
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 11, No. 4, August 2021, pp. 3222~3228

ISSN: 2088-8708, DOI: 10.11591/ijece.v11i4.pp3222-3228  3222

Journal homepage: http://ijece.iaescore.com

An FPGA-based network system with service-uninterrupted

remote functional update

Tze Hon Tan1, Chia Yee Ooi2, Muhammad Nadzir Marsono3
1,3School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia

2Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur,

Kuala Lumpur, Malaysia

Article Info ABSTRACT

Article history:

Received Oct 13, 2020

Revised Jan 4, 2021

Accepted Jan 19, 2021

 The recent emergence of 5G network enables mass wireless sensors

deployment for internet-of-things (IoT) applications. In many cases, IoT

sensors in monitoring and data collection applications are required to operate

continuously and active at all time (24/7) to ensure all data are sampled

without loss. Field-programmable gate array (FPGA)-based systems exhibit a

balanced processing throughput and datapath flexibility. Specifically,

datapath flexibility is acquired from the FPGA-based system architecture that

supports dynamic partial reconfiguration feature. However, device functional

update can cause interruption to the application servicing, especially in an

FPGA-based system. This paper presents a standalone FPGA-based system

architecture that allows remote functional update without causing service

interruption by adopting a redundancy mechanism in the application

datapath. By utilizing dynamic partial reconfiguration, only the updating

datapath is temporarily inactive while the rest of the circuitry, including the

redundant datapath, remain active. Hence, there is no service interruption and

downtime when a remote functional update takes place due to the existence

of redundant application datapath, which is critical for network and

communication systems. The proposed architecture has a significant impact

for application in FPGA-based systems that have little or no tolerance in

service interruption.

Keywords:

Dual modular redundancy

Dynamic partial reconfiguration

NetFPGA

Service-uninterrupted remote

functional update

This is an open access article under the CC BY-SA license.

Corresponding Author:

Muhammad Nadzir Marsono

School of Electrical Engineering, Faculty of Engineering

Universiti Teknologi Malaysia

81310 Johor, Malaysia

Email: mnadzir@utm.my

1. INTRODUCTION

The advancement of 5G allows mass deployment of wireless sensors for IoT applications. This

phenomenon directly contributes to the tremendous increase in data volume in communication networks,

which translated into higher network processing throughput requirement. Meanwhile, datapath flexibility

becomes a significant factor to support functional updates as some of the application requirements are

unknown during the design time [1] or may change from time-to-time [2]. Hence, the functional update is a

vital feature to support new emerging network applications, new network protocols [2], and to cope with the

data concept drift [3, 4].

Service availability or uptime is another critical factor, especially for network monitoring and data

collection applications, where service interruptions interfering applications with blackout period can negatively

impact analytic [5] due to missing data samples. In network and communication applications, most

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708 

An FPGA-based network system with service-uninterrupted remote functional update (Tze Hon Tan)

3223

intermediary devices, including middleboxes, are required to remain active for maintaining end-to-end nodes

connectivity and for processing network packets continuously to prevent data loss. For instance, the impact

of service interruptions is very significant, especially when the system is deployed for mission-critical

applications or deployed on the gateway between internet service providers (ISPs) [6]. Besides, service

interruptions due to frequent functional updates can prevent applications from achieving five-nine availability

(99.999%) requirement.

Field-programmable gate array (FPGA) systems have emerged as a feasible solution because it can

provide a balanced processing throughput and datapath reconfigurability. Due to this, FPGA devices have

been widely adopted in many applications, ranging from specialized time-critical applications in niche

domains [7-11] to servers applications in the cloud [12, 13]. With the dynamic partial reconfiguration feature,

FPGA systems exhibit a higher degree of flexibility in the datapath, where the updating sub-circuitry is

unavailable for a few milliseconds, while the rest of the circuitry is not affected. Remote functional updates

can be achieved by transferring a new partial bitstream and loaded it to the FPGA device. Hence, having an

architecture and design that allow remote functional update by utilizing the dynamic partial reconfiguration

feature is important.

In this work, the architecture of a service-uninterrupted FPGA-based network and communication

processing system with remote functional update capability is proposed, and it is implemented in the

NetFPGA CML development board for experimental testing. In order to achieve functional update without

service interruption, the application datapath is duplicated for redundancy, as the reconfiguring (updating)

datapath is temporarily disabled during the dynamic partial reconfiguration process. The reconfiguration

throughput for dynamic partial reconfiguration is >3.19 Gbps, and the size of the largest partial bitstream is

3.49 MB, which could cause approximately 9.17 ms of service downtime for each functional update when

not adopting the proposed architecture with redundancy. For an 8 Gbps processing module, 9.17 ms service

downtime can cause up to 8.74 MB of data loss on full bandwidth utilization. Hence, the proposed

architecture in this paper is targeted for application in FPGA-based systems that have little or no tolerance in

service interruption.

2. RELATED WORKS

Application-specific integrated circuit (ASIC) has been commonly used in the implementation of

packet processing function to achieve high throughput. Thus, any functional update would involve the

swapping of the electronic circuit board. This would introduce problems in terms of maintenance, where

physical access to the facilities is required that will consume a significant amount of service downtime for the

maintenance [6]. Software approach is preferred to improve system flexibility, but a full software system has

limited processing throughput, i.e. less than several hundred Mbps [6]. Furthermore, applying functional updates

to either system would result in service interruption and downtime to critical computation infrastructures.

In general, there are two major approaches for service-uninterrupted functional update in FPGA-

based systems [6]: switching-based and buffering-based. The switching-based approach adopted a redundancy

mechanism with context switching to select the updating datapath and the operating datapath. Hence, this

approach doubles the logic resources required for implementation. On the other hand, the buffering-based

approach relies on using buffers to store the packets during the functional update. Although the required logic

resources in this approach are halved compared to the switching-based approach, most FPGA devices have

insufficient amount of internal random-access memory (RAM) for such packets buffering in gigabit rate.

Hence, this approach can result in packet drops when the packet buffer is full.

Katayama et al. [6] proposed the buffering-based approach in a functional update to avoid service

interruption. In order to prevent the packet drop during a functional update, a multi-context type FPGA is

used in the implementation. Zhou et al. [14] included a mechanism to realize a functional update without

causing service interruption in their Openflow Switch on SoC platform. This mechanism [14] utilized the

switching-based approach on the flow table, where a dual-port RAM is used to allow concurrent read and

write for context switching during a functional update. Apparently, such mechanism as in [14] is applicable

to a single flow table in dual-port RAM rather than customized datapath in FPGA. Hence, the architecture

and mechanism utilizing dynamic partial reconfiguration in FPGA to enable service-uninterrupted remote

functional update on the datapath is the primary focus of this proposed work.

NetFPGA [15, 16] is an FPGA-based development board that are widely used for prototyping

networking devices. To date, there are four variants of NetFPGA development boards, which are the NetFPGA

1G, NetFPGA 10G, NetFPGA CML, and NetFPGA SUME. NetFPGA CML and NetFPGA SUME are high-end

development boards, which comes with Xilinx 7 Series FPGA. Besides a large number of logic resources, Xilinx 7

Series FPGA includes the support for dynamic partial reconfiguration. Except for NetFPGA 1G, the other

NetFPGA development boards support stand-alone mode, where attachment to a host PC can be avoided as

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 4, August 2021 : 3222 - 3228

3224

power can be supplied externally. Essentially, NetFPGA provides a well-established framework [16] for

network application development and basic open-source reference designs [15] for packet forwarding.

With dynamic partial reconfiguration feature, a pre-defined region of circuitry can be dynamically

reconfigured without impacting the other functional blocks. This feature is managed by the reconfiguration

controller, which is either implemented internally within the FPGA device or implemented with an external

device. A single-chip solution is made possible by implementing a reconfiguration controller internally with

logic resources available within the FPGA device. Fundamentally, dynamic partial reconfiguration enables

update-in-the-field [17, 18] to deal with dynamic requirements in application accelerators, where the datapath

can be updated without impacting the other functional modules. In order to utilize this feature, architecture

with a mechanism capable of handling the dynamic partial reconfiguration process is needed.

3. PROPOSED ARCHITECTURE

In our previous work [19], a standalone remote dynamically reconfigurable middlebox has been

developed. However, the application services in this middlebox are interrupted during every remote

functional update. By leveraging on the architecture from [19] as shown in Figure 1, this work presents the

proposed high-level architecture in Figure 2 with major additional updates to enable remote functional update

without causing service interruptions. The major updates over [19] are:

− Duplicating the reconfigurable partition (RP) and its internal modules

− The arbiter is replaced by allocator so that the processing modules in both reconfigurable partitions are

capable of functioning together in usual operating mode

In Figures 1 and 2, the dotted boxes denote region that can be dynamically reconfigured. Meanwhile, the

shaded regions represent the application plane modules. In general, the proposed architecture consists of

application plane and management plane. The modules in the management plane process management related

tasks, including dynamic partial reconfiguration and modules coordination. On the other hand, the application

plane is mainly focused on network packets and applications processing. By adopting dual modular

redundancy (DMR) approach, the application modules consisting application datapath residing in the

respective reconfigurable partition can cover for each other when the dynamic partial reconfiguration is in

progress, thus allowing uninterrupted services.

Figure 1. Referenced network middlebox

architecture [19]

Figure 2. Referenced network middlebox architecture [19]

4. IMPLEMENTATION

The proposed architecture is implemented on NetFPGA CML board according to the functional

block diagram shown in Figure 3. The FPGA implementation flow includes: behaviorally describes the

function blocks and modules with Verilog HDL, verifies their functionality with ModelSim waveform

simulation, and test the implementation experimentally in NetFPGA CML board. The NetFPGA CML board

is operating in the standalone mode, where the power is supplied externally so that attachment to PC through PCIe

can be avoided. This is useful for the embedded system deployment and can improve the overall scalability.

Based on NetFPGA CML development environment setup, the modelled Verilog HDL sources are

synthesized with Xilinx ISE 14.6. All synthesized netlists are then used in Xilinx PlanAhead for subsequent

flow includes: map, place and route, timing analysis and bitstream generation. Another reason for using the

Xilinx PlanAhead is to simplify the dynamic partial reconfiguration flow, where the scripts for execution are

automatically generated, and its execution can be managed internally. Additionally, the Xilinx PlanAhead

contains a GUI to ease the definition of location and size of the dynamically reconfigurable area.

MAC RX

Input Arbiter

Output Queues

MAC TX

RP (Application Module)

Output Port Lookup

(Management Plane)

Management Plane
Modules

MAC RX

Egress Allocator

MAC TX

(Management Plane)

Management Plane
Modules

Ingress Allocator

(Application Plane)

Application ModuleRP_0 Application ModuleRP_1

Int J Elec & Comp Eng ISSN: 2088-8708 

An FPGA-based network system with service-uninterrupted remote functional update (Tze Hon Tan)

3225

Figure 3. The implemented functional block diagram with respective application module in RP_0 & RP_1

4.1. Management plane

The packet dispatcher dispatches packets to either management plane or application plane based on

the packet header identifier. Meanwhile, the plane Arbiter is responsible for packets arbitration between the

management plane and application plane. For management type packets, the payload is extracted by the

management plane packet Handler.

The reconfiguration Handler stores the extracted partial bitstream to SRAM through SRAM

Interface. Upon the arrival of all partial bitstream to the FPGA device, the Reconfiguration Handler asserts

flag to stop the packet flow to respective partition modules. Once the modules transit into the idle state, the

Reconfiguration Handler loads the partial bitstream to configuration memory through an internal

configuration access port (i.e., ICAP, a Xilinx FPGA primitive). After the final piece of the partial bitstream

is loaded to the configuration memory, a readback sequence is used to retrieve the status of dynamic partial

reconfiguration. Subsequently, the modules are initialized, and it will assert the flag to allow packets to flow through.

4.2. Application plane

The application plane consists of ingress allocator, network packet processing module (application

module consisting application datapath), and Egress Allocator. The Ingress Allocator redirects packets to the

network packet processing module in the idle state for processing. Similarly, the Egress Allocator redirects packets

to Plane Arbiter whenever the network packet processing modules flags its request.

There are two network packet processing modules located at respective reconfigurable partition,

namely RP_0 and RP_1. This implementation allows the network packet processing modules to cover for

each other, especially when either one is dynamically reconfigured. When both network packet processing

modules are activated, the Ingress Allocator redirects packets based on their availability, where both modules

can service packets in parallel. The network packet processing module is deactivated for reconfiguration

based on the flag from the reconfiguration packet header. As the application plane datapath depends on the

network algorithmics, its architecture is not discussed in this paper.

5. EVALUATION

In the NetFPGA CML Kintex 7 device (XC7K325T-1FFG676), there are 50,950 slices and 445

BRAMs available for implementation. Table 1 lists the required logic resources for implementation. Modules

in each reconfigurable partition (RP) utilized approximately 1,006 slices and 17 BRAMs for a learning

content addressable memory (CAM) [20] switch application.

For functional verification and experimental testing, the reconfigurable modules are dynamically

reconfigured for expansion with deep packet inspection (DPI) blocks. Table 2 lists the required amount of

logic resources for implementation after DPI blocks expansion. Network packets are injected from another

PC to the NetFPGA for analysis using Wireshark packet analyzer, where the behaviour from the captured

packets is used for verification of successful reconfiguration process.

Based on the experimental evaluation, the reconfiguration throughput is higher than 3.19874 Gbps,

where the maximum reconfiguration throughput at 100 MHz clock frequency and 32-bit bus width is 3.20000

Gbps. The size of partial bitstreams is 3,666,884 bytes and 2,241,540 bytes for RP_0 and RP_1 respectively.

Loading these partial bitstreams to the configuration memory through ICAP and modules initialization

Management Plane
Packet Handler

Reconfiguration
Handler

SRAM
Interface

SRAM

Plane Arbiter

ICAP

Packet Dispatcher

Ingress Allocator

Egress Allocator

Network Packet
Processing Module

Network Packet
Processing Module

MAC TX

MAC RX

RP_0 RP_1

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 4, August 2021 : 3222 - 3228

3226

requires 1,146,179 clock cycles and 700,758 clock cycles respectively, where the exact reconfiguration

throughput for each partition is 3.19922 Gbps and 3.19874 Gbps respectively. Table 3 shows the comparison

of acquired reconfiguration throughput with other similar works.

The clock cycles used for dynamic reconfiguration and module initialization implies service

downtime period as well. For a fully utilized bandwidth datapath, there will be a data loss of 9,169,432 bytes

(1,146,179 * 64 bits) if the proposed architecture and mechanism is not adopted, where the data bus width is

64 bits. For maximum transfer unit (MTU) of 1,500 bytes, the amount of full-sized packet loss is more than

6112 packets. This impact is significant for applications with little to no tolerance to such service interruption

or when the deployment is near to the network core. Figure 4 shows the floor plan for RP_0 and RP_1 in

Xilinx PlanAhead.

Table 1. Logic resources used for implementation with learning CAM switch

Resources type

RP_0 Partial

Reconfigurable

Module

RP_1 Partial

Reconfigurable

Module

Static Regions

Module
Total utilization Available

Slice registers 1,232 1,232 19,256 21,720 407,600

Slice LUTs 1,411 1,331 18,694 22,139 203,800
Occupied slices 1,006 981 7,251 9,238 50,950

BRAM 17 17 115 149 445

Table 2. Logic resources used for implementation with learning CAM switch and DPI blocks

Resources type

RP_0 Partial

Reconfigurable

Module

RP_1 Partial

Reconfigurable

Module

Static Regions
Module

Total utilization Available

Slice registers 1,496 1,496 19,256 22,248 407,600
Slice LUTs 1,886 1,806 18,694 22,937 203,800

Occupied slices 957 812 7,251 9,020 50,950

BRAM 17 17 115 149 445

Table 3. Reconfiguration throughput comparison with other similar works
Publication Reconf. throughput (Gbps) Storage

ZyCAP [21] 3.05600 DRAM

DPR Manager [22] 3.07432 SD Flash
FlashCAP [23] 3.08000 BRAM

Intelligent ICAP Controller [24] 3.19832 SRAM

ICAP Controller [25] 3.19840 DDR SDRAM
BRAM_HWICAP [26] 2.97120 BRAM

AC_ICAP [27] 3.04824 BRAM

Proposed 3.19874 SRAM

Figure 4. The floor plan consisting RP_0 & RP_1 in Xilinx PlanAhead

Int J Elec & Comp Eng ISSN: 2088-8708 

An FPGA-based network system with service-uninterrupted remote functional update (Tze Hon Tan)

3227

6. CONCLUSION

This paper presented a standalone FPGA-based system architecture that allows remote functional

update without causing service interruption by adopting a redundancy mechanism in the application datapath

and utilizing the dynamic partial reconfiguration feature. Significantly, service interruption is no longer

triggered by remote functional updates, and the processing throughput is doubled except during the dynamic

partial reconfiguration (9.17 ms). Hence, the proposed architecture in this paper is well-suited for

applications of the FPGA-based system that has limited tolerance in service interruption. Such applications

include, IoT sensors in monitoring and data collection applications are operating continuously at all time

(24/7) to avoid data loss. Wireless sensors can be deployed prevalently with the emergence of the 5G

network, which would further strengthen the significance of having a service-uninterrupted remote functional

update in FPGA-based system. Future works will focus on architecture exploration for flexibility

improvement and data analytics integration for deployment.

ACKNOWLEDGEMENTS

This work is supported in part by the Ministry of Higher Education Malaysia Fundamental Research

Grant FRGS/1/2019/TK04/UTM/02/30 (UTM Vote No. 5F159).

REFERENCES
[1] F. Hategekimana, T. J. Whitaker, M. J. H. Pantho, and C. Bobda, “IoT device security through dynamic hardware

isolation with cloud-based update,” Journal of Systems Architecture, vol. 109, p. 101827, 2020.

[2] ARISTA, “Four key trends in the networked use of FPGAs,” Dec 2018, White Paper. [Online]. Available:

https://www.arista.com/assets/data/pdf/Whitepapers/Trends-in-FPGA-WP.pdf

[3] P. Mulinka and P. Casas, “Stream-based machine learning for network security and anomaly detection,”

Proceedings of the 2018 Workshop on Big Data Analytics and Machine Learning for Data Communication

Networks, Budapest, Hungary, 2018, pp. 1-7.

[4] X. Tian, Q. Sun, X. Huang, and Y. Ma, “A dynamic online traffic classification methodology based on data stream

mining,” 2009 WRI World Congress on Computer Science and Information Engineering, Los Angeles, CA, USA,

2009, pp. 298-302.

[5] M. L. Brown and J. F. Kros, “Data mining and the impact of missing data,” Industrial Management & Data

Systems, vol. 103, no. 8, pp. 611-521, 2003.

[6] M. Katayama, H. Kai, J. Yoshida, M. Inami, H. Yamada, K. Shiomoto, and N. Yamanaka, “A 10 Gb/s firewall system

for network security in photonic era,” IEICE transactions on communications, vol. 88, no. 5, pp. 1914-1920, 2005.

[7] G. P. Seu, G. N. Angotzi, G. Tuveri, L. Raffo, L. Berdondini, A. Maccione, and P. Meloni, “On-FPGA real-time

processing of biological signals from high-density meas: A design space exploration,” 2017 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW), Lake Buena Vista, FL, 2017, pp. 175-183.

[8] B. Johnson., and Sheeba Rani J., “A high throughput fully parallel-pipelined FPGA accelerator for dense cloud

motion analysis,” 2016 IEEE Region 10 Conference (TENCON), Singapore, 2016, pp. 2589-2592.

[9] R. Pottathuparambil, J. Coyne, J. Allred, W. Lynch, and V. Natoli, “Low-latency FPGA based financial data feed

handler,” 2011 IEEE 19th Annual International Symposium on Field-Programmable Custom Computing Machines,

Salt Lake City, UT, USA, 2011, pp. 93-96.

[10] C. O. Sereati, A. D. W. Sumari, T. Adiono, and A. S. Ahmad, “Towards cognitive artificial intelligence device: an

intelligent processor based on human thinking emulation,” TELKOMNIKA Telecommunication, Computing,

Electronics and Control, vol. 18, no. 3, pp. 1475-1482, 2020.

[11] B. M. Khammas, I. Ismail, and M. Marsono, “Pre-filters in-transit malware packets detection in the network,”

TELKOMNIKA Telecommunication, Computing, Electronics and Control, vol. 17, no. 4, pp. 1706-1714, 2019.

[12] D. Diamantopoulos and C. Kachris, “High-level synthesizable dataflow mapreduce accelerator for FPGAcoupled

data centers,” 2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and

Simulation (SAMOS), Samos, Greece, 2015, pp. 26-33.

[13] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, “Network-attached FPGAs for data center applications,” 2016

International Conference on Field-Programmable Technology (FPT), Xi'an, 2016, pp. 36-43

[14] S. Zhou, W. Jiang, and V. K. Prasanna, “A flexible and scalable high-performance openflow switch on

heterogeneous SoC platforms,” 2014 IEEE 33rd International Performance Computing and Communications

Conference (IPCCC), Austin, TX, USA, 2014, pp. 1-8.

[15] “Netfpga,” Published online, 2014. [Online]. Available: http://netfpga.org/

[16] J. Naous, G. Gibb, S. Bolouki, and N. McKeown, “NetFPGA: reusable router architecture for experimental

research,” Proceedings of the ACM workshop on Programmable routers for extensible services of tomorrow,

Seattle, WA, USA, 2008, pp. 1-7.

[17] J. Becker and R. Hartenstein, “Configware and morphware going mainstream,” Journal of Systems Architecture,

vol. 49, no. 4-6, pp. 127–142, Sep 2003.

[18] A. Schallenberg, “Dynamic partial self-reconfiguration: Quick modeling, simulation, and synthesis,” Germany:

Suedwestdeutscher Verlag fuer Hochschulschriften, 2010.

https://ieeexplore.ieee.org/author/37085576990

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 4, August 2021 : 3222 - 3228

3228

[19] T. H. Tan, C. Y. Ooi, and M. N. Marsono, “rrBox: A remote dynamically reconfigurable network processing

middlebox,” 2015 25th International Conference on Field Programmable Logic and Applications (FPL), London,

UK, 2015, pp. 1-4.

[20] N. S. Kay and M. Marsono, “Ternary content addressable memory for longest prefix matching based on random

access memory on field programmable gate array,” TELKOMNIKA Telecommunication, Computing, Electronics

and Control, vol. 17, no. 4, pp. 1882-1889, 2019.

[21] K. Vipin and S. A. Fahmy, “ZyCAP: Efficient partial reconfiguration management on the Xilinx Zynq,” IEEE

Embedded Systems Letters, vol. 6, no. 3, pp. 41-44, 2014.

[22] J. Tarrillo, F. A. Escobar, F. L. Kastensmidt, and C. Valderrama, “Dynamic partial reconfiguration manager,” 2014

IEEE 5th Latin American Symposium on Circuits and Systems, Santiago, Chile, 2014, pp. 1-4.

[23] A. Nabina and J. L. Nunez-Yanez, “Dynamic reconfiguration optimisation with streaming data decompression,”

2010 International Conference on Field Programmable Logic and Applications, Milan, Italy, 2010, pp. 602-607.

[24] S. Liu, R. N. Pittman, A. Forin, and J.-L. Gaudiot, “Minimizing the runtime partial reconfiguration overheads in

reconfigurable systems,” The Journal of Supercomputing, vol. 61, no. 3, pp. 894-911, 2012.

[25] K. Vipin and S. A. Fahmy, “A high speed open source controller for FPGA partial reconfiguration,” 2012

International Conference on Field-Programmable Technology, Seoul, Korea (South), 2012, pp. 61-66.

[26] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-time partial reconfiguration speed investigation and architectural

design space exploration,” 2009 International Conference on Field Programmable Logic and Applications, Prague,

Czech Republic, 2009, pp. 498-502.

[27] L. A. Cardona and C. Ferrer, “AC_ICAP: A flexible high speed ICAP controller,” International Journal of

Reconfigurable Computing, vol. 2015, no. 79, pp. 1-15, 2015.

BIOGRAPHIES OF AUTHORS

Tze Hon Tan is a Ph.D. student at Faculty of Engineering from Universiti Teknologi Malaysia. He

obtained his Master Degree in Electrical Engineering from Universiti Teknologi Malaysia in 2015

and Bachelor Degree in Computer Engineering from Universiti Teknologi Malaysia in 2012. His

research areas are: digital systems, reconfigurable computing, fog computing, and data analytics. He

is working on an FPGA-based middlebox and fog computing platform to embrace the upcoming IoT

wave.

Chia Yee Ooi, is an associate professor of Malaysia-Japan International Institute of Technology at

Universiti Teknologi Malaysia. She received her B.E. and M.E degrees in electrical engineering

from Universiti Teknologi Malaysia in 2001 and 2003 respectively. She obtained her PhD degree in

Information Science from Nara Institute of Science and Technology in 2006. She joined Universiti

Teknologi Malaysia in 2002. Her research interests include design-for-test, verification, and digital

system design. She is a member of IEICE and a senior member of IEEE.

Muhammad Nadzir Marsono, is an associate professor in Electronic and Computer Engineering,

School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia. He

obtained his PhD in Electrical and Computer Engineering from the University of Victoria BC

Canada in 2007, MEng in Electrical Engineering from Universiti Teknologi Malaysia in 2001, and

BEng in Computer Engineering from Universiti Teknologi Malaysia in 1999. His research focuses

are in digital system design, computer architecture, embedded systems, domainspecific

reconfigurable computing, multicore/manycore system-on-chip, network-on-chip, network

algorithmics, and network processing architectures. Further info on his homepage:

http://www.fke.utm.my/nadzir/

