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 Haptic devices had known as advanced technology with the goal is creating 

the experiences of touch by applying forces and motions to the operator 

based on force feedback. Especially in unmanned aerial vehicle (UAV) 

applications, the position of the end-effector Falcon haptic sets the velocity 

command for the UAV. And the operator can feel the experience vibration 

of the vehicle as to the acceleration or collision with other objects through a 

forces feedback to the haptic device. In some emergency cases, the haptic 

can report to the user the dangerous situation of the UAV by changing the 

position of the end-effector which is be obtained by changing the angle of 

the motor using the inverse kinematic equation. But this solution may not 

accurate due to the disturbance of the system. Therefore, we proposed a 

position controller for the haptic based on a discrete-time proportional 

integral derivative (PID) controller. A Novint Falcon haptic is used to 

demonstrate our proposal. From hardware parameters, a Jacobian matrix is 

calculated, which combines with the force output from the PID controller to 

make the torque for the motors of the haptic. The experiment was shown that 

the PID has high accuracy and a small error position. 

Keywords: 

Haptic 

Novint Falcon 

PID controller 

Position controller 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Khoa Nguyen Dang 

Faculty of Electrical and Electronic Engineering, Phenikaa University 

To Huu Road, Yen Nghia, Hanoi 12116, Vietnam 

Email: khoa.nguyendang@phenikaa-uni.edu.vn 

 

 

1. INTRODUCTION 

The automation field had a sharp increase in the amount of robotic industrialization, many 

autonomous mobile robots had been developed such as unmanned aerial vehicles (UAVs) and unmanned 

ground vehicles (UGVs). These robots are to support the human in many difficult missions and working in 

various environments, those tasks can be rescued scans, spaces, surgery or military. In general, almost the 

architecture of an autonomous robot is divided into two parts as the master part and the slave part. The slave 

side includes the human operator, computer, and controller devices which were directed interaction with 

humans. The master side includes the robot frame and the actuators integrated with a system of sensors such 

as the Lidar sensor, visual camera, and optical sensor. In this model, the human operator either sends the 

command to the master side via a wired or wireless network. 

Normally, the human operator only sees the UAV and environment on the monitor based on the 

sensor and the visual feedback. Therefore, the tactile information needs to append to improve the feeling of 

the human operator. The haptic technology had seemed a key by the purpose is aim to bring more experience 

feeling about the robot working environment to the operator controller. For example, the personal haptic 

https://creativecommons.org/licenses/by-sa/4.0/
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interface mechanism (PHANToM) [1], [2] and Novint Falcon [3], [4] devices enable are used to control the 

manipulator as well as feel the environment around the workspace of the robot. With similar functions of the 

two above devices, we selected the Novint Falcon to develop the control algorithms. 

Novint Falcon haptic was used in many research and real applications. For example, the haptic 

presented the interaction forces between the excavator and soil [5], control position and velocity for the 3-

DOF manipulator [6], make position control for the 6DOF Denso VM6083 robot arm [7]. The realistic force 

feedback in cardiac surgery [8], [9]. Falcon haptic also integrated with a laser sensor to applied in a 

wheelchair with the purpose is support blind people [10], and the nuclear industry [11]. For some 

applications used the haptic to make feedback force to the user to help avoid obstacles is as in [12], [13]. In 

the UAV field, the end-effector of Falcon haptic is used to set velocity command for the UAV [14], [15], and 

the force feedback to haptic is to help the user avoiding obstacles that closed the UAV [16]-[18]. In some 

critical cases, the end-effector position of the Falcon is used for changing the angle of UAV motors using the 

inverse kinematic equation [19]. 

To apply the algorithms to the haptic device, the kinematic structure and dynamic configuration 

needs to be carefully considered as in some previous researches [20]-[23]. Herein, the inverse kinematic is 

expressed for calculating the angle of motors based on the know the end-effector position. In this case, the 

dynamic model is to determine the torques of the motors based on the Jacobian and force applied to the grip. 

It is easy to see that if we know the target position of the end-effector then we could control the angle of each 

motor correspond with this position. However, the system often exits more disturbance the motor disturbance 

(motor load, stiffness and damping), environmental conditions and error of mechanical. Therefore, the 

inverse kinematic will not provide an accurate position if only uses the equation by the angle motors. 

Therefore, the controller is designed to maintain the stability as well as the accuracy of the system. The 

proportional integral derivative (PID) controller [24], [25] is widely used to control the mechanism in 

industrial with the loop feedback, which calculates the error between the desired value and feedback value, 

and then it makes the control signal to the mechanism. Especially, PID control is useful to control the motion 

of the system [26]. In addition, the microchip and the personal computer need the sampling time to get the 

measured value from the system to make the feedback signal. Thus, this paper is aiming to develop a position 

controller which is to increment the accuracy of the position control for the end-effector position of the haptic 

device based on a discrete-time PID controller. 

The paper is organized as follows: firstly, we are going to present the model configuration and the 

invest kinematic of the Novint Falcon haptic device in section 2. Secondly, the dynamics configuration as the 

Jacobian matrix is described in section 3 for obtained the actuator torques based on the end-effector 

trajectory. Then, the details of the proposed controller are presented in section 4. After that, in section 5 we 

experimented with the position controller with an attitude and heading reference system (AHRS) sensor 

integrated with the grip to estimate the end-effector position, the result had demonstrated the performance of 

the proposed controller. Finally, the conclusions are given in section 6. 

 

 

2. NOVINT FALCON HAPTIC DEVICE 

The geometry of the Novint Falcon was developed by Novint Technologies Company [27] as shown 

in Figure 1 [21]. The model design of Falcon has included three parts such as a moving platform, a base 

platform and three parallel linkages to connect the two above platforms. Three motors are mounted on the 

base platform. The operator can manually control the robot by moving the end-effector in the Falcon haptic 

and three internal motors could be made some force to the operator. 

 

 

 
 

Figure 1. Novint falcon haptic hardware 
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Figures 2 and 3 represent one leg and base of the Novint Falcon haptic, respectively. A reference 

coordinate XYZ is attached at point O which is denoted the center of the base platform. The radius of the base 

platform is r and the distance from the end-effector to the highest joint E is denoted c. The length of the 

associated between joints AB, BC, CD and DE are a, e, b and d, respectively. The Novint Falcon dimensions 

are shown detail in Table 1. The end-effector position denoted by point P in the XYZ fixed coordinate frame 

and a local coordinate frame UVW are attached to the fixed point A. Three angles 𝜃1𝑖 , 𝜃2𝑖, 𝜃3𝑖 ∈ 𝑅3 with  

i=(1, 2, 3) represent each joint A, B and C, respectively.  

 

 

Table 1. The dimension of parameters in Novint Falcon [28] 
Parameters Value (mm) 

a 60.0 

b 102.5 

c 15.7 
d 11.5 

e 11.5 

f 26.2 
g 27.9 

r 36.6 

s 27.2 

 

 

 
 

Figure 2. Structure of a linkage in Novint Falcon haptic 

 

 

 
(a) 

 
(b) 

 

Figure 3. Novint Falcon platform (a) base platform, and (b) moving platform 

 

 

The inverse kinematic is to calculate the three angles 𝜃1𝑖 , 𝜃2𝑖, 𝜃3𝑖  of the motors using the known 

location of the end-effector 𝑃(𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧)which can present in the UVW coordinate frame by the homogeneous 

transformation matrix as in (1). 
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where the 
i  is the angle from the center of Novint Falcon haptic to each axis i=(1,2,3), which has the values 

as 
7𝜋

12
,

−𝜋

12
𝑎𝑛𝑑 

−9𝜋

12
, respectively.  

The angle actuators 𝜃1𝑖 , 𝜃2𝑖 , 𝜃3𝑖 can be obtained by [15]: 
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with term 𝑦1𝑖  can be determined from (5). 
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Following (2), (3) and (4), the position of the end-effector could be obtained by controlling the angle 

of the motors. However, the system often has disturbances that come from the noise of motors, and the 

environment. The inverse kinematic cannot provide accurately the position of the end-effector which could 

have trouble if it combines with the robotic systems. Therefore, in this paper, we propose the position control 

for the haptic device based on the discrete-time PID. 

 

 

3. DYNAMICS CONFIGURATION 

The Jacobian basic function can be defined as in (9). 

 

𝑥 = 𝐽𝑞 (9) 

 

Where x is end-effector position and orientation; q is the set of joint angles; J is the Jacobian matrix. Let’s 

define as in (10), (11) [17], 
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with i, j=(1,2,3) and ji  are in (2), (3) and (4). Applying formula of 

 
TJ F =  

 

where F is the vector combining end-effector forces and moments; J is Jacobian matrix;  is actuator 

torques. Therefore, the actuator torques can be obtained by the force of the end-effector. 

 

 

4. PROPOSED DISCRETE-TIME PID CONTROLLER 

In this section, a discrete-time PID controller is developed to drive the position of the Novint Falcon 

haptic device, which has the structure in Figure 4. 

 

 

 
 

Figure 4. The diagram of position control proposal 

 

 

Let’s consider the continuous PID form in (12). 
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Where the error e(t) is defined by subtraction between the desired input value and the measured output value, 

u(t) is the controller output. Three parameters 𝐾𝑝, 𝐾𝑑 , 𝑎𝑛𝑑 𝐾𝑖 are defined as proportional gain, derivative gain 

and integral gain, respectively. 

Talking the Z transform of (12), one has 
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 and 𝑇𝑠 is the sampling period. 

From (13), we have (14). 

 

𝑈(𝑧) = 𝑈(𝑧)𝑧−1 + 𝑎𝐸(𝑧) + 𝑏𝑧−1𝐸(𝑧) + 𝑐𝑧−2𝐸(𝑧) (14) 

 

The time-domain of (14) can be presented as in (15). From (15), the PIDz can be applied to any system with 

the gains 𝐾𝑝 , 𝐾𝑖 , 𝐾𝑑 and sampling time Ts. 

 

𝑢(𝑘) = 𝑢(𝑘 − 1) + 𝑎𝑒(𝑘) + 𝑏𝑒(𝑘 − 1) + 𝑐𝑒(𝑘 − 2) (15) 

 

 

5. EXPERIMENT AND RESULTS 

The experiment is performed to demonstrate the proposed position control, which includes the 

Novint Falcon haptic device connected to one desktop PC via the USB connection. The PC is installed in the 

Linux OS, the AHRS sensor is integrated with the grip to estimate the end-effector position to configure the 

input/output for the Novint device. Herein, the input is the force and the output is the position of the end-

effector. The configuration of the experiment is shown in Figure 5. 
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The discrete-time PID controller in Sec. 4 is a built-in Linux OS PC using the C++ program. In all 

simulations, we selected the sampling time Ts=0.01[s]. And the gains of a PID controller can be obtained by 

the trial and error method. By using this method, the Kd and Ki are set to zero for the first time. We increase 

the Kp to the response becomes faster and the output of the loop oscillates. This step needs careful because 

the system could unstable if the Kp is very large. After that, Ki is increased to stop the oscillations and reduce 

the steady-state error but the overshoot may appear. In the last step, Kd is increased to cancel the error which 

is created by Ki. Finally, we can select the gain of the PID controller as Kp=1.5, Kd=5, Ki=0.0013. To prove 

the performance of the proposed controller, two scenarios are implemented in cases without the disturbance 

and with disturbance to the end-effector by the human forces. 

 

 

 
 

Figure 5. The configuration of experiment 

 

 

In the first scenario, the initial of Novint Haptic is random position as Px=1.5 [cm], Py=-5.7 [cm], 

Pz=4.3 [cm] and the desired position is Pxr=2.5 [cm], Pyr=-2.5 [cm], Pzr=4.0 [cm]. As a result in Figure 6, 

the position of haptic could meet the desired position at 1.2 [s] and keep stability during the time working 

which can show very detail in Figure 7. Therein, all position errors (ei=Pir-Pi where i=x, y, z) come to zeros 

and maintain at this value. These results show that the discrete-time PID proposed control can provide a 

solution for controlling the end-effector position to any desired trajectory with high accuracy and ensure the 

stability system. 

 

 

  
  

Figure 6. The position of end-effector without 

disturbance 

Figure 7. The error position of end-effector without 

disturbance 

 

 

In the second scenario, a disturbance from human force is effected to the end-effector in the random 

time at 6.5[s], 11[s], 14.9[s], 19[s], 22[s] and 26.5[s] to all directions of the grip. The result in Figure 8 

showed that the discrete-time PID can maintain the stability of the position end-effector haptic to the desired 

position notwithstanding the disturbance from any direction. The detailed result is shown in Figure 9 

demonstrated that although the disturbances in this situation are quite large, the proposed controller still 

maintains the stability for the haptic device. The results proved convincingly that the position control performance 

could be ensured by using our proposed control with large noises and disturbances in environment. 
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Figure 8. The position of end-effector with external 

forces 

Figure 9. The error position of end-effector with 

external forces 

 

 

6. CONCLUSION 

This paper presents the discrete-time PID controller to drive the end-effector position of Novint 

Falcon haptic. Herein, the inverse kinematic and dynamic models are carefully considered and show some 

limitations of the control position. Instead of using the inverse kinematic equation to take the end-effector to 

go to the desired point, the proposed position control is suggested based on the PID controller. As a result, the 

grip of Novint Falcon could follow the desired trajectory quickly with high accuracy in disturbance conditions. 

The proposed control could provide good performance for the haptic device to apply any robotics system. 

 

 

ACKNOWLEDGEMENTS  

This research was supported by Research Foundation funded by Thu Dau Mot University. 

 

 

REFERENCES 
[1] T. H. Massie and J. K. Salisbury, “The phantom haptic interface: A device for probing virtual objects,” Proceedings of the ASME 

winter annual meeting, symposium on haptic interfaces for virtual environment and teleoperator systems, vol. 55, no. 1,  

pp. 295-300, 1994. 
[2] A. J. Silva, O. A. D. Ramirez, V. P. Vega, and J. P. O. Oliver, “Phantom omni haptic device: Kinematic and manipulability,” 

2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA), 2009, pp. 193-198, doi: 10.1109/CERMA.2009.55. 

[3] D. J. Block, M. B. Michelotti, and R. S. Sreenivas, “Application of the Novint Falcon haptic device as an actuator in real-time 
control,” Paladyn, vol. 4, no. 3, pp. 182-193, 2013, doi: 10.2478/pjbr-2013-0017. 

[4] D. Rácz, M. Takács, P. Galambos, and J. Somló, “A low-cost experimental device for compliant physical human-robot 

interaction,” International Conference on Robotics in Alpe-Adria Danube Region, 2017, pp. 217-226, doi: 10.1007/978-3-319-
61276-8_25. 

[5] H. Torres-Rodriguez, V. Parra-Vega, and F. Ruiz-Sanchez, “Integration of force-position control and haptic interface facilities for 

a virtual excavator simulator,” Proceedings 12th International Conference on Advanced Robotics, ICAR'05, 2005, pp. 761-768, 
doi: 10.1109/ICAR.2005.1507494. 

[6] M. Wrock and S. Nokleby, “Haptic teleoperation of a manipulator using virtual fixtures and hybrid position-velocity control,” 

IFToMM World Congress in Mechanism and Machine Science, 2011. 
[7] P. Chotiprayanakul and D. Liu, “Workspace mapping and force control for small haptic device based robot teleoperation,” 2009 

International Conference on Information and Automation, 2009, pp. 1613-1618, doi: 10.1109/ICINFA.2009.5205175. 

[8] D. Salle, F. Gosselin, P. Bidaud, and P. Gravez, “Analysis of haptic feedback performances in telesurgery robotic systems,” 

Proceedings 10th IEEE International Workshop on Robot and Human Interactive Communication. ROMAN 2001 (Cat. No. 

01TH8591), 2001, pp. 618-623, doi: 10.1109/ROMAN.2001.981973. 

[9] Z. Xu, C. Song, and W. Wu, “Haptic tracking control for minimally invasive robotic surgery,” Journal of biomedical engineering, 
vol. 29, no. 3, pp. 407-410, 2012. 

[10] D. I. Ahlmark, H. Fredriksson, and K. Hyyppä, “Obstacle avoidance using haptics and a laser rangefinder,” 2013 IEEE Workshop 

on Advanced Robotics and its Social Impacts, 2013, pp. 76-81, doi: 10.1109/ARSO.2013.6705509. 
[11] G. S. Giri, Y. Maddahi, and K. Zareinia, “An application-based review of haptics technology,” Robotics, vol. 10, no. 1, 2021, Art. 

no. 29, doi: 10.3390/robotics10010029. 
[12] M. Zarei, N. Kashi, A. Kalhor, M. T. Masouleh, and R. Systems, “Experimental study on shared-control of a mobile robot via a 

haptic device with an optimal velocity obstacle based receding horizon control approach,” Journal of Intelligent & Robotic 

Systems, vol. 97, no. 2, pp. 357-372, 2020, doi: 10.1007/s10846-019-01023-z. 
[13] F. Barontini, M. G. Catalano, L. Pallottino, B. Leporini, and M. Bianchi, “Integrating wearable haptics and obstacle avoidance for 

the visually impaired in indoor navigation: a user-centered approach,” IEEE Transactions on Haptics, vol. 14, no. 1, pp. 109-122, 

2020, doi: 10.1109/TOH.2020.2996748. 
[14] Z. Hou, P. Lu, and Z. Tu, “Nonsingular terminal sliding mode control for a quadrotor UAV with a total rotor failure,” Aerospace 

Science Technology, vol. 98, 2020, Art. no. 105716, doi: 10.1016/j.ast.2020.105716. 

[15] H. A. Malik, S. Rasool, A. Maqsood, and R. Riaz, “Effect of haptic feedback on pilot/operator performance during flight 
simulation,” Applied Sciences, vol. 10, no. 11, 2020, Art. no. 3877, doi: 10.3390/app10113877. 

[16] H. Courtois and N. Aouf, “Haptic feedback for obstacle avoidance applied to unmanned aerial vehicles,” 2017 International 

Conference on Unmanned Aircraft Systems (ICUAS), 2017, pp. 417-424, doi: 10.1109/ICUAS.2017.7991328. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 1, February 2022: 269-276 

276 

[17] S. Fu, H. Saeidi, J. Huang, Y. Wang, and J. Wagner, “Customizable unmanned aerial vehicle haptic feedback interface: theory 

and test,” Journal of Guidance, Control, Dynamics, vol. 41, no. 12, pp. 2581-2587, 2018, doi: 10.2514/1.G003645. 
[18] A. Altan and R. Hacıoğlu, “Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking 

under external disturbances,” Mechanical Systems and Signal Processing, vol. 138, 2020,  

Art. no. 106548, doi: 10.1016/j.ymssp.2019.106548. 
[19] S. Fu et al., “A haptic interface with adjustable feedback for unmanned aerial vehicles (UAVs)-model, control, and test,” 2016 

American Control Conference (ACC), 2016, pp. 467-472, doi: 10.1109/ACC.2016.7524958. 

[20] N. Karbasizadeh, A. Aflakiyan, M. Zarei, M. T. Masouleh, and A. Kalhor, “Dynamic identification of the Novint Falcon haptic 
device,” 2016 4th International Conference on Robotics and Mechatronics (ICROM), 2016,  

pp. 518-523, doi: 10.1109/ICRoM.2016.7886795. 

[21] L.-W. Tsai and R. E. Stamper, “A parallel manipulator with only translational degrees of freedom,” University of Maryland, 
College Park, vol. 301, pp. 1314-1328, 1997. 

[22] F. Khadivar, S. Sadeghnejad, H. Moradi, G. Vossoughi, and F. Farahmand, “Dynamic characterization of a parallel haptic device 

for application as an actuator in a surgery simulator,” 2017 5th RSI international conference on robotics and mechatronics 
(ICRoM), 2017, pp. 186-191, doi: 10.1109/ICRoM.2017.8466168. 

[23] S. Martin and N. Hillier, “Characterisation of the Novint Falcon haptic device for application as a robot manipulator,” 

Australasian Conference on Robotics and Automation (ACRA), 2009, pp. 291-292. 
[24] M. R. Ghazali, M. Ahmad, and R. Ismail, “Data-driven neuroendocrine-PID controller design for twin rotor MIMO system,” 

Journal of Physics: Conference Series, vol. 1529, 2020, Art. no. 042080, doi: 10.1088/1742-6596/1529/4/042080. 

[25] A. Houari, I. Bachir, D. Mohamed, and M. Kara-Mohamed, “PID vs LQR controller for tilt rotor airplane,” International Journal 
of Electrical Computer Engineering (IJECE), vol. 10, no. 6, pp. 6309-6318, 2020, doi: 10.11591/ijece.v10i6.pp6309-6318. 

[26] D. Vega-Hernández, L. G. García-Valdovinos, O. A. Domínguez-Ramírez, and A. Curiel-Anaya, “Kinesthetic guidance based on 

PID control for haptic interaction,” 2010 IEEE Electronics, Robotics and Automotive Mechanics Conference, 2010, pp. 624-630, 
doi: 10.1109/CERMA.2010.77. 

[27] M. A. Choukou, S. Mbabaali, J. Bani Hani, and C. Cooke, “Haptic-enabled hand rehabilitation in stroke patients: A scoping 
review,” Applied Sciences, vol. 11, no 8, 2021, Art. no. 38773712, doi: 10.3390/app11083712. 

[28] N. Karbasizadeh, M. Zarei, A. Aflakian, M. T. Masouleh, and A. Kalhor, “Experimental dynamic identification and model feed-

forward control of Novint Falcon haptic device,” Mechatronics, vol. 51, pp. 19-30, 2018, doi: 
10.1016/j.mechatronics.2018.02.013.  

 


