensile forces exerted on 

the active pulley along the cable branches are: 

 

𝐹1 = [𝐺𝑐𝑏 + 𝐺𝑡 + 𝐺𝑐(𝐻 − 𝐻𝑐𝑏)]. 𝑔(N) (2) 

  

𝐹2 = [𝐺𝑑𝑡 + 𝐺𝑐(𝐻 − 𝐻𝑑𝑡)]. 𝑔(𝑁) (3) 

 

Total force exerted on active pulley when lifting and lowering full load: 

 

𝐹𝑛 = 𝐹1 − 𝐹2 = (𝐺𝑐𝑏 + 1000 − 𝐺𝑑𝑡)𝑔 + 𝐺𝑐(𝐻𝑑𝑡 −𝐻𝑐𝑏)𝑔(N) (4) 

  

𝐹ℎ = 𝐹2 − 𝐹1 = (𝐺𝑑𝑡 − 𝐺𝑐𝑏 − 1000)𝑔 + 𝐺𝑐(𝐻𝑐𝑏 −𝐻𝑑𝑡)𝑔(𝑁) (5) 

 

where: Fn , Fh: Lifting, lowering forces, Gđt: Counter-weight mass (Kg), Gc: Mass of a cable length unit 

(Kg/m), Gt: Load mass, Hđt: Counterweight height (m), Hcb: Cabin heigth(m), g: Acceleration of gravity 

(g=9.8 m/s2). The torque converted to the motor shaft calculated by the traction force: 

 

𝑀 =
𝐹. 𝑅

𝑖. 𝜂
 𝑖𝑓 𝐹 > 0;𝑀 =

𝐹. 𝑅

𝑖
𝜂 𝑖𝑓 𝐹 < 0 

(6) 

 

R: Cable pulley radius, i: Gear ratio,  : Transmitter efficiency. 

Full load lifting torque converted to motor shaft: 

 

𝑀1 =
𝐺𝑐𝑏 + 𝐺𝑑𝑡𝑡𝑚𝑎𝑥

𝑖. 𝜂
 

(7) 

 

No-load lifting torque converted to motor shaft: 

 

𝑀2 =
𝐺𝑐𝑏 − 𝐺𝑑𝑡

𝑖
𝑔. 𝑅. 𝜂 

(8) 

 

Torque lowering full load converted to motor shaft:  

 

𝑀3 =
𝐺𝑐𝑏 + 𝐺𝑑𝑡𝑡𝑚𝑎𝑥

𝑖
 

(9) 

 

Torque lowering no-load double to the motor shaft: 

 

𝑀4 =
𝐺𝑐𝑏 − 𝐺𝑑𝑡

𝑖. 𝜂
𝑔. 𝑅 

(10) 
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Figure 2. Elevator drive system with induction motor and energy recovery braking 
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2.3.  Modeling bidirectional DC-DC converter 

Power circuit diagram of the DC-DC converter shown in Figure 3 being capable of flowing energy 

bidirectionally from SCESS to traction motor and vice versa [23]–[25] operates in buck or boost modes 

because voltage on DC bus is high, voltage on supercapacitor is low. 

 

 

SC

RL, L1

BKS

BSD

C

BKD

BSS

PWM_Buck

PWM_Boost

uSC

iL

iinv

ic

DC _ linkU

 
 

Figure 3. Buck-boost converter schematics 

 

 

Equivalent circuit of bidirectional DC-DC converter is demonstrated in Figure 4, an ideal 

transformer is replaced for switches with 𝑑(𝑡) being transformer factor, and {
𝑢1(𝑡) = 𝑑(𝑡)𝑢2(𝑡)
𝑖2(𝑡) = 𝑑(𝑡)𝑖1(𝑡)

, 

Mathematic model of the DC-DC is written [26]: 

 

{
𝐿
𝑑𝑖𝐿
𝑑𝑡

= −𝑅𝐿𝑖𝐿 + 𝑑𝑢𝐷𝐶_𝑙𝑖𝑛𝑘 − 𝑢𝑆𝐶

𝐶
𝑑𝑢𝐷𝐶_𝑙𝑖𝑛𝑘

𝑑𝑡
= −𝑑𝑖𝐿 + 𝑖𝑖𝑛𝑣           

 

(11) 

 

where control variable - duty ratio (d), the state variables - 𝑖𝐿,𝑢𝐷𝐶_𝑙𝑖𝑛𝑘. 
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Figure 4. Equivalent circuit of DC-DC converter 

 

 

3. CONTROL DESIGN FOR ELEVATOR SYSTEM  

Designing control for elevator system comprises of designing field-oriented control (FOC) for 

elevator drive motor [21] and designing control for the bidirectional DC-DC converter [25]. However, in this 

section, focusing on controlling the DC-DC converter. Hence, using two - loop cascaded control structure is 

also called current mode control (CMC) [26] as shown in Figure 5. The outer loop is the voltage loop 

regulating error between 𝑢𝐷𝐶−𝑙𝑖𝑛ℎ𝑘 and 𝑢𝐷𝐶−𝑙𝑖𝑛𝑘
∗ , which creating the current reference for the inner current 
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loop. The inner loop controls iL- the inductor current in order to controlling charge or discharge process of 

super-capacitor system in an accordance with the elevator operation characteristic. 
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Figure 5. CMC structure for DC-DC converter 

 

 

3.1.  Design control of the current-loop  

The inner loop controls charge and discharge process of supercapacitor. From the first equation of 

(11), building up the small-signal model. 

 
𝑑𝑖̃𝐿(𝑡)

𝑑𝑡
= −

𝑅𝐿
𝐿
. 𝑖̃𝐿(𝑡) +

1

𝐿
. �̃�(𝑡). 𝑈𝐷𝐶_𝑙𝑖𝑛𝑘 +

1

𝐿
. 𝐷. �̃�𝐷𝐶_𝑙𝑖𝑛𝑘(𝑡) +

1

𝐿
. �̃�𝑠𝑐(𝑡) (12) 

 

In steady state, SCu  may be considered as constant in steady state so regarding as constant disturbance for the 

control loop. Therefore, the transfer function of the inductor current is computed: 

 

𝐺𝑝𝑖(𝑠) =
𝑖̃𝐿(𝑠)

�̃�(𝑠)
=
𝑈𝐷𝐶_𝑙𝑖𝑛𝑘
𝐿𝑠 + 𝑅𝐿

 
(13) 

 

The current controller PI with transfer function: 

 

𝐺𝐶𝑖(𝑠) = 𝑘𝑝 +
𝑘𝑖
𝑠
=
𝑇𝑖𝑠 + 1

𝑇𝑎𝑠
 

(14) 

 

with 𝑇𝑖 =
𝑘𝑝

𝑘𝑖
; 𝑇𝑎 =

1

𝑘𝑖
; Tnl : delay time caused by PWM. The closed-loop transfer function of Figure 6 is 

given: 

 

𝐺𝑆𝑖(𝑠) =
𝑈𝐷𝐶_𝑙𝑖𝑛𝑘/𝑅𝐿

𝑇𝑎 . 𝑠(1 + 𝑇𝑛𝑙 . 𝑠) + 𝑈𝐷𝐶_𝑙𝑖𝑛𝑘/𝑅𝐿
 

(15) 

 

Using module optimal method determines [27]:  

 

𝑇𝑖 =
𝐿

𝑅𝐿
; 𝐾𝑝 =
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(16) 
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Figure 6. Current-loop control structure 
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3.2.  Design control of the voltage-loop  

From the second equation of (11), building up the small-signal model: 

 
𝑑�̃�𝐷𝐶_𝑙𝑖𝑛𝑘(𝑡)

𝑑𝑡
=
1

𝐶
. 𝑖̃𝑖𝑛𝑣(𝑡) −

1

𝐶
.
𝑈𝑠𝑐𝑒

𝑈𝐷𝐶_𝑙𝑖𝑛𝑘𝑒
. 𝑖�̃�(𝑡) −

1

𝐶
. �̃�(𝑡). 𝐼𝐿𝑒 

(17) 

 

Applying the Laplace transform for (17) leads to (18). 

 

𝐺𝑣𝑖(𝑠) =
�̃�𝐷𝐶𝑙𝑖𝑛𝑘(𝑠)

𝑖̃𝐿(𝑠)
|
�̃�=0
�̃�𝑖𝑛𝑣=0

≅
�̃�𝐷𝐶𝑙𝑖𝑛𝑘(𝑠)

𝑖�̃�
∗(𝑠)

| =
𝑈𝑠𝑐𝑒

𝐶𝑈𝐷𝐶𝑙𝑖𝑛𝑘𝑒𝑠
=
𝐾𝑢
𝑠

 

(18) 

 

 

Assuming that synthesizing the current loop is extremely fast, accurate, so, ideally, its transfer 

function with a gain of unity as shown in Figure 7. Voltage controller -PI: 

 

𝐺𝑣𝑐(𝑠) = 𝑘𝑝𝑢(1 +
1

𝑇𝑖𝑢𝑠
) 

(19) 

 

the closed- loop transfer function of voltage loop: 

 

𝐺𝑘𝑢(𝑠) =
𝐺ℎ𝑢(𝑠)

1 + 𝐺ℎ𝑢(𝑠)
=

𝑘1
1 + 𝑇𝑖𝑢 . 𝑠

𝑠2

1 + 𝑘1
1 + 𝑇𝑖𝑢 . 𝑠

𝑠2

=
𝑘1(1 + 𝑇𝑖𝑢 . 𝑠)

𝑠2 + 𝑘. (1 + 𝑇𝑖𝑢 . 𝑠)
=

𝑘1. 𝑇𝑖𝑢 . 𝑠 + 𝑘1
𝑠2 + 𝑘1. 𝑇𝑖𝑢 . 𝑠 + 𝑘1

 

(20) 

 

Finding values of 𝑘𝑝𝑢, 𝑘𝑖𝑢 by using symmetry optimal method, 

 

𝐺𝑘𝑢(𝑠) =
𝑘1. 𝑇𝑖𝑢 . 𝑠 + 𝑘1

𝑠2 + 𝑘1. 𝑇𝑖𝑢 . 𝑠 + 𝑘1
≜

2. 𝜉. 𝜔𝑛. 𝑠 + 𝜔𝑛
2

𝑠2 + 2. 𝜉. 𝜔𝑛. 𝑠 + 𝜔𝑛
2
 

(21) 

 

where 𝜉 - Damping ratio (𝜉 = 0.71), 𝜔𝑛- oscillation cycle,  

 

⇒ {
𝑘1 = 𝜔𝑛

2          
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(22) 
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Figure 7. Voltage-loop control structure 

 

 

4. SIMULATION RESULTS 

The simulation data in Table 1 are collected from the high building 10 floor, Hanoi, Vietnam; 

parameters used in simulation are shown in Tables 2 and 3. Simulation scenarios elevator system run up with 

full load running down with full load when the elevator operates ten floors with total time about 50.76 s. The 

speed of elevator running up full load is 1 m/s in Figure 8(a), and down full load is -1 m/s in Figure 8(b) 

accordance with the change of the power: 2600 and -1700 W shown in Figures 9(a) and 9(b).  
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Table 1. Parameters of elevator system for the building ten floor high 
Parameters Values 

Number of floors 10 
Number of floors 10 

Distance between floors (m) 2.8 

Cabin's weight (kg) 1200 
Counterweight (kg) 1600 

Passengers weight (kg) 1000 

Maximum speed, vmax (m/s) 1 
Acceleration and deceleration, amax (m/s2) 1.5 

Pulley diameter, D (m) 0.4 

Transmission ratio, i 1/20 
Transmission performance, η 80% 

Nominal power P (kW) of each motor 15 

Number of elevators 01 

 

 

Table 2. Parameters of DC-DC converter 
Parameters Values 

Inductance, L(mH)  

Resistance, RL (𝛺) 0.05 

Capacitance of DC-Link capacitor (µF) 1000 
DC Link voltage (V) 650 

Parameters of super-capacitor 2 F/325 V  

 

 

Table 3. Parameters of controllers 
Parameters Kp Ti 

Current loop 0.0154 0.04 

Voltage loop -0.284 0.0142 
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Figure 8. Speed responses (a) operating up with full load and (b) operating down with full load 
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Figure 9. Power on shaft of traction motor when elevator is in full load up/down operation (a) operating up 

with full load and (b) operating down with full load 
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Figures 10 and 11 compared Udc-link with/without SCESS. Without SCESS, voltage fluctuation on 

bus DC when the elevator operates up with full load is from 620 to 650 V DC as shown in Figure 10(a). The 

elevator operates down with full load Udc-link increases from 650 to 800 V DC as shown in Figure 10(b). 

Meanwhile, using SCESS helping to reduce fluctuation of the grid voltage only around 650 VDC. Comparing 

level of consumption energy when the elevator in the ten-floor building moving up with full load the heaviest 

load without/with using SCESS in Figures 12 and 13 is 23 Wh, 16 Wh respectively; calculating percent of 

saving energy is 30%. Additionally, unity consumption energy when the elevator runs down with full load 

without/with SCESS in Figures 14 and 15 is 1.23 and 0.6 W respectively. 
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Figure 10. Responses of Udclink with diode rectifier (a) operating up with full load and  

(b) operating down with full load 
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Figure 11. Response of Udclink using SCESS 
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Figure 12. Response of unity consumption energy as 

operating up with full load 

 

Figure 13. Response of unity consumption energy as 

operating up with full load using SCESS 
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Figure 14. Response of unity consumption 

energy as operating down with full load 

Figure 15. Response of unity consumption energy as 

operating down with full load using SCESS 

 

 

5. CONCLUSION 

In this paper, focusing on recuperating regenerative braking energy in elevator operation by using 

SCESS paralleled with bus DC. The simulation results of the elevator drive system in the ten-floor building 

integrated with SCESS showed energy can save up to 30%.  
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