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 Due to the development of communication device technology and the need 

to use up-to-date infrastructure ready to respond quickly and in a timely 

manner to computational needs, the competition for the use of processing 

resources is increasing nowadays. The scheduling tasks in the cloud 

computing environment have been remained a challenge to access a quick 

and efficient solution. In this paper, the aim is to present a new tactic for 

allocating the available processing resources based on the artificial bee 

colony (ABC) algorithm and cellular automata for solving the task 

scheduling problem in the cloud computing network. The results show the 

performance of the proposed method is better than its counterparts. 
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1. INTRODUCTION 

With the dramatic increase in the variety of information technology. equipment and services, the 

management of services offered in this area has also faced many challenges. Managing problems and 

requests, managing equipment and resources related to technical support services, and allocating them to 

users, as well as monitoring, controlling, and scheduling are among the causes that force information 

technology (IT) [1]. Managers to provide useful and efficient tools themselves. There is also a need for 

people to do their heavy computing work without having expensive hardware and software through services 

[2]. Cloud computing has been the latest technology response to these needs. The National Institute of 

Technology and Standards defines cloud computing as: “cloud computing is a model for providing easy 

access based on the demand of user by the network to a set of changeable and configurable computing 

resources (e.g., networks, servers, storage, applications, and services) that this access can be provided or 

release with minimal need for resources management or the need for direct intervention by the service 

provider”. Sharing “intangible and consumable” computing power among several tenants can improve 

productivity rates because other servers are not idle for any reason with this effective way and computers are 

being used more because cloud computing clients do not need to calculate and determine their maximum  

load [3]. 

A cellular automaton is a mathematical model for representing systems in which objects called cells 

together model system behavior, which can be defined in one or more dimensional formats [4]. The 

https://creativecommons.org/licenses/by-sa/4.0/
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homogenous and parallel structure of cellular automata makes it suitable for modeling different types of 

physical systems. To optimally model a physical system, the simple structure of cellular automata is used as 

finite and local interactions between cells. The simple structure is defined as a one-dimensional cellular 

automaton and each cell with two states (1.0) with a uniform ternary neighbor (itself and its right and left 

neighbors). The most important feature of a cellular automata structure is its modularity. According to 

interactions [4], it is observed that provide one-dimensional three-neighbor cellular automata provides the 

best efficiency for modeling physical systems.  

In this paper, a new task scheduling problem in a cloud environment, a highly distributed computing 

platform, is concentrated. A time-aware scheduling algorithm based on artificial bee colony (ABC) is 

proposed to solve this problem. The primary objective of the proposed algorithm is to achieve a good  

trade-off between response time, schedule length ratio, and efficiency to complete the tasks in the Cloud 

system. Our approach was experimentally evaluated and on many datasets of various sizes. The results prove 

that the proposed algorithm achieved better results and was more optimal. 

In [5], a new different optimization algorithm, evolution by combining elite to schedule tasks in the 

cloud computing environment is voluntary, which is called multi-objective ant lion optimizer (MOALO). 

MOALO algorithm has performed better than other algorithms. In [6], a new load balancing was also, which 

proposed by combining a cuckoo search algorithm with a bee colony called a self-adaptive artificial bee 

colony (SABC). It increases the utilization of resources, and execution time is reduced. Best task-to-virtual 

machine mapping is computed by the proposed algorithm. Speed of virtual machines (VM) processing and 

submitted workload length has an effect on it.  

In [7], proposes an in-depth reinforcement learning model based on learning the quality of service 

(QoS) feature to optimize data center resource planning. In the in-depth learning phase, we propose a QoS 

feature learning method based on the enhancement of automatic voice removal encoders to extract stronger 

QoS feature information. The study [8] provides a technical analysis of cloud service deployment approaches 

in internet of things (IoT) systems. The key point of this technical analysis is to identify the basic studies in 

service placement approaches that need more attention to develop more efficient and effective strategies in 

IoT locations. 

In [9], a new cloud computing task-scheduling algorithm that introduces min-min and max-min 

algorithms to generate initialization population selects task completion time and load balancing as double 

fitness functions and improves the quality of initialization population, algorithm searchability, and 

convergence speed was proposed. In [10], for task scheduling in the cloud, we use particle swarm 

optimization (PSO), firefly algorithm (FA), bat algorithm (BA), and grasshopper optimize cloud algorithm 

(GOA), which are swarm-based algorithms. The experimental results indicate that the improved GOA can 

optimize task scheduling problems by effective utilization of available resources. 

In [11] provides a new approach for improving the task scheduling problem in a cloud-fog 

environment in terms of execution time (makespan) and operating costs for bag-of-tasks applications. A task 

scheduling evolutionary algorithm has been proposed. A single custom representation of the problem and a 

uniform intersection is built for the proposed algorithm. In [12], a task scheduler based on a genetic 

algorithm for the cloud computing system was invented that used the genetic algorithm [13] to minimize the 

time to complete tasks in the cloud computing environment.  

In [14], an ant algorithm for symmetric scheduling of tasks on cloud computing was presented. The 

goal is to allocate the optimal resource to each task according to the source and task characteristics. Each task 

is regarded as an ant, and the weight of the resources is regarded as a pheromone. In other words, the higher 

the source weight, the higher the pheromone. The results show the optimum completion time and balance. In 

[15] to enhance the performance of cloud computing and reduce delay time in the queue waiting for jobs. The 

proposed algorithm tries to avoid some significant challenges that throttle from developing applications of 

clouding computing. Our experimental result of the proposed job scheduling algorithm shows that the proposed 

schemes possess outstanding enhancing rates with a reduction in waiting time for jobs in the queue list. 

Paper [16], apply the latest whale optimization metamorphosis (WOA) algorithm to schedule cloud 

work with a multi-objective optimization model, with the aim of improving the performance of a cloud 

system with given computing resources. Accordingly, we propose an advanced approach called WOA cloud 

scheduling (IWC) Improvement to further improve the ability to search for the optimal WOA-based 

approach. In [17] paper, a modified henry gas solubility optimization (HGSO) is presented, which is based on 

the WOA and comprehensive opposition-based learning (COBL) for optimum task scheduling. The proposed 

method is named henry gas solubility whale cloud (HGSWC). HGSWC is validated on a set of thirty-six 

optimization benchmark functions, and it is contrasted with conventional HGSO and WOA.  

In [18] proposes three main contributions to solve this load balancing problem. First, it proposes a 

heterogeneous initialized load balancing (HILB) algorithm to perform a good task scheduling process that 

improves the makespan in the case of homogeneous or heterogeneous resources and provides a direction to 
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reach optimal load deviation. Second, it proposes a hybrid load balance based on a genetic algorithm 

(HLBGA) as a combination of HILB and genetic algorithm (GA). Third, a newly formulated fitness function 

that minimizes the load deviation is used for GA [19] proposes an efficient algorithm traffic-aware adaptive 

server load balancing (TAASLB) to balance the flows to the servers in a data center network. It works based 

on two parameters, residual bandwidth and server capacity. It detects the elephant flows and forwards them 

towards the optimal server where they can be processed quickly. 

In [20], proposed hybrid electro search with a genetic algorithm (HESGA) to improve the behavior 

of task scheduling by considering parameters such as makespan, load balancing, utilization of resources, and 

cost of the multi-cloud. The proposed method combined the advantage of a genetic algorithm and an electro 

search algorithm. The genetic algorithm provides the best local optimal solutions, whereas the electro search 

algorithm provides the best global optima solutions. The proposed algorithm outperforms existing scheduling 

algorithms such as hybrid particle swarm optimization genetic algorithm (HPSOGA), GA, evolution strategy 

(ES), and ant colony optimization algorithm (ACO). In [21], an efficient hybridized scheduling algorithm 

that replicates the parasitic behavior of the cuckoo and food gathering habit of the crow bird, named the 

cuckoo crow search algorithm (CCSA), had been presented for improvising the task scheduling process. The 

crow bird always stares at its neighbors, looking for a better food source than the one it currently possesses.  

In [22], a resource scheduling optimization model based on service level agreement based on a 

random planning approach in cloud computing is presented. In [23], the flexible task scheduling problem in a 

cloud computing system is studied and solved by a hybrid discrete artificial bee colony (ABC) algorithm, 

where the considered problem is first modeled as a hybrid flow shop scheduling (HFS) problem. Both a 

single objective and multiple objectives are considered. In [24], a cloud computing multi-objective task 

scheduling optimization based on a fuzzy self-defense algorithm is proposed. Select the shortest time, the 

degree of resource load balance, and the cost of multi-objective task completion as the goal of cloud 

computing multi-objective task scheduling, establish a mathematical model to measure the effect of  

multi-objective task scheduling and construct the objective function of cloud computing multi-objective task 

scheduling. 
 

 

2. METHOD 

2.1.  Problem statement 

The cloud management program manages all cloud resources using various cloud modules such as 

network module, operating system image module, cost module, and endorsement module. The tasks are 

distributed in different data centers (DC’s) available through the cloud infrastructure. Each data center 

divides the user tasks into several “sub-task” and makes them available to processing elements (PE) [25]. 

 

2.2. Proposed schema 

The proposed scheduling module will have the task of assigning the right job to the right source at 

the right time in the framework of cloud. In Figure 1, DC represents a data center and PE represents the 

processing elements. In this model, a new cloud is regarded as a set of user tasks that its complex computing 

is performed using cloud resources. Suppose UserJob=(𝑈1, 𝑈2, … ,  𝑈𝑁) is a set of user programs that enters 

(execution-request) at a given time. Each UserJob (Ui) is represented by a double <ai, di>, where ai 

represents the time of entry, and di represents the time limit of the UserJob. If a task fails within its time 

limit, it is designated as a failed task and must be re-entered into a new scheduling queue. In the scheduling 

process, user tasks are assigned to available data centers (𝐷1 , 𝐷2, … ,  𝐷𝑀), where M<=N, means that the 

number of data centers may be less than the number of tasks requested. Each data center (Di) is represented 

by a double <Ci, mi>. In this dual, Ci is the cost of executing tasks in the data center per unit time, and mi is 

the number of PEs available for executing user tasks. Each data center has a number of processing elements 

{𝑃𝐸1,  𝑃𝐸2, … ,  𝑃𝑒𝑘} to execute users' work. Each processing element with a PE’s characteristic also means 

processing speed[26]. 

 

2.3.  Problem parameters 

2.3.1. Response-time problem analysis 

These tasks are embedded in one of the existing datacenters called D, which has a certain number of 

PE processing units, and these tasks must be distributed among these processing units. Each U has a required 

processing volume, i.e., P and an allowed time i.e., T. Each PE also has a PEj processing speed and a 

processing cost. If the execution time of Tk in  𝑃𝑒𝑗  is shown by τk, then the termination time can be stated: 

this processing time is proportional to the difference in processing volume required for  𝑃𝑘  in  𝑃𝑒𝑗 . 

 

𝑃𝑘𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔
= 𝑃𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜏𝑘 ∗ 𝑃𝐸𝑗 <= 𝜏𝑘 =

𝑃𝑘

𝑃𝐸𝑗
 (1) 
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If  𝑃𝑘> 𝑃𝑒𝑗  is, then the Tk spent for 𝑈𝑘 task processing is decreased from the amount of processing 

required, and some processing remains. Naturally, we want this processing time to be less than the time 

allowed to perform the full task of the user task, i.e., Tim. In general, assuming the parallel distribution of 𝑈𝑘 

tasks among  𝑃𝑒𝑗  processors, the time of completing task U is equal to the time of completing the longest tasks. 

 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥{𝐹𝑖𝑛𝑖𝑠ℎ (𝜏𝑘)}    (2) 

 

 

 
 

Figure 1. Management structure of a cloud processor [26] 

 

 

2.3.2. Energy consumption problem analysis 

If the unit processing cost per  𝑃𝑒𝑗  is equal to  𝑃𝐶𝑗 , then the energy consumed to perform the whole 

task U is equal to (3). 

 

EU = ∑ (τk ∗ PCj)
n
k=1  (3) 

 

This is equal to the cost spent for the UserJob in the D datacenter. 

 

2.3.3. The efficiency formulation  

Here, a new relationship must be established to determine the efficiency of the task distribution 

algorithm. This productivity can be obtained by comparing the amount of processing that could do with the 

whole time of D (data) with U (UserJob) with the amount of processing that actually performed. That’s mean: 

 

eff =
∑ (τk∗PEjk)n

k=1

Makespan∗∑ PEj
J
j=1

−1

 (4) 

 

This equation is equal to the inverse of the sum of the time that each processor unit was occupied by 

a particular task divided by the total time U task multiplied by the total available processing power. 
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Therefore, the lower the total execution time of the task and the more optimized processing power is 

distributed among the tasks, the higher the efficiency of the algorithm. The schedule length ratio (SLR) 

parameter can also be obtained from this (5). 

 

𝑆𝐿𝑅 =
𝑚𝑎𝑥{𝐹𝑖𝑛𝑖𝑠ℎ (𝜏𝑘)} 

𝑚𝑖𝑛{𝐹𝑖𝑛𝑖𝑠ℎ (𝜏𝑘)} 
 (5) 

 

Now suppose each task U has linear cell automata that correspond to the order of T subtasks, and 

each cell automata have a bee with greedy selection. At each m period of the processing resource allocation 

algorithm operation, we have a number of  𝑃𝑘  residual from different 𝑈𝑘, each of which has a bee with 

greedy selection. To continue task for each  𝑃𝑘 , one power of choice is definedwhich is the ability of the bee 

assigned to it, which is equal to the amount of processing operations residual from the 𝑈𝑘 task. In short, any 

remaining or new task in any given period will choose the most powerful of the available processing 

resources, depending on the selection power it has, and this process will continue until all tasks are 

completed. If we show the periods of allocating tasks by m, each bee's selection power is (6). 

 

𝑃𝑂𝑊𝑘 = 𝑃𝑘𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − ∑ 𝜏𝑘(𝑚)𝑀
𝑚=1 ∗ 𝑃𝐸𝑆𝑗(𝑚) (6) 

 

That is, the selection power of each bee for its own task is equal to the initial amount of processing 

required for that task minus the processing power allocated to that task at different times. However, with each 

iteration of the resource allocation algorithm of task 𝑈𝑘, that has the most selection power to obtain the 

highest  𝑃𝑒𝑗 . However, the energy consumption equation is also rewritten as (7). 

 

EU = ∑ ∑ (τkm ∗ PCjm)n
k=1

M
m=1  (7) 

 

And the efficiency of the algorithm is also equal to (8). 

 

eff =
∑ ∑ (τk∗PEjm)n

k=1
M
m=1

Makespan∗∑ PEj
J
j=1

−1

 (8) 

 

The unknown inputs of the problem are the number of tasks available and the processing volume of 

each one, the number of processors and processing power, and the processing cost of each, and the outputs of 

the problem, as well as the total processing time, total energy consumed, and algorithm efficiency that are 

compared in two states of distribution with greedy selection and constant random distribution. In the constant 

random distribution, each task is assigned as a processing resource at the beginning of the task, and this 

allocation does not change anymore. One remaining point is that given the extension of servers and 

processing resources in cloud systems, the probability that the number of tasks assigned is greater than the 

number of processors is very low, usually 𝐽 ≥ 𝐾. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Test data of the problem 

After introducing the overview, examining the technical terms, and reviewing similar work, we were 

able to present a new theory for the distribution of cloud computing resources among existing tasks. It is time 

to look at the results and judge the validity and effect clouds of the proposed technique. First, we implement 

the simulation with a 12-sub task process on a cloud processor with 20 hardware sources. Naturally, a virtual 

machine is defined simultaneously for each task, but how each virtual machine accesses the hardware is set 

by the proposed algorithm. 

The first step is to determine the number of different hardware resources with different processing 

power. The reason for the random selection is that according to the use of cloud servers from discrete 

processing resources in a very large area of the Internet network and connection and disconnection of many 

of these resources, it cannot be assured from existing processing power. The processing values required in 

each sub-task are also unknown and randomly determined in a reasonable range. 

Also, the processing cost depends not only on the processing power but also on other parameters 

such as the distance, and position of the processor. This issue should also be determined randomly. After 

specifying the tasks and hardware resources available for each task, automata and a bee is assigned, and their 

performance is such that the location of each subtask may vary depending on the selection power of the bee during 

the execution of the program, as shown in the Table 1. Whole task execution using cellular automata to divide 

training resources and tasks in this example took 48 time periods, i.e., 12 parallel automata changed 48 times. 
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Table 1. Change of the 12-cell automata in the first 15 iterations of the algorithm 
1 2 3 4 5 6 7 8 9 10 11 12 

1 2 3 4 5 6 7 8 9 10 11 12 
7 14 11 6 2 4 12 8 16 10 20 12 

7 14 11 6 2 4 12 8 16 10 20 12 

7 14 11 6 2 4 12 8 16 10 20 12 
7 14 11 6 2 4 12 20 8 10 16 12 

7 14 11 6 2 4 12 16 20 10 8 12 

7 14 11 6 2 4 12 16 20 10 8 12 
7 14 11 12 2 4 6 16 20 10 8 12 

7 14 11 6 2 12 4 16 20 10 8 12 

7 14 11 4 2 12 6 16 20 10 8 12 
7 14 12 4 2 6 11 16 20 10 8 12 

7 14 6 4 2 11 12 16 20 10 8 12 

7 14 11 12 2 4 6 16 20 10 8 12 
7 14 4 12 2 6 11 16 20 10 8 12 

7 14 12 6 2 11 4 16 20 10 8 12 

 

 

3.1.1. The response times 

As we said, the whole task is processed by the available cloud resources once using the variable 

cellular automata and once by the allocation of random processing resources. Now we compare the output 

parameters between these two modes. As shown in Figure 2, processing time of whole tasks with variable 

automata in a left column equals 48 seconds, and random allocation of resources in a right column equals  

220 seconds the difference is very significant. As it can be seen, the proposed algorithm in this study reduces 

the processing time by more than four times. 

 

 

 
 

Figure 2. Processing time of whole tasks with variable automata 

 

 

3.1.2. Energy consumption criterion 

In Figure 3 shows energy consumption criterion of fault data in favorable case. The energy 

consumption in the two methods used in the cellular automata method was about 450,000 joules and in the 

random allocation method was about 3.6 million joules. It can be seen that the proposed method reduces 

energy consumption by eight times compared to the random allocation method 1. In Table 1 change of the 

12-cell automata in the first 15 iterations of the algorithm. After these 15 iterations, due to zero of most 

processors remained, other automata elements were not changed until the last remaining processing. 

 

3.1.3. The efficiency criterion 

Figure 4 shows the efficiency criterion. Comparison of processing efficiency in two random 

distribution modes and cellular automata with astronomical differences is shown in Figure 4. It is observed 

that the improvement of all system performance parameters in the use of cellular automata with greedy bee 

selector is more significant than the random allocation of resources. 

 

3.1.4. The SLR criterion 

Figure 5 show comparison of SLR parameter in mentioned methods. It can be seen that the ratio of 

the longest process to the shortest one in cellular automata has been 45 times and in random distribution 

method 220 times. It can be seen that the improvement of all system performance parameters in the use of 
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cellular automata with a greedy bee selector compared to random allocation of resources is very significant. 

It seems that the proposed method can have a significant impact on improving cloud computing services. 

In order to investigate the performance of the algorithm under different conditions, we are cloud the 

simulation in 45 sub-tasks with a maximum load of 4,000 processing units and distributed among  

65 hardware sources with a processing capability of 1,000 units and a processing cost of 10,000 units. The 

results are Figure 6, show the time taken to perform all tasks in the presented method was only eight periods, 

and in the random allocation method, the tasks were over 1,400 periods, which the difference is very 

significant. The cost of processing in the proposed method was nearly two thousand times less than the 

random allocation method as shown in Figure 7. 

Figure 8 show the processing efficiency seems to have decreased here, unlike the previous 

simulation, and it is less than the random distribution of resources. In the case of random distribution, some 

processing resources seem to have spent much more time than other processing sources, and this has been 

influenced in the following graph. Figure 9 shows the SLR parameter, which shows the time difference of 

working among the cloud processor, is much less than the random distribution method in the presented 

method, which indicates the balanced distribution of tasks in the current algorithm. 

 

 

 
 

Figure 3. Energy consumption criterion 

 

 

 
 

Figure 4. The efficiency criterion 

 

 

 
 

Figure 5. Comparison of  SLR parameter 
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Figure 6. Total processing time with random processor dist. 

 

 

 
 

Figure 7. The cost of processing in the proposed method was nearly two thousand times less than  

the random allocation method 

 

 

 
 

Figure 8. Processing efficiency with greedy Bees alg. 
 

 

 
 

Figure 9. SLR with greedy Bees alg.  
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4. CONCLUSION AND FUTURE WORKS 

In the two simulations above, it is assumed that the power of the preceding available hardware 

resources was less than the amount of processing volume required for each task. To finish the discussion, we 

run the simulation in a different way. This time, 65 tasks with a maximum processing volume of 5,000 units 

are distributed among a hundred cloud processors with a maximum processing power of 7,000 units. The 

processing cost is 10,000 units. The results showed that the current method still has had superiority to the 

random allocation of resources, but this level of superiority was not as significant as in the previous cases. 

The proposed algorithm for actively distributing processing resources between the tasks presented seems to 

be more effective when the available hardware processing power is less than the processing power required 

by the tasks. The remaining point is the time allowed for processing, which according to the speed limit and 

the number of processors, it cannot consider this time constraint. While from the users’ point of view, the 

length of time is undesirable, but at the same time, the user cannot expect any task that expects the cloud 

system to be done by the user. however, the allowed processing time of a parameter is independent, and any 

value can be assumed, and it cannot expect the process distribution system to do a very large task using a 

small processor small in a short time. 

There are several suggestions for future research: i) applying input tasks in specific cases, infinitely 

different states can be considered for sequencing and processing tasks, and system performance is examined 

in this case; ii) considering two parallel user tasks for engaging processors that become idle before 

completing all tasks; iii) comparison of techniques other than a random distribution of tasks for comparison 

with the proposed method; iv) considering unforeseen factors such as the non-availability of some processing 

resources. The current method has many advantages compared to the random distribution method, but to 

complement other discussions, researchers can provide other tactics of distributing processing resources at 

the same time as the method proposed in this study and compare their performance with the implementation 

of both simulations. 
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