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 Despite recent developments in offline signature recognition systems, there is 

however limited focus on the recognition problem facet of using an 

inadequate sample size for training that could deliver reliable and easy to use 

authentication systems. Signature recognition systems are one of the most 

popular biometric authentication systems. They are regarded as non-invasive, 

socially accepted, and adequately precise. Research on offline signature 

recognition systems still has not shown competent results when a limited 

number of signatures are used. This paper describes our proposed practical 

offline signature recognition system using the oriented FAST and rotated 

BRIEF (ORB) feature extraction algorithm. We focus on the practicality of 

the proposed system, which requires only the minimum number of signatures 

per user to achieve a high level of fidelity. We manifest the practicality of 

our approach with a signature database of 300 signatures from 100 different 

individuals, implying that only two signatures are needed per person to train 

the proposed system. Our proposed solution achieves a 91% recognition rate 

with a median matching time of only 7 ms. 
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1. INTRODUCTION  

Biometrics technologies are used for recognizing people based on their physiological traits, 

including fingerprints, or behavioral traits such as voice, and handwritten signature. Biometric systems can 

be used for both verification and identification tasks, which are vital for security applications. Although 

technology has developed, signing is still a common authentication method today. The handwritten signature 

is widely used in a variety of security systems for authentication, in some bureaucratic transactions,  

contracts, and to validate financial processes and elections. Signature verification aims to detect whether a 

given signature is genuine or forged. There are two methods of signature recognition: Online (dynamic) and 

offline (static). In the online method, an acquisition device such as an electronic tablet, a pressure-sensitive 

pen, or a glove-based system is needed to obtain the signature and capture its defining characteristics.  In 

literature, there are several proposed offline signature verification systems that are based on texture 

description and interest point matching [1]-[4]. Offline systems lacks the access to the riach identification 

features that are obtainable using the mor invasive online systesm, and thus they need to rely solely on 

signature 2D images. Despite the advancements in this subject, researchers are still working towards 

producing a practical solution for the recognition problem of offline signatures, particularly for large-scale 

https://creativecommons.org/licenses/by-sa/4.0/
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data [4], [5]. Section 2 provides a throughout literature review of the currently used matching algorithms. 

Section 3 dicusses our research methodology, and section 4 demnostrates our findings and testing results. 

Section 5 discusses the impact of our research findings, and section 6 concludes and lists the main 

contributions of our paper. 

 

 

2. LITRATURE REVIEW 

In this section, we discuss the features of SIFT, SURF, and ORB 2D feature extraction and matching 

algorithms to help deduct the differences in performance among these algorithms. 

  

2.1.  Scale invariant feature transform (SIFT) descriptor 

In 2004, SIFT [6], [7] was proposed by D. Lowe an invariant feature detector. SIFT uses a cascade 

filtering concept to detect the features and convert image data into scale-invariant features. SIFT detects local 

features which are robust against illumination changes, minor changes in viewpoint, and noise. In general, 

SIFT consist of four main stages: scale-space detection, key-points localization, orientation assignment, and 

extraction of the key-point descriptor. 

In the scale-space detection stage, SIFT decomposes the original image using a Gaussian pyramid, 

which has multiple levels called octaves. Each octave is also decomposed into multiple sub-levels through 

convolving the original image with Gaussian filters with different scales. Each pixel DoG is compared with 

its eight neighbors; when the pixel has the maximum or the minimum value among all the eight neighbors' 

pixels, it is considered as a key-point. SIFT uses the quadratic Taylor expansion of the DoG scale-space 

function. Around the key-point, the direction and the magnitude of the gradient are calculated for each pixel 

and the orientation histogram is formed. Once this process is completed, the highest value is considered as 

the orientation of the key-point.  

 

2.2.  Speeded-up robust features (SURF) descriptor 

In 2006, Herbert Bay et al. presented SURF [8] algorithm. This algorithm contains four main steps: 

interest point detection, location and scale-space representation of interest points, local neighborhood 

description, and key-points matching. To detect the interest points, as a first step, SURF uses square-shaped 

filters to compute Gaussian approximation after the image was already cropped and discretized. Then, the 

Hessian blob detector [9] is used, which computes the determinant of the Hessian matrix around each point.  

The point that gets the highest determinant is considered as an interest point. A determinant is also used to 

select the scale of the interest point. For a point ),( yxP  in image I , the Hessian matrix ( ),PH  at point 

),( yxP  and scale   is defined as (1):  
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where ),( PLxx
 is the x second-order derivative of the gray-scaled image, and since SURF uses the square-

shaped filter, the expression of Hessian's determinant is simplified as (2):  

 

( )29.0)det( xyyyxxapprox DDDH −=                                                        (2) 

 

To compute the location and the scale-space representation of interest points, SURF applies different 

filter sizes to represent the scale-space representation, then the highest determinant of the Hessian matrix is 

added in the image space and scaled as Brown et al. proposed [9].  

In order to identify the rotational invariance, the orientation of interest points is found. After SURF 

computes the Haar wavelet [8], we collect responses in the circular neighborhood around the interest point 

and weighting them by a Gaussian function. In order to evaluate the primary orientation, all responses are 

calculated within a sliding window of π⁄3 size, and the sliding window's size is chosen carefully to maintain a 

balance between angular resolution and robustness. SURF is widely used in image matching and recognition 

systems, including steganography [10], face liveness detection or face anti-spoofing [11]. 

 

2.3.  Oriented FAST and rotated BRIEF (ORB) descriptor  

In 2011, Rublee proposed oriented FAST and rotated BRIEF (ORB) that is built on FAST key-point 

detector and BRIEF descriptor. These two algorithms are attractive because of their superior performance 

and low time requirements [12], [13]. FAST detector [14], [15] is a technique that finds key-points in real-
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time that match specific visual features [16]. FAST detector measures the intensity threshold between the 

center pixel and the pixels in the circular ring region around the center [17]. Because FAST detector does not 

measure key-points of the corner, ORB employs Harris corner measure [18], [19] to order the detected key-

points. To detect N, the number of key-points, ORB set a low threshold to get more than N key-points in the 

first step, and then it uses Harris measure to order them, and select the top N points. 

FAST detector does not produce multi-scale features. Alternatively, a scale pyramid of the image is 

employed, and FAST features are measured and filtered at each level. ORB measures corner orientation 

using the simple and effective technique: intensity centroid approach. This approach assumes the intensity of 

a corner is an offset of its center, and this vector can be used to assign an orientation. Rosin [19] computed 

the moments of a patch using (3), (4): 
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Then, the centroid will be: 
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(𝑂𝐶
→

) the vector from the corner's center ( )O  to the centroid ( )C  can be constructed, and the 

orientation of this patch is (5):  

 

( )1001,2tan mma=                                                                     (5) 

 

where (𝑎 𝑡𝑎𝑛 2) is the quadrant-aware version of arc-tan. The moments are measured with x and y directions 

within the specified circular region (of radius equals to r) to improve the rotation invariance.  

BRIEF descriptor [20] is a features descriptor, which uses straightforward binary tests between 

pixels in a smoothed image area. Binary descriptors have shorter computation time, smaller memory 

footprint, and higher efficiency in image comparisons when compared to vector-based features descriptors. 

Vector-based features detectors are based on the nearest-neighbor search, while binary features detectors are 

based on the priority search of multiple hierarchical clustering trees [21], [22]. 

ORB can match signature images using low-power devices without the use of GPU acceleration. 

Therefore, it performs as well as SIFT and better than SURF with almost two orders of magnitude [17]. 

Image patches are sets of binary intensity tests that BRIEF descriptor [20] makes a bit-string description of 

these patches. Afterward, Gaussian distribution is performed around the center of the image's patch.  In ORB, 

in order to use BRIEF descriptor on the orientation of key-points, an efficient method is performed to steer 

BRIEF regarding the orientation. For n binary tests, a feature set at (𝑥𝑖 , 𝑦𝑖) can be represented as 2×n a 

matrix as (6): 
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The steered version ( )S  of ( )S  using the patch's orientation ( )  and the corresponding rotation 

matrix ( )R   is calculated as (7): 

 

SRS 
 =                                                                           (7)     

 

then the steered BRIEF operator is (8): 

 

( ) ( )( )  SyxPfPg iinn = ,,                                                         (8)              

 

While SURF and SIFT algorithms are based on histograms of gradients, ORB is a binary descriptor 

that is based on image intensity comparisons to encode patch's information as a binary string; which makes it 

relatively faster. ORB can match two images in a single instruction by using the hamming distance only. 
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3. METHOD 

The poroposed ORB algorithm process is divided into several steps as depicted in Figure 1, more 

details about these steps are given in the following sub-sections. We start with acquiring offlines singatures 

from our users, then we proceed to apply several pre-processing steps to normalize the system inputs and 

remove any unnecessary data features. Afterwards, we apply several features extraction techniques, (SIFT, 

SURF, and ORB) to extract the signatures features, and then we perform the features matching comparison to 

evaluate the proposed system performance.  

 

 
 

 
 

Figure 1. Proposed system flow chart 

 

 

3.1.  Data collection 

In our data collection/acquisition phase, three handwritten signatures were scanned from Arabic 

users/signers. As this research approach aims to recognize users with a minimum number of required 

signatures. In contrast, related litrature research works base their findings on a relatively large number of 

signatures per signer as shown in Table 1. 

 

 

Table 1. A comparison of the number of signatures required per person/signer 

Related Works Year 
Number of required signatures 

(per signer) 

Prasad et al. [1] 2013 7 
Shikha et al. [2] 2013 20 

Fazli et al. [3] 2015 14 

Bhausaheb et al. [4] 2015 16 

Our proposed work 2020 3 

 

 

In our proposed system, users are asked to sign the same signature three times. Two of these 

signatures will be saved as a reference point, while the third signature will be used to test the system. 

Handwritten signatures were written/signed on white papers, and then scanned using a digital scanner using 

600 dpi (dot per inch) resolution. We collected 300 signatures from 100 different individuals from students 

and faculty members of Yarmouk University. To preserve the integrity of the scanned images, they were 

saved using digital images in PNG format, as it is the best available format for binary images. Figure 2(a) to 

Figure 2(d) shows four examples of the required three signatures per user. As can be noted, signers used both 

Arabic and English characters when signing.  

 

 

 
 

Figure 2. Examples of collected signatures from different users (a, b, c, d) 
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3.2.  Data pre-processing  

Once the signatures are converted to digital images; these images are pre-processed to eliminate 

undesired areas and impurities that would affect the system's performance [18]. Signature images would be 

cropped, resized, and filtered to make sure that all the collected signatures are pre-processed before the 

system extracts the required features. This step minimizes the number of false matches, maintains the high 

performance of the system, and reduces the processing time by reducing the image size [23]. The resulting 

images are resized to a unified size of (512*512 pixels). Finally, they are converted to black-and-white 

images, since ORB is a binary detector and descriptor. Figure 3 summarizes the signature pre-processing 

steps, and Figure 4(a) and Figure 4(b) shows the difference between the original signature image before and 

after applying the pre-processing steps. As can be noted in Figure 4, all processed images/singatures have 

been uniformly resized, color adjusted, and all unwanted features or noisy elements have been removed and 

cleaned. 

 

 

 
 

Figure 3. Pre-processing steps applied to all acquired signatures 

 

 

  
(a) (b) 

 

Figure 4. This figure are, (a) Original signature's image, (b) Pre-processed signature's image 

 

 

3.3.  Feature extraction  

In the feature extraction stage, the system applies ORB, SURF, and SIFT algorithms to extract the 

signatures features and saves them in two byte-arrays: the serialized image as a byte array, and its associated 

features also as a byte array. These arrays are then stored into a custom database to facilitate storing and 

retrieving them. Figure 5 depicts the steps of the feature extraction stage.  

 

 

 
 

Figure 5. The process of features extraction process using SIFT, SURF, and ORB 

 

 

3.4.  Features matching 

At this stage, the system aims to match the input signature with a stored template/reference 

signature. Each input signature is matched with every saved template and the number of matched features is 

computed. The template that achieves the highest numbers of matched features between all saved templates is 

retrieved as the closest one to resemble the matched template. Each time the system retrieves the correct 

template, the recognition ratio is increased. Feature’s matching is performed using two matchers: Brute-Force 

matcher and fast library for approximate nearest neighbors (FLANN) matcher. 
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4. SYSTEM IMPLEMENTATION AND RESULTS 

Our proposed system was developed using C# language and OpenCV 2.4.1. We have chosen a low-

end PC to implement the proposed system to help demonstrate its efficiency. The used PC is an HP laptop 

equipped with AMD A4 processor clocked at 1.90 GHz and 6 GB installed memory. As shown in Figure 6, 

we have implemented a simple GUI interface to verify the accuracy of the implemented system and perform 

exploratory analyses on the system behavior during the detection and matching phases. The system matches 

features of the new signature (left-side picture-box) with features of each template saved in the system's 

database. The number of matched features is calculated each time to obtain the highest number of matched 

features. The highest matched template is displayed in the right-side picture-box.  

 

 

 
 

Figure 6. Simple GUI developed for verification purposes 

 

 

The proposed system has been tested using 100 signatures, we measured the recognition ratio (RR), 

the speed of matching, the false acceptance rate (FAR), and the false rejection rate (FRR). These metrics are 

indicators of the system's accuracy and robustness. These performance metrics are calculated as (9):  

 

%100
#

#
(%) =

All

accepted

Tests

False
FAR  (9) 

 

where #𝐹𝑎𝑙𝑠𝑒𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑  is the number of the false signatures (from an unauthorized user) that has been 

incorrectly accepted by the system, and #𝑇𝑒𝑠𝑡𝑠𝐴𝑙𝑙  is the number of all tested signatures. Lower FAR values 

are better as they indicated lower rates of false positive cases.  

FRR is the ratio between the numbers of times when the system rejects signatures by an authorized 

user and does not retrieve their signature template compared to the number of all tested signatures. 
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where #𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑  is the number of saved signatures (from authorized users) that were rejected by the 

system. Lower FRR values are also desirable as they indicated lower rates of false-negative cases. 

Recognition ratio (RR) is the ratio between the numbers of times the system retrieves the correct template 

(the same signer) and the number of all tests (the number of all used signatures in system testing). The 

following equation calculates recognition ratio (RR): 

 

%100
#

#
(%) =

All

correct

Tests

Templates
RR                                                           (11) 

 

where #𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠𝑐𝑜𝑟𝑟𝑒𝑐𝑡  is the number of correct templates that were retrieved. Higher values of RR are 

desirable as they indicate the number of true positive cases achieved by the system.  

The speed of matching is represented by the median matching time. Matching time is defined as the 

required time to complete a single match between the input signature and one template. Each signature has a 
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different number of extracted features; therefore, matching time may differ between one template and 

another. As a measure of central tendency for matching time values, we use the median of the matching times 

because of the skewed distribution of their values. 

After performing the required preprocessing steps on our testing set of 100 signatures, we compared 

SURF, SIFT, and ORB algorithms using their FAR and FRR values. We have conducted our comparison 

using the Brute-Force matcher that will exhaustively try all possibilities in matching the two images. As can 

be noted from the results listed in Table 2, ORB has achieved the best results with the lowest ratio values for 

false positive (FAR) and false negatives (FRR) rates. Based on these experiments, the achieved RR for ORB 

is 91%.   

 

 

Table 2. FAR and FRR comparison for ORB, SURF, and SIFT using brute-force matcher 
Performance Metric/Algorithm ORB SURF SIFT 

FAR 26.6% 63% 90% 

FRR 9% 60% 73% 

  

 

As discussed before, FAR and FRR values impacts greatly RR ratio values. As shown in Table 3, 

ORB has outperformed both algorithms. In addition, it has a relatively short matching time especially when 

compared to SURF (7 ms vs 29 ms). While SIFT was the fastest (with 1 ms matching time), it has produced 

the worst matching ratios among the tested algorithms. These variations in matching times can be explained 

by relating them to the number of extracted features in each algorithm: using SIFT algorithm on average we 

extract 120 features, in SURF we extract between 200 to 3000 features, and in ORB we extract around 500 

features on average.  

 

 

Table 3. Recognition ratios and median matching times for ORB, SURF, and SIFT 
Performance Metric/Algorithm ORB SURF SIFT 

Recognition ratio (RR%) 91% 40% 27% 
Median Matching Time (per template) 7 ms 29 ms 1 ms 

 

 

To assess the effects of the proposed pre-processing steps and the use of Brute-Force matcher on the 

obtained RR values, we repeated the testing experiment for ORB using the original images without applying 

preprocessing and using FLANN matcher instead of Brute-Force matcher. Fast library for approximate 

nearest neighbors (FLANN) matcher is much faster than Brute-Force matcher as it is designed to only find an 

approximate nearest neighbor match using clustering [24]-[26]. As depicted in Table 4, Brute-Force matcher 

outperformed FLANN significantly (91% to 64%). In addition, we can note the importance of applying the 

proposed pre-processing steps to improve the matching accuracy. Recognition ratio values decreased when 

the system used original (without pre-processing) signatures images, as original signature images may 

contain undesired features, e.g. dust particles or ink spots, that may lead to false matching and thus reduce the 

recognition ratio. Table 5 shows a comparison of the measured median matching times when using original 

versus pre-processed images, and when using Brute-Force matcher versus FLANN matcher. 

 

 

Table 4. Comparison of recognition ratios of ORB using original versus pre-processing signatures, and brute-

force versus FLANN matchers 
Matcher Pre-processed signature images (RR %) Original signature images (RR %) 

Brute-Force matcher 91 % 57 % 

FLANN matcher 64 % 36 % 

 

 

Table 5. Median matching time of ORB algorithm using original versus pre-processing signatures, and using 

brute-force versus FLANN matchers (per signature) 
Matcher Pre-processed signature images (median time) Original signature images (median time) 

Brute-Force 7 ms 7 ms 

FLANN 3 ms 5 ms 

 

 

As shown in Table 5, the median matching time decreased (matching speed increased) when using 

FLANN matcher as expected. However, when using FLANN the median matching time increased (matching 
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speed decreased) when using original signatures images without reprocessing. While these differences are 

relatively small, we would like to note that these values are the median matching time for a single matching 

or pairing process. In large datasets, FLANN is expected to significantly outperforms Brute-Force in terms of 

matching speed. Improving the matching speed under these experiment conditions is outside the scope of this 

paper. Table 6 summarizes the performed experiments using various experiment settings. As can be noted, 

ORB outperforms other algorithms especially when using Brute-Force matcher with 91% recognition rate 

and 7ms median matching time per signature.  

 

 

Table 6. Full comparison results between ORB, SURF and SIFT 

Input Images 

        Algorithm 

 

Matcher 

ORB SURF SIFT 

RR (%) Time (ms) RR (%) Time (ms) RR (%) Time (ms) 

Pre-Processed 
Brute-Force 91% 7 ms 40% 29 ms 27% 1 ms 

FLANN 64% 3% 34% 4.5 ms 23% 1 ms 

Original 
Brute-Force 57% 7 ms 23% 33 ms 22% 3 ms 

FLANN 36% 5 ms 16% 10 ms 16% 4 ms 

 

 

5. DISCUSSION 

The main goal of this paper is to show the effectiveness of ORB as a 2D feature extraction and 

matching algorithm in offline signature recognition. ORB as a rotation-invariant and scale-invariant matching 

algorithm is a very promising candidate for offline signature authentication systems. The usability of an 

authentication system is also crucial to determine its applicability in real-world scenarios. Requesting that 

users input identical or similar signatures upwards of 20 per user, as assumed in previous related works, is 

infeasible and undesirable. As shown in this paper, our proposed offline signature authentication system 

using ORB algorithm achieved, with limited pre-processing steps, a recognition rate (RR) of 91% based only 

on two signatures for training the system with a median processing time of 7ms per matching step. We also 

showed the importance of using the proper pre-processing steps and the effects of using Brute-Force matcher 

on the system’s results. 

 

 

6. CONCLUSION 

Offline recognition systems are more accessible and more applicable in comparison with online 

signature systems as they do not need the presence of signers during the verification process, and they do not 

need any special tools like stylus and high precision acquiring systems. This research proposes the use of 

oriented FAST and rotated BRIEF (ORB) algorithm to detect and match signatures features for 

authentication purposes. The proposed system acquires signatures images and detect their 2D features after 

performing a minimal number of pre-processing steps. Once the system acquires a new signature, it matches 

the input signature's features with the features database to find the highest similarity among signatures and 

retrieve it. 

As can be noted from our discussions, we designed our system without any special considerations to 

achieve lower FAR and FRR ratios. This allows for further possible improvements on the achieved RR ratio, 

especially when more pre-processing features are integrated. In general, we can observe that ORB algorithm 

achieved the best FAR and FRR ratios, which indicate that our system using the ORB algorithm is superior to 

the compared systems using either SURF or SIFT algorithms. 
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