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 The recent emergence of 5G network enables mass wireless sensors 

deployment for internet-of-things (IoT) applications. In many cases, IoT 

sensors in monitoring and data collection applications are required to operate 

continuously and active at all time (24/7) to ensure all data are sampled 

without loss. Field-programmable gate array (FPGA)-based systems exhibit a 

balanced processing throughput and datapath flexibility. Specifically, 

datapath flexibility is acquired from the FPGA-based system architecture that 

supports dynamic partial reconfiguration feature. However, device functional 

update can cause interruption to the application servicing, especially in an 

FPGA-based system. This paper presents a standalone FPGA-based system 

architecture that allows remote functional update without causing service 

interruption by adopting a redundancy mechanism in the application 

datapath. By utilizing dynamic partial reconfiguration, only the updating 

datapath is temporarily inactive while the rest of the circuitry, including the 

redundant datapath, remain active. Hence, there is no service interruption and 

downtime when a remote functional update takes place due to the existence 

of redundant application datapath, which is critical for network and 

communication systems. The proposed architecture has a significant impact 

for application in FPGA-based systems that have little or no tolerance in 

service interruption. 
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1. INTRODUCTION 

The advancement of 5G allows mass deployment of wireless sensors for IoT applications. This 

phenomenon directly contributes to the tremendous increase in data volume in communication networks, 

which translated into higher network processing throughput requirement. Meanwhile, datapath flexibility 

becomes a significant factor to support functional updates as some of the application requirements are 

unknown during the design time [1] or may change from time-to-time [2]. Hence, the functional update is a 

vital feature to support new emerging network applications, new network protocols [2], and to cope with the 

data concept drift [3, 4]. 

Service availability or uptime is another critical factor, especially for network monitoring and data 

collection applications, where service interruptions interfering applications with blackout period can negatively 

impact analytic [5] due to missing data samples. In network and communication applications, most 
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intermediary devices, including middleboxes, are required to remain active for maintaining end-to-end nodes 

connectivity and for processing network packets continuously to prevent data loss. For instance, the impact 

of service interruptions is very significant, especially when the system is deployed for mission-critical 

applications or deployed on the gateway between internet service providers (ISPs) [6]. Besides, service 

interruptions due to frequent functional updates can prevent applications from achieving five-nine availability 

(99.999%) requirement. 

Field-programmable gate array (FPGA) systems have emerged as a feasible solution because it can 

provide a balanced processing throughput and datapath reconfigurability. Due to this, FPGA devices have 

been widely adopted in many applications, ranging from specialized time-critical applications in niche 

domains [7-11] to servers applications in the cloud [12, 13]. With the dynamic partial reconfiguration feature, 

FPGA systems exhibit a higher degree of flexibility in the datapath, where the updating sub-circuitry is 

unavailable for a few milliseconds, while the rest of the circuitry is not affected. Remote functional updates 

can be achieved by transferring a new partial bitstream and loaded it to the FPGA device. Hence, having an 

architecture and design that allow remote functional update by utilizing the dynamic partial reconfiguration 

feature is important. 

In this work, the architecture of a service-uninterrupted FPGA-based network and communication 

processing system with remote functional update capability is proposed, and it is implemented in the 

NetFPGA CML development board for experimental testing. In order to achieve functional update without 

service interruption, the application datapath is duplicated for redundancy, as the reconfiguring (updating) 

datapath is temporarily disabled during the dynamic partial reconfiguration process. The reconfiguration 

throughput for dynamic partial reconfiguration is >3.19 Gbps, and the size of the largest partial bitstream is 

3.49 MB, which could cause approximately 9.17 ms of service downtime for each functional update when 

not adopting the proposed architecture with redundancy. For an 8 Gbps processing module, 9.17 ms service 

downtime can cause up to 8.74 MB of data loss on full bandwidth utilization. Hence, the proposed 

architecture in this paper is targeted for application in FPGA-based systems that have little or no tolerance in 

service interruption. 

 

 

2. RELATED WORKS 

Application-specific integrated circuit (ASIC) has been commonly used in the implementation of 

packet processing function to achieve high throughput. Thus, any functional update would involve the 

swapping of the electronic circuit board. This would introduce problems in terms of maintenance, where 

physical access to the facilities is required that will consume a significant amount of service downtime for the 

maintenance [6]. Software approach is preferred to improve system flexibility, but a full software system has 

limited processing throughput, i.e. less than several hundred Mbps [6]. Furthermore, applying functional updates 

to either system would result in service interruption and downtime to critical computation infrastructures.  

In general, there are two major approaches for service-uninterrupted functional update in FPGA-

based systems [6]: switching-based and buffering-based. The switching-based approach adopted a redundancy 

mechanism with context switching to select the updating datapath and the operating datapath. Hence, this 

approach doubles the logic resources required for implementation. On the other hand, the buffering-based 

approach relies on using buffers to store the packets during the functional update. Although the required logic 

resources in this approach are halved compared to the switching-based approach, most FPGA devices have 

insufficient amount of internal random-access memory (RAM) for such packets buffering in gigabit rate. 

Hence, this approach can result in packet drops when the packet buffer is full. 

Katayama et al. [6] proposed the buffering-based approach in a functional update to avoid service 

interruption. In order to prevent the packet drop during a functional update, a multi-context type FPGA is 

used in the implementation. Zhou et al. [14] included a mechanism to realize a functional update without 

causing service interruption in their Openflow Switch on SoC platform. This mechanism [14] utilized the 

switching-based approach on the flow table, where a dual-port RAM is used to allow concurrent read and 

write for context switching during a functional update. Apparently, such mechanism as in [14] is applicable 

to a single flow table in dual-port RAM rather than customized datapath in FPGA. Hence, the architecture 

and mechanism utilizing dynamic partial reconfiguration in FPGA to enable service-uninterrupted remote 

functional update on the datapath is the primary focus of this proposed work.  

NetFPGA [15, 16] is an FPGA-based development board that are widely used for prototyping 

networking devices. To date, there are four variants of NetFPGA development boards, which are the NetFPGA 

1G, NetFPGA 10G, NetFPGA CML, and NetFPGA SUME. NetFPGA CML and NetFPGA SUME are high-end 

development boards, which comes with Xilinx 7 Series FPGA. Besides a large number of logic resources, Xilinx 7 

Series FPGA includes the support for dynamic partial reconfiguration. Except for NetFPGA 1G, the other 

NetFPGA development boards support stand-alone mode, where attachment to a host PC can be avoided as 
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power can be supplied externally. Essentially, NetFPGA provides a well-established framework [16] for 

network application development and basic open-source reference designs [15] for packet forwarding. 

With dynamic partial reconfiguration feature, a pre-defined region of circuitry can be dynamically 

reconfigured without impacting the other functional blocks. This feature is managed by the reconfiguration 

controller, which is either implemented internally within the FPGA device or implemented with an external 

device. A single-chip solution is made possible by implementing a reconfiguration controller internally with 

logic resources available within the FPGA device. Fundamentally, dynamic partial reconfiguration enables 

update-in-the-field [17, 18] to deal with dynamic requirements in application accelerators, where the datapath 

can be updated without impacting the other functional modules. In order to utilize this feature, architecture 

with a mechanism capable of handling the dynamic partial reconfiguration process is needed. 

 

 

3. PROPOSED ARCHITECTURE 

In our previous work [19], a standalone remote dynamically reconfigurable middlebox has been 

developed. However, the application services in this middlebox are interrupted during every remote 

functional update. By leveraging on the architecture from [19] as shown in Figure 1, this work presents the 

proposed high-level architecture in Figure 2 with major additional updates to enable remote functional update 

without causing service interruptions. The major updates over [19] are: 

− Duplicating the reconfigurable partition (RP) and its internal modules 

− The arbiter is replaced by allocator so that the processing modules in both reconfigurable partitions are 

capable of functioning together in usual operating mode 

In Figures 1 and 2, the dotted boxes denote region that can be dynamically reconfigured. Meanwhile, the 

shaded regions represent the application plane modules. In general, the proposed architecture consists of 

application plane and management plane. The modules in the management plane process management related 

tasks, including dynamic partial reconfiguration and modules coordination. On the other hand, the application 

plane is mainly focused on network packets and applications processing. By adopting dual modular 

redundancy (DMR) approach, the application modules consisting application datapath residing in the 

respective reconfigurable partition can cover for each other when the dynamic partial reconfiguration is in 

progress, thus allowing uninterrupted services. 
 

 

 
 

Figure 1. Referenced network middlebox 

architecture [19] 

 
 

Figure 2. Referenced network middlebox architecture [19] 

 

 

4. IMPLEMENTATION 

The proposed architecture is implemented on NetFPGA CML board according to the functional 

block diagram shown in Figure 3. The FPGA implementation flow includes: behaviorally describes the 

function blocks and modules with Verilog HDL, verifies their functionality with ModelSim waveform 

simulation, and test the implementation experimentally in NetFPGA CML board. The NetFPGA CML board 

is operating in the standalone mode, where the power is supplied externally so that attachment to PC through PCIe 

can be avoided. This is useful for the embedded system deployment and can improve the overall scalability. 

Based on NetFPGA CML development environment setup, the modelled Verilog HDL sources are 

synthesized with Xilinx ISE 14.6. All synthesized netlists are then used in Xilinx PlanAhead for subsequent 

flow includes: map, place and route, timing analysis and bitstream generation. Another reason for using the 

Xilinx PlanAhead is to simplify the dynamic partial reconfiguration flow, where the scripts for execution are 

automatically generated, and its execution can be managed internally. Additionally, the Xilinx PlanAhead 

contains a GUI to ease the definition of location and size of the dynamically reconfigurable area. 
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Figure 3. The implemented functional block diagram with respective application module in RP_0 & RP_1 

 

 

4.1.  Management plane 

The packet dispatcher dispatches packets to either management plane or application plane based on 

the packet header identifier. Meanwhile, the plane Arbiter is responsible for packets arbitration between the 

management plane and application plane. For management type packets, the payload is extracted by the 

management plane packet Handler. 

The reconfiguration Handler stores the extracted partial bitstream to SRAM through SRAM 

Interface. Upon the arrival of all partial bitstream to the FPGA device, the Reconfiguration Handler asserts 

flag to stop the packet flow to respective partition modules. Once the modules transit into the idle state, the 

Reconfiguration Handler loads the partial bitstream to configuration memory through an internal 

configuration access port (i.e., ICAP, a Xilinx FPGA primitive). After the final piece of the partial bitstream 

is loaded to the configuration memory, a readback sequence is used to retrieve the status of dynamic partial 

reconfiguration. Subsequently, the modules are initialized, and it will assert the flag to allow packets to flow through. 

 

4.2.  Application plane 

The application plane consists of ingress allocator, network packet processing module (application 

module consisting application datapath), and Egress Allocator. The Ingress Allocator redirects packets to the 

network packet processing module in the idle state for processing. Similarly, the Egress Allocator redirects packets 

to Plane Arbiter whenever the network packet processing modules flags its request. 

There are two network packet processing modules located at respective reconfigurable partition, 

namely RP_0 and RP_1. This implementation allows the network packet processing modules to cover for 

each other, especially when either one is dynamically reconfigured. When both network packet processing 

modules are activated, the Ingress Allocator redirects packets based on their availability, where both modules 

can service packets in parallel. The network packet processing module is deactivated for reconfiguration 

based on the flag from the reconfiguration packet header. As the application plane datapath depends on the 

network algorithmics, its architecture is not discussed in this paper. 

 

 

5. EVALUATION 

In the NetFPGA CML Kintex 7 device (XC7K325T-1FFG676), there are 50,950 slices and 445 

BRAMs available for implementation. Table 1 lists the required logic resources for implementation. Modules 

in each reconfigurable partition (RP) utilized approximately 1,006 slices and 17 BRAMs for a learning 

content addressable memory (CAM) [20] switch application. 

For functional verification and experimental testing, the reconfigurable modules are dynamically 

reconfigured for expansion with deep packet inspection (DPI) blocks. Table 2 lists the required amount of 

logic resources for implementation after DPI blocks expansion. Network packets are injected from another 

PC to the NetFPGA for analysis using Wireshark packet analyzer, where the behaviour from the captured 

packets is used for verification of successful reconfiguration process. 

Based on the experimental evaluation, the reconfiguration throughput is higher than 3.19874 Gbps, 

where the maximum reconfiguration throughput at 100 MHz clock frequency and 32-bit bus width is 3.20000 

Gbps. The size of partial bitstreams is 3,666,884 bytes and 2,241,540 bytes for RP_0 and RP_1 respectively. 

Loading these partial bitstreams to the configuration memory through ICAP and modules initialization 
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requires 1,146,179 clock cycles and 700,758 clock cycles respectively, where the exact reconfiguration 

throughput for each partition is 3.19922 Gbps and 3.19874 Gbps respectively. Table 3 shows the comparison 

of acquired reconfiguration throughput with other similar works. 

The clock cycles used for dynamic reconfiguration and module initialization implies service 

downtime period as well. For a fully utilized bandwidth datapath, there will be a data loss of 9,169,432 bytes 

(1,146,179 * 64 bits) if the proposed architecture and mechanism is not adopted, where the data bus width is 

64 bits. For maximum transfer unit (MTU) of 1,500 bytes, the amount of full-sized packet loss is more than 

6112 packets. This impact is significant for applications with little to no tolerance to such service interruption 

or when the deployment is near to the network core. Figure 4 shows the floor plan for RP_0 and RP_1 in 

Xilinx PlanAhead. 

 

 

Table 1. Logic resources used for implementation with learning CAM switch 

Resources type 

RP_0 Partial 

Reconfigurable 

Module 

RP_1 Partial 

Reconfigurable 

Module 

Static Regions 

Module 
Total utilization Available 

Slice registers 1,232 1,232 19,256 21,720 407,600 

Slice LUTs 1,411 1,331 18,694 22,139 203,800 
Occupied slices 1,006 981 7,251 9,238 50,950 

BRAM 17 17 115 149 445 

 

 

Table 2. Logic resources used for implementation with learning CAM switch and DPI blocks 

Resources type 

RP_0 Partial 

Reconfigurable 

Module 

RP_1 Partial 

Reconfigurable 

Module 

Static Regions 
Module 

Total utilization Available 

Slice registers 1,496 1,496 19,256 22,248 407,600 
Slice LUTs 1,886 1,806 18,694 22,937 203,800 

Occupied slices 957 812 7,251 9,020 50,950 

BRAM 17 17 115 149 445 

 

 

Table 3. Reconfiguration throughput comparison with other similar works 
Publication Reconf. throughput (Gbps) Storage 

ZyCAP [21] 3.05600 DRAM 

DPR Manager [22] 3.07432 SD Flash 
FlashCAP [23] 3.08000 BRAM 

Intelligent ICAP Controller [24] 3.19832 SRAM 

ICAP Controller [25] 3.19840 DDR SDRAM 
BRAM_HWICAP [26] 2.97120 BRAM 

AC_ICAP [27] 3.04824 BRAM 

Proposed 3.19874 SRAM 

 

 

 
 

Figure 4. The floor plan consisting RP_0 & RP_1 in Xilinx PlanAhead 
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6. CONCLUSION 

This paper presented a standalone FPGA-based system architecture that allows remote functional 

update without causing service interruption by adopting a redundancy mechanism in the application datapath 

and utilizing the dynamic partial reconfiguration feature. Significantly, service interruption is no longer 

triggered by remote functional updates, and the processing throughput is doubled except during the dynamic 

partial reconfiguration (9.17 ms). Hence, the proposed architecture in this paper is well-suited for 

applications of the FPGA-based system that has limited tolerance in service interruption. Such applications 

include, IoT sensors in monitoring and data collection applications are operating continuously at all time 

(24/7) to avoid data loss. Wireless sensors can be deployed prevalently with the emergence of the 5G 

network, which would further strengthen the significance of having a service-uninterrupted remote functional 

update in FPGA-based system. Future works will focus on architecture exploration for flexibility 

improvement and data analytics integration for deployment. 
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