
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 12, No. 1, February 2022, pp. 141~149 

ISSN: 2088-8708, DOI: 10.11591/ijece.v12i1.pp141-149      141 

 

Journal homepage: http://ijece.iaescore.com 

Design and fabrication of rotor lateral shifting in the axial-flux 

permanent-magnet generator 

 

 

Nurma Sari1,2, Gatut Yudoyono1, Ali Yunus Rohedi1, Yono Hadi Pramono1 
1Department of Physics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia 

2Physics Study Program, University of Lambung Mangkurat, Lampung, Indonesia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jan 29, 2021 

Revised Jul 16, 2021 

Accepted Aug 4, 2021 

 

 The development of axial-flux permanent-magnet (AFPM) machines has 

become a mature technology. The single-stator double-rotor (SSDR) AFPM 

structure has advantages on the compactness and the low up to medium 

power applications so the microscale size and low-cost applications are 

reachable to be designed. The research main objectives are designing and 

manufacturing the lateral shifting from the north poles of the first rotor face 

the north poles of the second rotor (NN) to the north poles of the first rotor 

face the south poles of the second rotor (NS) categories as well as finding 

the best performance of the proposed method and implementing in a low 

cost and micro-scale AFPMG. The novel lateral shifting on the one of the 

rotors shows performance at 19.20 has the highest efficiency at 88.39% 

during lateral shifting from N–N (00) to N–S (360) on rotor2. 
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1. INTRODUCTION 

Development of permanent-magnet (PM) generators from magnetic interactions between permanent 

magnets, currents, and various magnetic materials are successfully converting rotational mechanical energy 

into electrical energy for a wide variety of applications [1]. Compared to other types of magnetic machines, 

PM machines have several benefits for miniaturized or microscale applications. The magnetic interactions 

governing the machine operation scale independently with size. Power generator electric machinery designs 

are being made as compact and light as possible and also considering its size and weight [2]. Moreover, PM 

generators advantages are having high-torque and low-speed applications [3]-[7]. PM generators are widely 

used as an alternative of non chemical batteries power source research propagates rapidly in recent years and 

mainly motivated by the needs of power requirements especially in low-power consumption and applications. 

The design of a high-speed 100 W generator suitable for use with a gas turbine was developed by [8] and its 

losses caused by the high frequency operation are compensated by optimizing the winding and the stator core 

material. 

For the last 40 years, as development of axial-flux permanent-magnet (AFPM) machines rapidly and 

widely spread research effort and becoming a mature technology [9], also become very attractive due to its 

highly-efficient machines for distributed power generation systems [2], [10]. and also due to other benefits 

compared to the slotted radial flux configuration such as shorter stack length, high torque density 

achievement and high efficiency [11]-[14]. The AFPM machines can be classified into three types which are 

single stator single-rotor (SSSR), single-stator double-rotor (SSDR), double-stator single-rotor (DSSR), or 

multi-stator multi-rotor (MSMR) [6], [15]. Many research of AFPM machines mainly focuses on in the 
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aspects of construction, features, electromagnetic and thermal modelling, simulation, analysis, design, 

materials, and manufacturing [16]. Another research are focusing on the effect back iron on the efficiency of 

the generator [17] and the testing of the airgap value [18]. The structure with two rotors and one stator 

(SSDR AFPM) machine introduced by Profumo et al. is one of the promising solution for both induction and 

synchronous machines due to the two rotors can rotate at different speeds, therefore the motor is able to act as 

a mechanical differential. Moreover, the AFPM motor with two rotors is highly compacted form [19]. The 

SSDR AFPM structure has advantages on high power density, the rotation of fans around the stators winding 

is working as a cooling fan for the windings and also applied from the low up to medium power applications 

[15], [20]. 

TORUS development and arrangement of axial modern machines by [21]-[23] made simpler 

toroidal winding and allowing the windings moves along the stator to achieve spatial windings automatically. 

Commonly there are two categories of SSDR AFPM machine based on the flux directions inside the 

machine, the NN type TORUS [15], [24], [25] and the NS type TORUS [15], [26] which are showing the 

north poles of the first rotor face the north poles of the second rotor and the north poles of the first rotor face 

the south poles of the second rotor respectively. Meanwhile, Omrani et al. [27] studied that independent 

bearing and axis of double sided disc type permanent magnetic motor are able to rotate two different loads at 

equal velocities without encountering stability problems and will lead increasing the usages of the motor.  

With advantages of PM generators [1] and compactness of SSDR type of AFPM [19], the 

microscale size applications are possibly designed. In this research, our main objectives are designing and 

manufacturing the lateral shifting from NN to NS categories as well as finding the best performance of the 

proposed method and implementing in a low cost and microscale axial-flux permanent-magnet generator 

(AFPMG). We designed and fabricated the AFPMG consist of one stator between two rotors (SSDR type) to 

generate high efficient AFPM generator. Performance analysis is presented to show the reach of our research 

in this particular design. The objective of this paper is to design and implement a high performance of SSDR 

AFPM. To this purpose, we have introduced a novel rotor lateral shifting to one of the two rotors to improve 

the efficiency of the state-of-the-art NN and NS categories in the SSDR types. Specifically, we have: 

a. Composed independent rotor lateral shifting from N–N (0o) to N–S (36o) on rotor2. 

b. Introduced a novel approach for the rotor best position at 19.2o with the highest efficiency at 88.39% 

during lateral shifting method. 

c. Provided a compact and a low cost of SSDR AFPM generator with high efficiency. 

 

 

2. RESEARCH METHOD  

The design of the SSDR type of AFPM generator consists of the components and materials as 

shown in Table 1. Rotor and its permanent magnet are parts of the AFPM generator and structured by turns 

of the different poles in the circular form. Rotor plates material made from aluminium and the thikness is  

0.3 cm. We designed rotors with diameter 25 cm and made from Neodymium material in the form of circular 

(with diameter 5 cm and width 1 cm). An angle 36° for each magnet was symmetrically arranged with poles 

oppositely to bring N-S-N-S shifting. This arrangement implies rotor magnetism varied from N-N (0°) to  

N-S (36°). Figures 1(a) and 1(b) shows the rotor design and its implementation. 

The stator desain as shown on the Table 1 which are consisted of 12 coils with diameter is 20 mm, 

outer coils diameter is 75 mm, outer coils width is 60 mm, and the number of coils turns are 1000. The stator 

design was marked with certain combination as to make it easier during the electrical circuit to generate three 

phase electrical source. The design and its implementation can be clearly seen in the Figures 2(a) and 2(b).  

 

 

Table 1. The design of the DSSR type of AFPM 
Components Features 

Coils diameter (mm) 20 
Outer coils diameter (mm) 75 

Outer coils width (mm) 60 

Phase 3 
Number of coils turns 1000 

Number of coils 12 

Wire diameter (mm) 0.7 
Magnet type Neodymium (Nd2Fe14B) 

Magnet shape Circular 

Number of magnets 20 
Magnets diameter (mm) 50 

Magnets thickness (mm) 10 

Core type Axial 

Air gap between rotor and stator (mm) 1.5 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Design and fabrication of rotor lateral shifting in … (Nurma Sari) 

143 

 
(a) 

 
(b) 

 

Figure 1. Rotor with permanent-magnets attached, (a) design, (b) its implementation 

 

 

 
(a) 

 
(b) 

 

Figure 2. Stator with coils attached, (a) design, (b) its implementation 

 

 

The magnetic flux (φm) calculation in which measuring the total magnetic field (B) that passes 

through a given surface area (A). The formula of the magnetic flux as (1): 

 

𝜑𝑚 = 𝐵 𝐴    (1) 

  

Meanwhile, the number of the magnetic flux at which the normal component of field lines passing through a 

given surface area, thus the magnetic flux formula become: 

 

𝜑𝑚 = 𝐵. �̂�𝐴   (2) 

 

𝜑𝑚   = 𝐵 𝐴 cos 𝜃   (3) 
 

where �̂� is the normal component and θ is the angle between the magnetic field lines and the normal 

(perpendicular) to the surface area. However, there is back emf that existed during running motor due to the 

consisting of a coil turning in the magnetic field and opposing the voltage powering and driving the motor 

[28]. 

The angle of each coil is 30o and classified in three different marked with series connections 

generating one phase each. With R1 = R2 = R3, amplitude and the phase (output sinusoidal voltages are 120o) 

are identically same see in Figure 3. The windings combination on the coil and electric circuit equivalent to 

generate three phase machine of the marked Figure 2 can be clearly seen on Figure 3.  
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The AFPM Generator was designed with lateral shifting on the one of the rotor and then 

investigating the highest efficiency of the machine as shown in Figure 4. We designed double rotor and the 

one stator in between as it has higher efficiency compared to single rotor [29]. Both rotors and stator are 

coreless and connected in the same axis so technically easier to manufacture [30]. The rotor lateral shifting 

was observed from 0o to 36o matching the angle between both magnets curve length. The efficiency was 

calculated by the load of δ connected to three phase generator output. Total power output was measured from 

the current and voltage of δ. Meanwhile, total power input measurement was gotten from the motor rotation 

powered by direct current (DC) power supply.  

 

 

 
 

Figure 3. Three phase machine generated by Figure 2 marked configuration and the electric circuit equivalent 

 

 

 
 

Figure 4. Schematic design of the lateral shifting of α (between two rotors) 

 

 

We test our approach by connecting AFPM generator (G) prototype to electronic circuit and 

measuring the current (A) and the voltage (V) as shown in Figure 5. By measuring current and voltage, power 

out can be calculated and then compared to the generator for calculating efficiency of the generator. 

Implementation of the circuit can be clearly seen on Figure 6. Power out calculation was taken from the 

generator resistance, current, the load resistance and its voltage: 

 

Pout = I2 Rg + Vout I    (4) 

 

where Pout  is power consumption, I is the flowing current in the circuit, Rg is the generator resistance and Vout 

is the output voltage taken from the load. Eficiency of proposed AFPMG should be calculated as (5), 

 

( ) 100%out inP P = 
 (5) 
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where the input power Pin  is determined from the input voltage and current on DC motor as a generator drive. 

Total mechanical losses in this case will not be discussed, because they are included in the measured output 

power. We only consider how much input is supplied and how much power is generated to get the value of 

efficiency. 

 

 

 
 

Figure 5. Electronic circuit with load for testing power efficiency 

 

 

 
 

Figure 6. Implementation of the circuit from Figure 5 

 

 

3. RESULTS AND DISCUSSION 

Figure 7 shows the sinusoidal wave form that attached to the oscilloscope during experiment as 

shown in Figure 6. The three phase angles are 120o each. It is also indicating that the system is working well. 

Figures 8(a) dan 8(b) are both in the symmetrical condition with θ=0 applied in (3). In Figure 8(a), there are 

no field lines passing through the surface; however, there are small magnetic flux from both sides of the 

rotors and reducing back emf, resulting small power output due to small V and I. This reduced back emf 

implicates voltage frees up to push the motor to operate at higher output speeds so the RPM is reaching 

maximum due to reducing resistance from the back emf since no magnetic fields in between both rotors. 

Meanwhile, Figure 8(b) is having highest magnetic flux since all field lines passing through the given surface 

but the back emf is also fully emerged, limiting its rotation (RPM is decreasing) and resulting power output is 

higher than on the Figure 8(a). 

The measured efficiency and RPM of the rotor lateral shifting show that during the first structure 

which are α=0o or N-S-N-S for rotor1 and N-S-N-S for rotor2 on the pole condition is 20.21% due to flux 

from the same magnet polar will be annihilated each other and implied to only small flux change inducted 

emf on the coil in Figure 8(a). Small emf detected on the back and torque become lighter that made RPM 

around 1300 and finally only small amount of power consumed. Meanwhile, during the second structure 

which are α=36o or N-S-N-S for rotor1 and S-N-S-N for rotor2, all flux from both magnets induct emf on the 

coil in Figure 8(b). It has higher efficiency which is 68,19%. However, this conditions made RPM speed is 

decreasing since larger emf detected on the back and torque become heavier and larger power consumed. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 1, February 2022: 141-149 

146 

 
 

Figure 7. The three sinusoidal wave form produced by the three-phase voltage of the generator 

 

 

  
(a) (b) 

 

Figure 8. Flux produced by permanent magnets, (a) first structure, (b) second structure 

 

 

Figure 9 (which is the proposed structure) shows asymmetrical condition with θ≠0 and the back 

EMF is partially passing through the given surface area (back emf is not in the maximum condition). This 

condition makes smaller torque generated but the number of field lines is as same as before resulting higher 

efficiency. During lateral shifting position at α=19.2o, the flux induction to the coils is similar to the flux at 

α=36o and we found that the significant difference is the decreasing of back emf. As shown in Figure 9, the 

back emf always perpendicular to the coil so it gave small contributions to both rotor braking and resulting to 

the smaller power consumption with 864 RPM. 

Figure 10 shows efficiency and RPM responses during rotor rotation from α=0o to α=36o. The 

reduced back emf shows the maximum RPM as shown in Figure 8(a) and than the speed keep decreasing as 

the back emf is emerging until the back EMF is also fully emerged in Figure 8(b), limiting the rotation and 

RPM is minimum. In general, the trend of the RPM as shown in Figure 10 is decreasing during the rotation 

(the lateral shifting). Meanwhile, the efficiency of the proposed AFPMG was varied depend on the lateral 

shifting procedure and showing rotor lateral shifting performance at 19.2o reach its peak at 88.39%.  
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Figure 9. Flux magnet at αo (proposed structure) 

 

 

 
 

Figure 10. Efficiency (red line) and RPM (black line) responses due to rotor lateral shifting on the rotor2 from 

0o to 36o 

 

 

4. CONCLUSION  

In conclusion, we have proposed a novel rotor lateral shifting to one of the two rotors to improve the 

efficiency of the state-of-the-art NN and NS categories in the SSDR types. Our independent  rotor2 lateral 

shifting approach are shifted from N-N(0o) to N-S (36o). Our approach resulted performance at 19.2o with the 

best efficiency at 88.39% during lateral shifting. It is has been manufactured a compact and a low cost of 

SSDR AFPM generator with high efficiency. In the future, we would like to implement our approach with a 

new shape design of the coil to increase the flux and the power generator as well as maintain its efficiency. 
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