
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 12, No. 5, October 2022, pp. 5348~5354 

ISSN: 2088-8708, DOI: 10.11591/ijece.v12i5.pp5348-5354      5348  

 

Journal homepage: http://ijece.iaescore.com 

Two-stage parametric identification procedure to predict 

satellite orbital motion 
 

 

Oksana Sergeevna Chernikova, Yuliya Sergeevna Chetvertakova 
Department of Theoretical and Applied Informatics, Novosibirsk State Technical University, Novosibirsk, Russia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Mar 24, 2021 

Revised Apr 11, 2022 

Accepted May 5, 2022 

 

 The paper presents a new step-by-step procedure for constructing a 

navigation satellite motion model. At the first stage of the procedure, the 

parameters of the radiation pressure model are estimated using the maximum 
likelihood method. The statistic estimator based on the continuous-discrete 

adaptive unscented Kalman filter is proposed for the solar radiation model 

parameters estimation. Step-by-step scheme of filtering algorithm used for 

the software development are given. At the second stage, the parameters of 
the unaccounted perturbations model are estimated based on the results of 

residual differences measurements. The obtained results lead to significant 

improvement of prediction quality of the satellite trajectory. 

Keywords: 

Maximum likelihood method 

Parametric identification 

Satellite orbital motion model 

Solar radiation model 

Unscented Kalman filter 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Oksana Sergeevna Chernikova 

Department of Theoretical and Applied Informatics, Novosibirsk State Technical University 

20 Prospekt K. Marksa, Novosibirsk, 630073, Russia 

Email: chernikova@corp.nstu.ru 

 

 

1. INTRODUCTION 

The representation of a dynamic system by a nonlinear stochastic model makes it possible to take 

into account factors caused by nonlinear laws of nature and perform a better analysis. To obtain a model with 

good predictive properties, informative measurement data and a suitable model structure capable of 

accurately describing the dynamics of the process are required; therefore, when constructing models of 

nonlinear systems, parametric identification methods are used. Traditionally, the maximum likelihood (ML) 

method is used to solve the problem of parametric identification [1]–[3]. In case of using dynamic models 

with Gaussian noise, the corresponding identification criterion is written on the basis of the equations of the 

extended Kalman filter (EKF) [4], [5]. Although the EKF is widely used, this filter has some drawbacks. EKF 

applies the standard technique to linearize a nonlinear model. It requires the sufficient differentiability of the 

dynamic state and the susceptibility to biasing and to divergence of the state estimates. This method is  

sub-optimal and can easily lead to the divergence. The EKF achieves only the first-order accuracy and 

produces a good result only if the initial estimation error and disturbing noises are small.  

These difficulties can be successfully overcome with such nonlinear filters as the cubature Kalman 

filter [6], [7] and the unscented Kalman filter (UKF) [8]–[12]. Julier et al. [8], [9] proposed derivative free 

alternative to the EKF for state estimation the unscented Kalman filter (UKF). The UKF has been developed 

for the case of highly nonlinear state estimation problems. The UKF performs a Gaussian approximation with 

a limited number of points (sigma points), using the unscented transform. This technique is used to linearize 

a function a random variable via the linear regression based on the points drawn from the prior distribution of 

the random variable. The UKF has the same computational complexity as the EKF has [12], but UKF does 

not require the Jacobians computing and can achieve the second-order accuracy of the Taylor expansion.  

When solving practical problems, statistical parameters of noise are set inaccurately or they are 

completely unknown. The presence of outliers in the measurement data makes the further determination of 
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such characteristics complicated. When using the incorrect a priori information about the noise properties of 

the system and/or the measurements, the obtained estimates may be biased. Covariance matrices are determined 

according to the results of the analysis of the source data or modeling. Note that the correct determination of the 

covariance matrices of noise processes affects the accuracy of the estimation of the state vector.  

A possible solution to the problem is seen in the use of adaptive methods of measuring data 

processing [13]–[17]. Adaptive algorithms allow us to jointly evaluate the state vector and covariance noise 

matrices. In this research, the sub-optimal Sage-Husa estimator [13], [16], [17] is combined with the UKF 

algorithm in order to estimate and improve the statistical properties of the process noise. Such improvement 

reduces the model error, suppresses the filtering divergence and improves the filtering accuracy. For the more 

accurate construction of a mathematical model, it is proposed to additionally evaluate the disturbances from 

the measurements of the residual differences, using a two-stage parametric identification procedure. 

This paper has the following structure. Section 2 provides a mathematical description of the motion 

model of the navigation satellite. A two-step parametric identification procedure is described in section 3. 

The results of applying the two-stage parametric identification procedure in constructing a satellite motion 

model are given in section 4. The found parameters of the solar radiation model are given. A comparison of 

the accuracy of the constructed motion models of navigation satellite based on the ML method and the  

two-stage identification procedure is also given in section 4. The conclusion is provided in section 5. 

 

 

2. MOTION MODEL OF THE NAVIGATION SATELLITE 

The quality of the ephemeris-temporal support for Global Navigation Satellite System (GNSS) 

technologies depends on adequacy of the applied mathematical models describing the orbital motion of 

navigation satellites. Consider the following stochastic nonlinear continuous-discrete model of orbital motion 

of the navigation satellite [18], [19] is (1) and (2). 

 
𝑑

𝑑𝑡
(𝑟(𝑡)) = −

𝜇∙𝑀𝐸

‖𝑟(𝑡)‖3⏟  
𝑟(𝑡) + 𝑔1

𝑓(𝑅(𝑡))

(𝑟(𝑡)) + 𝑔2(𝑟(𝑡)) + 𝑔3(𝑟(𝑡), �̇�(𝑡), 𝜃) + 𝑤(𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑁] (1) 

 

𝑠(𝑡𝑘+1) = 𝑟(𝑡𝑘+1)⏟    

ℎ(𝑅(𝑡𝑘+1))

+ 𝑣(𝑡𝑘+1), 𝑘 = 0,1,… , 𝑁 − 1 (2) 

 

Where, 𝑅(𝑡) = (
𝑟(𝑡)

𝑟(𝑡)
) , 𝑟(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))

𝑇
 is the coordinate vector of the navigation satellite in an 

inertial coordinate system, 𝑟(𝑡) = (𝑉𝑥(𝑡), 𝑉𝑦(𝑡), 𝑉𝑧(𝑡))
𝑇

 is the velocity vector of the navigation satellite in an 

inertial coordinate system; 𝑓(𝑅(𝑡)), ℎ(𝑅(𝑡𝑘+1)) are functions, where   is the gravitational constant, 𝑀𝐸  is 

the mass of the Earth; ‖𝑟(𝑡)‖ = √𝑥2(𝑡) + 𝑦2(𝑡) + 𝑧2(𝑡) is the radius of the orbit, 𝑔1(𝑟(𝑡)) is the 

perturbations, caused by the non-sphericity of the Earth's geopotential, 𝑔2(𝑟(𝑡)) is the perturbations, caused 

by the gravitational influence of the Moon, the Sun and/or the other planets, 𝑔3(𝑟(𝑡), 𝑟(𝑡), 𝜃) is perturbations 

from the solar radiation (SR); 𝜃 ∈ Ω𝜃 is the vector of unknown parameters; 𝑠(𝑡𝑘+1) is the measurement 

vector (for example, pseudo range, query range, satellite laser ranging (SLR) from ground points to the 

navigation spacecraft). In a particular case, a posteriori ephemeris of navigation spacecraft obtained by 

various processing centers can act as measurements (i.e. ℎ(𝑅(𝑡𝑘+1)) = 𝑟(𝑡𝑘+1). In (1) and (2):  

− The random vectors 𝑤(𝑡) and 𝑣(𝑡𝑘+1). form white Gaussian noises with unknown noises covariance 

matrices 

 

𝐸[𝑤(𝑡)] = 0, 𝐸[𝑤(𝑡)𝑤𝑇(𝜏)] = 𝑄𝑤(𝑡)𝛿(𝑡 − 𝜏)  

𝐸[ 𝑣(𝑡𝑘+1)] = 0, 𝐸[ 𝑣(𝑡𝑘+1) 𝑣𝑇(𝑡𝑖+1)] =  𝑄𝑣(𝑡𝑘+1)𝛿𝑘,1  
𝐸[𝑣(𝑡𝑘+1)𝑤

𝑇(𝜏)] = 0, 𝑘, 𝑖 = 0,1, … , 𝑁 − 1, 𝜏 ∈ [𝑡0, 𝑡𝑁]  
 

− The state vector 𝑅(𝑡)in moment 𝑡0defined by  

 

𝐸[𝑅(𝑡0)] = �̅�(𝑡0), 𝐸 [(𝑅(𝑡0) − �̅�(𝑡0))(𝑅(𝑡0) − �̅�(𝑡0))
𝑇
] = 𝑃(𝑡0)  

 

and has no correlation with 𝑤(𝑡), 𝑣(𝑡𝑘+1). 
A description of each of the forces affecting on a satellite can be found in, for example, [19], [20]. It 

is important to note that some of these force models include parameters which numerical values are only 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 5, October 2022: 5348-5354 

5350 

partially known. In the formation of model (1) and (2) it remains problematic to take into account 

perturbations from solar radiation pressure on the satellite [21]–[25]. To compute 𝑔3(𝑟(𝑡), 𝑟(𝑡), 𝜃) in an 

inertial coordinate system, the following SR model has been used [19], [23]–[25]: 

 

𝑔3(𝑟(𝑡), �̇�(𝑡), 𝜃) = 𝛬(𝑟(𝑡)) ⋅ 𝜌
−2(𝑟(𝑡)) ⋅ [𝑖1 ⋅ (𝜃1 + 𝜃2 𝑐𝑜𝑠 𝜎 (𝑟(𝑡), �̇�(𝑡)) + 𝜃3 𝑠𝑖𝑛 𝜎 (𝑟(𝑡), �̇�(𝑡))) +

 +𝑖2. (𝜃4 + 𝜃5 𝑐𝑜𝑠 𝜎 (𝑟(𝑡), �̇�(𝑡)) + 𝜃6 𝑠𝑖𝑛 𝜎 (𝑟(𝑡), �̇�(𝑡))) 

+ 𝑖3 ⋅ (𝜃7 + 𝜃8 𝑐𝑜𝑠 𝜎 (𝑟(𝑡), �̇�(𝑡)) + 𝜃9 𝑠𝑖𝑛 𝜎 (𝑟(𝑡), �̇�(𝑡)))]   (3) 

 

Here Λ(𝑟(𝑡)) is the eclipse factor, 𝜌(𝑟(𝑡)) is the distance between the satellite and the Sun, 𝜎(𝑟(𝑡), 𝑟(𝑡)) is 

the argument of the latitude for the navigation satellite, 𝑖1 =
𝑟𝑠(𝑡)−𝑟(𝑡)

‖𝑟𝑠(𝑡)−𝑟(𝑡)‖
 is ort in the direction of solar 

radiation, ‖∙‖
 
is the Euclidean vector norm, 𝑖2 =

𝑖1×𝑟(𝑡)

‖𝑖1×𝑟(𝑡)‖
 is ort normal to the Sun-satellite-Earth, 𝑖3 = 𝑖1 × 𝑖2 

is ort that complements the system to the right triple of vectors.  

 

 

3. RESEARCH METHOD 

Informative measurement data and correctly defined model parameters affect the predictive 

properties of the model and the ability to describe the dynamics of the process. Usually, the construction of 

the model (1) consists in finding estimates of the unknown parameters of the SR model. Estimation of 

unknown parameters of model (1) and (2) is carried out according to measurement data and the selected 

identification method. The a priori assumptions allow using the ML method for the parameters estimation. 

ML estimates have practically important properties, as asymptotic efficiency, asymptotic unbiasedness, 

asymptotic normality and consistency.  

We offer a two-step procedure for parametric identification of the model (1) and (2). At the first 

stage of the procedure, the parameters of the radiation pressure model are estimated using the ML method 

based on the adaptive unscented Kalman filter. At the second stage, the parameters of the unaccounted 

perturbations model are estimated based on the results of measurements of residual differences.  

Stage 1. Building the matching model (parameter identification) 

1.  Solve the problem of parametric identification based on the ML method 

 

𝜃 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜃∈𝛺𝜃

                                         

1

2
∑ 𝑙𝑛𝑑𝑒𝑡 𝑃𝑌 (𝑡𝑘+1)
𝑁−1
𝑘=0 +

1

2
∑ 𝜀(𝑡𝑘+1)

𝑇𝑃𝑌
−1(𝑡𝑘+1)

𝑁−1
𝑘=0 𝜀(𝑡𝑘+1),  (4) 

 

where 𝜀(𝑡𝑘+1) and 𝑃𝑌(𝑡𝑘+1) are defined based on the corresponding equations of the following adaptive 

UKF [13], [16], [17]: 

Initialization: 

− Set the values  

 

𝜉 = 0.001, 𝜂 = 2,𝜑 = 𝜅 = 0, 𝜌 = 0.998  

 

− Define the initial values  

 

�̂�(𝑡0|𝑡0) = �̅�(𝑡0), 𝑃(𝑡0|𝑡0) = 𝑃(𝑡0), 𝑄𝑤(𝑡0), 𝑄𝑣(𝑡1)  
 

−  Calculate 

 

𝑙 = 𝜉2(𝑛 + 𝜑) − 𝑛(𝑛 = 6 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑅(𝑡)), 𝛼0 =
𝑙

𝑛+𝑙
  

𝛽0 =
1

(𝑛+1)+(1−𝜉2+𝜂)
, 𝛼𝑖 =

1

2(𝑛+1)
= 𝛽𝑖, 𝑖 = 1, … ,2𝑛  

𝑎 = [𝛼0, 𝛼1, … , 𝛼2𝑛]
𝑇  

𝐴 = (𝐼 − [𝑎|… |𝑎]⏟    
2𝑛+1

)𝑑𝑖𝑎𝑔(𝛽0, 𝛽1, … , 𝛽2𝑛) (𝐼 − [𝑎|… |𝑎]⏟    
2𝑛+1

)

𝑇

  

 

For 𝑘 = 0,𝑁 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Prediction: 

−  Define, �̂�(𝑡𝑘+1|𝑡𝑘), 𝑃(𝑡𝑘+1|𝑡𝑘) by solving of differential (5) and (6) integration  
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𝑑

𝑑𝑡
�̂�(𝑡|𝑡𝑘) = 𝑅𝑓(𝑡|𝑡𝑘)𝑎, 𝑡𝑘 ≤ 𝑡 ≤ 𝑡𝑘+1, (5) 

 
𝑑

𝑑𝑡
𝑃(𝑡|𝑡𝑘) = 𝑅𝑆(𝑡|𝑡𝑘)𝐴𝑅𝑓

𝑇(𝑡|𝑡𝑘) + 𝑅𝑓(𝑡|𝑡𝑘)𝐴𝑅𝑆
𝑇(𝑡|𝑡𝑘) 

+𝑄𝑤(𝑡), 1( ) ( ),w w kQ t Q t += 1+ k kt t t ,   (6) 

 

where the transformed set of vectors is identified as: 

 

𝑅𝑓(𝑡|𝑡𝑘) = [𝑓(𝑅0
𝑠(𝑡|𝑡𝑘))|𝑓(𝑅1

𝑠(𝑡|𝑡𝑘))|. . . |𝑓(𝑅2𝑛
𝑠 (𝑡|𝑡𝑘))]𝑛×(2𝑛+1), 

 

sigma points 𝑅𝑖
𝑠(𝑡|𝑡𝑘), 𝑖 = 1, 𝑛̅̅ ̅̅̅ are computed in accordance with the formula (7). 

 

𝑅𝑖
𝑆(𝑡|𝑡𝑘) = {

�̂�(𝑡|𝑡𝑘),  𝑖 = 0,

�̂�(𝑡|𝑡𝑘) + √𝑛 + 𝑙𝐷𝑖(𝑡|𝑡𝑘),  𝑖 = 1, 𝑛,

�̂�(𝑡|𝑡𝑘) − √𝑛 + 𝑙𝐷𝑖−𝑛(𝑡|𝑡𝑘),  𝑖 = 𝑛 + 1,2𝑛,

 (7) 

 

𝑅𝑠(𝑡|𝑡𝑘) = [𝑅0
𝑆(𝑡|𝑡𝑘)|𝑅1

𝑆(𝑡|𝑡𝑘)|. . . |𝑅2𝑛
𝑆 (𝑡|𝑡𝑘)]𝑛×(2𝑛+1). 

 

𝐷𝑖 is the 𝑖 − 𝑡ℎ 𝑟𝑜𝑤 of the lower triangular matrix obtained by the Cholesky decomposition of 𝑃(𝑡|𝑡𝑘). 
Updating: 

− Find 𝑅𝑆(𝑡𝑘+1|𝑡𝑘) using (7) with the substitution 𝑡 = 𝑡𝑘+1. 

− Calculate 

 

𝑆ℎ(𝑡𝑘+1|𝑡𝑘) = [ℎ(𝑅0
𝑆(𝑡𝑘+1|𝑡𝑘))|ℎ(𝑅1

𝑆(𝑡𝑘+1|𝑡𝑘))|. . . |ℎ(𝑅2𝑛
𝑆 (𝑡𝑘+1|𝑡𝑘))]𝑚×(2𝑛+1), 

𝜀(𝑡𝑘+1) = 𝑠(𝑡𝑘+1) − 𝑆ℎ(𝑡𝑘+1|𝑡𝑘)𝑎, 

𝜏𝑘 =
1−𝜌

1−𝜌𝑘+1
  

�̂�𝑣(𝑡𝑘+1) = (1 − 𝜏𝑘)�̂�𝑣(𝑡𝑘) + 𝜏𝑘[𝜀(𝑡𝑘+1)𝜀
𝑇(𝑡𝑘+1) − 

−∑ 𝛽𝑖 (ℎ (𝑅𝑖
𝑆(𝑡𝑘+1|𝑡𝑘)) − 𝑆ℎ(𝑡𝑘+1|𝑡𝑘)𝑎) (ℎ (𝑅𝑖

𝑆(𝑡𝑘+1|𝑡𝑘)) − 𝑆ℎ(𝑡𝑘+1|𝑡𝑘)𝑎)
𝑇

]2𝑛
𝑖=0 , 

𝑃𝑆(𝑡𝑘+1) = 𝑆ℎ(𝑡𝑘+1|𝑡𝑘)𝐴𝑆ℎ
𝑇(𝑡𝑘+1|𝑡𝑘) + 𝑄𝜈(𝑡𝑘+1), 

𝑃𝑅𝑆(𝑡𝑘+1) = 𝑅𝑆(𝑡𝑘+1|𝑡𝑘)𝐴𝑆ℎ
𝑇(𝑡𝑘+1|𝑡𝑘). 

 

−  State �̂�(𝑡𝑘+1|𝑡𝑘+1) and covariance estimates 𝑃(𝑡𝑘+1|𝑡𝑘+1) are computed according to the equations  

 

 𝐾(𝑡𝑘+1) = 𝑃𝑅𝑆(𝑡𝑘+1)𝑃𝑆
−1(𝑡𝑘+1)  

�̂�(𝑡𝑘+1|𝑡𝑘+1) = �̂�(𝑡𝑘+1|𝑡𝑘) + 𝐾(𝑡𝑘+1)𝜀(𝑡𝑘+1)  
𝑃(𝑡𝑘+1|𝑡𝑘+1) = 𝑃(𝑡𝑘+1|𝑡𝑘) − 𝐾(𝑡𝑘+1)𝑃𝑆(𝑡𝑘+1)𝐾

𝑇(𝑡𝑘+1)  

�̂�𝑤(𝑡𝑘+1) = (1 − 𝜏𝑘)�̂�𝑤(𝑡𝑘) + {𝜏𝑘 [𝐾(𝑡𝑘+1)𝜀(𝑡𝑘+1)𝜀
𝑇(𝑡𝑘+1)𝐾

𝑇(𝑡𝑘+1) + 𝑃(𝑡𝑘+1|𝑡𝑘+1) −

∑ 𝛽𝑖
2𝑛
𝑖=0 (𝑓 (𝑅𝑖

𝑆(𝑡𝑘+1|𝑡𝑘)) − �̂�(𝑡𝑘+1|𝑡𝑘)) (𝑓 (𝑅𝑖
𝑆(𝑡𝑘+1|𝑡𝑘)) − �̂�(𝑡𝑘+1|𝑡𝑘))

𝑇

]}   

End. 

 

Note that the cost function in (4) is known to have many local optima. Often to solve the 

optimization problem (4) are used Newton’s method and various quasi-Newton methods, which are the local 

ones. These methods are sensitive to the setting of initial values and the accuracy of determining the gradient. 

In general, it is impossible to determine what influenced the low accuracy of the model, the inaccurate 

definition of the model structure or the found local minimum. A reasonable approach to optimization 

problem is to use global optimization methods. In the paper for the solution (4) is used global optimization 

approach based on the sequential quadratic programming method. 

Stage 2. Specifying the matching model (identification of unaccounted disturbances from measurements of 

residual differences) 

− Calculate the residual differences ∆(𝑡𝑘+1) based on the estimates 𝜃 obtained in step 1. 

 

∆(𝑡𝑘+1) = 𝑠(𝑡𝑘+1) − �̂�1(𝑡𝑘+1)  
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where  

 

�̂�1(𝑡𝑘+1) = ℎ (�̂�(𝑡𝑘+1|𝑡𝑘+1)) (8) 

 

�̂�(𝑡𝑘+1|𝑡𝑘+1)- the estimate of the state vector obtained at the first stage. 

− Choose the following model 

 

∆𝑖(𝑡𝑘+1) = 𝑎0
𝑖 + 𝑎1

𝑖 𝑡𝑘+1 + 𝑎2
𝑖 𝑡𝑘+1
2 + 𝑏1

𝑖 cos (
2𝜋𝑡𝑘+1

𝑇
) +  

𝑏2
𝑖 sin (

2𝜋𝑡𝑘+1

𝑇
) + 𝑐1

𝑖cos (
4𝜋𝑡𝑘+1

𝑇
) + 𝑐2

𝑖 sin (
4𝜋𝑡𝑘+1

𝑇
)  (9) 

 

𝑖 = 1,… ,𝑚, 𝑚 - the size of 𝑠(𝑡𝑘+1) (here m=3), T-defined value, and estimate of the unknown parameters 

�̃� = (𝑎0
𝑖 , 𝑎1

𝑖 , 𝑎2
𝑖 , 𝑏1

𝑖 , 𝑏2
𝑖 , 𝑐1

𝑖 , 𝑐2
𝑖 )
𝑇
, 𝑖 = 1,2,3, using least squares method [26]: 

 

�̃̂� = (𝐵𝑇𝐵)−1𝐵𝑇𝛥(𝑡𝑘+1), 
 

where 𝐵 = [
1 𝑡1 𝑡1

2

∙∙∙ ∙∙∙ ∙∙∙
1 𝑡𝑁 𝑡𝑁

2

cos (
2𝜋𝑡1

𝑇
) sin (

2𝜋𝑡1

𝑇
) cos (

4𝜋𝑡1

𝑇
)

∙∙∙ ∙∙∙ ∙∙∙

cos (
2𝜋𝑡𝑁

𝑇
) sin (

2𝜋𝑡𝑁

𝑇
) cos (

4𝜋𝑡𝑁

𝑇
)

sin (
4𝜋𝑡1

𝑇
)

∙∙∙

sin (
4𝜋𝑡𝑀

𝑇
)

] 

 

− Сalculate ∆̂(𝑡𝑘+1) taking into account the estimates �̃̂� found by the (9). 

− Сalculate  

 

�̂�2(𝑡𝑘+1) = �̂�1(𝑡𝑘+1) + ∆̂(𝑡𝑘+1), 𝑘 = 0, … , 𝑁 − 1 (10) 

 

using ∆̂(𝑡𝑘+1) and �̂�1(𝑡𝑘+1) found by the (8). 

 

 

4. RESULTS AND DISCUSSION  

As the measurement data we have taken the rapid ephemeris of the GPS from 07/14/2016, obtained 

by the international GNSS service. In this case, the satellite makes more than one revolution around the Earth 

(passes through the different light zones). At the initial time, we compute the velocity of the satellite on the 

basis of rapid ephemeris using Everett interpolation. Estimation of the SR parameters (3) can be carried out 

using the ML method according to the trajectory observations in areas of total illumination and penumbra 

zones [27]. The quality of the parameters estimates found was determined by the accuracy of predicting the 

navigation satellite motion trajectory: 

 

𝑅𝑀𝑆𝐸1
𝑖 = √

1

𝑁
∑ ‖𝑠(𝑡𝑘+1) − �̂�𝑖(𝑡𝑘+1)‖2
𝑁−1
𝑘=0   

 

𝑅𝑀𝑆𝐸2
𝑖 = √

1

𝑁
∑ ‖𝑠∗(𝑡𝑘+1) − �̂�𝑖

∗(𝑡𝑘+1)‖
2𝑁−1

𝑘=0   

 

Here {𝑠(𝑡𝑘+1), 𝑘 = 0,1, . . . , 𝑁 − 1} is final ephemeris received on July 14, 2016, {�̂�1
∗(𝑡𝑘+1), 𝑘 =

0,1, . . . , 𝑁 − 1} is the predicted trajectory on 06/14/2016 for the filter equation at 𝜃 and {�̂�2
∗(𝑡𝑘+1), 𝑘 =

0,1, . . . , 𝑁 − 1} is the obtained trajectory on 06/14/2016 based on the found parameters �̃̂�, 
*

1( )ks t +  is final 

ephemeris received on 06/15/2016, {�̂�1
∗(𝑡𝑘+1), 𝑘 = 0,1, . . . , 𝑁 − 1} is the obtained trajectory on 06/15/2016 

for the filter equation at 𝜃 and {�̂�2
∗(𝑡𝑘+1), 𝑘 = 0,1, . . . , 𝑁 − 1}is the obtained trajectory on 06/15/2016 based 

on the found parameters �̃̂�. The obtained results are presented in Table 1. 

Thus, the result of the sunlight SR parameters specification is that it is possible to increase the 

accuracy of the satellite trajectory prediction. The results obtained show that the model based on the two-

stage parametric identification procedure is more accurate than the model obtained using the one-stage 

parametric identification procedure. 
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Table 1. Results of estimating parameters of solar radiation model 
 One-stage parametric 

identification procedure 

Two-stage parametric identification procedure 

Parameters estimates θ̂ =

[
 
 
 
 
 
 
 
 
1.06906362
0.06858372
0.04729392
0.11131100
0.06708731
0.09272575
0.09483054
0.13523427
0.10924206]

 
 
 
 
 
 
 
 

 
�̂̃� = 10−7 ×

[
 
 
 
 
 
 
0.0955 0.0668 −0.0143
−0.0010 −0.0051 0.0007
0.0000 0.0001 0.0000

−0.2458 −0.1025 0.1188
0.1703 −0.1729 0.1879
−0.0009 −0.0051 0.0061
−0.0186 0.0114 −0.0141]

 
 
 
 
 
 

 

Evaluation of the quality of building a 

mathematical model (km) 
𝑅𝑀𝑆𝐸1

1 = 3.2701 × 10−8 𝑅𝑀𝑆𝐸1
2 = 8.1142 × 10−9 

Evaluation of the prediction quality (km) 𝑅𝑀𝑆𝐸2
1 = 3.3985 × 10−8 𝑅𝑀𝑆𝐸2

2 = 1.9186 × 10−8 

 

 

5. CONCLUSION 

In this paper the statistic estimator based on the adaptive modification UKF with noise is used for 

the SR model parameters estimation. This approach improves the robustness of the traditional UKF with the 

respect to the variable noise distribution. The results show that in case of time-varying or uncertain noise 

characteristics the adaptive UKF is more efficient than the conventional UKF in terms of the fast 

convergence and the state estimation accuracy.  

 Offered approach to the construction of a satellite motion model and the prediction of ephemeris is 

based on a complex application of the maximum likelihood method, a nonlinear filtering algorithm and the 

identification of a complex component of the satellite motion model. The use of a two-stage parametric 

identification procedure that combines the estimation of the parameters of the matching SR model from 

ephemerides with the refinement of the residual accelerations made it possible to increase the accuracy of 

determining the unknown parameters of the satellite motion model. In the future, to improve the accuracy of 

the model construction, a two-stage gradient identification procedure based on a combination of several 

adaptive filters will be developed. 
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