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 Every year a number of rice diseases cause major damage to crop around the 

world. Early and accurate prediction of various rice plant diseases has been a 

major challenge for farmers and researchers. Recent developments in the 
convolutional neural networks (CNNs) have made image processing 

techniques more convenient and precise. Motivated from that in this 

research, a depthwise separable convolutional neural network based 

classification model has been proposed for identifying 12 types of rice plant 
diseases. Also, 8 different state-of-the-art convolution neural network model 

has been fine-tuned specifically for identifying the rice plant diseases and 

their performance has been evaluated. The proposed model performs 

considerably well in contrast to existing state-of-the-art CNN architectures. 
The experimental analysis indicates that the proposed model can correctly 

diagnose rice plant diseases with a validation and testing accuracy of 96.5% 

and 95.3% respectively while having a substantially smaller model size. 
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1. INTRODUCTION 

Agricultural science has an enormous effect on the food production system around the world, hence 

this field is emerging day by day. Technologies have brought a new dimension to this field. Researchers are 

implementing different methodologies and invented different types of seeds, treatments and weeds to 

improve the overall crop production. Developments of recent deep learning based image processing methods 

have improved the disease classification accuracy significantly. Inspired by that, our research is primarily 

focused on the categorization of various rice plant diseases using a deep learning approach. Contributing to 

this field has developed a profound interest in us. 

There are more than 40 different types of rice plant diseases that can be fatal to the rice plants as 

described by Ou [1]. Diseases like rice blast, smut and leaf blight can cause severe damage to rice 

production. There exists some other diseases that can be lethal unless necessary measurements are taken 

early. Researchers have come up with numerous methodologies and models for the detection of rice plant 

diseases over the years. Different kinds of segmentation and feature extraction methods have been 

implemented. A multistage convolutional neural network architecture has been presented by Lu et al. [2] that 

can identify 10 different rice plant diseases. A total of 500 images has been considered including healthy and 

diseased images and trained using the convolutional neural network (CNN) model. The result reported in the 

paper shows an accuracy of 95.38% while diagnosing the rice plant diseases. The work was conducted on 10 

types of rice plant diseases, however there are only 500 training images meaning only 50 images per disease 

class. Based on the minimal quantity of training pictures, it seems doubtful that this model will be viable in 
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the real life scenarios. The work by Liu et al. [3] proposed a machine learning based along with a CNN based 

model for identifying rice false smut images. The proposed CNN architecture inspired from AlexNet and 

VGGNet-16 architecture comprises a total of 10 layers which includes 7 convolution layers and 3 fully 

connected layers. Experimental result suggests that, the proposed method performed better than AlexNet in 

diagnosing the rice false smut disease. Jagan et al. [4] developed a two-stage technique for detecting rice 

plant diseases, in which they detected the disease-affected region using Haar-like characteristics and the 

AdaBoost classifier in the first stage. After identifying the disease-affected area, they employed scale 

invariant feature transform to extract features. Finally, support vector machine and k-nearest neighbor 

classifiers were used for the detecting procedure. An optimal deep CNN architecture has been presented  

at [5] for diagnosing rice plant diseases. A cloud based infrastructure has been developed where Inception-

ResNet V2 model is used for the feature extraction process while weighted extreme learning machine 

performs the disease classification. The work by Ramesh and Vydeki [6] presents an optimized neural 

network model to identify 4 types of paddy plant diseases. Initially, the red, green, blue (RGB) images were 

converted into hue, saturation, value (HSV) images and analyzing the hue and saturation they extracted 

binary images from the hue and saturation difference. This work integrated Jaya optimization algorithm with 

the neural network. Jaya algorithm has been used to update the weights of the proposed neural network in 

identifying rice diseases. The work by Krishnamoorthy et al. [7] used InceptionResNetV2 model for 

detecting multiple paddy leaf diseases. By using transfer learning method and tuning the hyperparameters the 

proposed model achieved an accuracy of 95.67%. The method provided by Shrivastava et al. [8] uses the 

AlexNet model using transfer learning to detect 3 different rice plant diseases. For an 80-20 train and test 

data split, the AlexNet model achieved a classification accuracy of 91.37%. A simple CNN architecture for 

diagnosing various rice plant diseases from Bangladesh has been proposed at [9]. The work focuses on 

providing a lightweight CNN model by hyper-parameter tuning which can provide admissible accuracy. The 

statistical analysis shows that using Adam optimizer their proposed model achieved a validation accuracy of 

95.4%. Similar CNN model has been proposed for mango [10], wheat [11], banana [12], apple [13], and 

peach [14] classification.  

Recent developments in various computer vision models faster R-CNN, YOLOv3, mask R-CNN, 

and RetinaNet have significantly improved the accuracy of object detection modules. These models not only 

detect the disease but also identifies the exact location of the disease occurrence. Sethy et al. [15] presented a 

faster R-CNN object detection method for rice false smut disease. After collecting 50 images of false smut 

they used image augmentation methods to increase the images in the dataset. After extracting the features 

using the ResNet-50 model, the feature vectors are fed through the fully connected layer to predict the smuts 

using bounding boxes. In case of numerous false smut are present, the model occasionally fails to detect all 

smuts using bounding boxes. Bari et al. [16] proposed a faster R-CNN based real-time rice leaf disease 

diagnosis system. Experimental analysis shows that, the proposed method can localize the disease-affected 

portions with higher precision. However, the model requires multiple recurrences to extract all objects inside 

a single image which makes the model slower. Considering these computer vision models, we developed a 

CNN model based on depthwise separable convolutions to diagnose 12 types of rice plant diseases. 

 

 

2. METHOD 

In this section, the details of the dataset collection process and proposed models are discussed in 

appropriate subheadings. Also, the model hyperparameters are discussed here. Figure 1 illustrates the details 

of our method. 
 

 

 

 
 

Figure 1. Method of rice plant disease detection process 
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Our experimental study starts with data acquisition followed by data pre-processing. Then the 

processed images are fed through the CNN model. The CNN model generates feature maps and eventually 

the classification is performed by the fully connected dense layers. 

 

2.1.  Dataset collection 

We have taken some extensive measurements to collect 1,677 rice plant raw sample images from 

different regions of Bangladesh, consisting 12 types of fungal and pest diseases along with healthy plants. 

The data were collected under different weather conditions over a total 4-month span. In addition to our 

accumulated sample images, we took some more sample images from the dataset stated by Rahman et al. 

[17]. The images were taken on different heterogeneous backgrounds under different lighting conditions both 

in sunny and overcast environments. The collected types of diseases we contemplated are bacterial blight, 

brown plant hopper, brown spot, false smut, hispa, leaf blast, leaf scald, leaf smut, neck blast, sheath blight 

rot, stackburn and stemborer as shown in Figure 2(a) to (l). Along with these 12 fungal and pest diseases, we 

have also taken images of healthy leaves and panicles to differentiate them from the disease-affected plants. 

The dataset can be found here at [18]. Figure 2 shows the collected sample images of our dataset. 

The images were captured during different stages of the disease infection considering different 

symptoms of the diseases; hence we get a fully representative dataset considering all aspects of the disease. 

There are 10 classes in our dataset that contain multiple symptom variations. Table 1 shows the number of 

sample images collected for different symptoms of diseases and pests. 

Bacterial leaf blight caused by a bacteria called Xanthomonas oryzae pv. oryzae which attacks the 

leaves of the rice plant causing it to dry out [19]. Brown spot is a fungal disease caused by Cochliobolus 

miyabeanus. This disease mostly occurs at the protective sheath covering the leaf of the rice plants, leaves 

and spikelets [20]. False smut is a rice grain disease caused by a plant pathogen named Ustilaginoidea virens 

which transforms the individual rice grains into yellow fruiting bodies [21]. In some cases, the smuts turn 

black in color. We have considered both types of false smut images in our dataset. Leaf blast, neck blast, leaf 

smut, leaf scald, sheath blight and stackburn are similar types of disease considering the fact that they mostly 

occur at the rice leaf. Each of the diseases causes small spots or lesions in the rice plants. In different cases, 

there can be single or multiple spots with similar diameter in a single leaf. Neck blast also attacks the neck 

calm of the rice plant making it vulnerable. Leaf blast and neck blast are more deadly than the other diseases 

and in severe cases, the yield loss can be as high as 100% as indicated in [22]. 

In our dataset, we have also considered certain pests and bugs. The Brown planthopper is a disease 

caused by a pest named Nilaparvata lugens. The pests mostly reside at the root of the plants then spreading 

through the entire rice plant causing the plant to dry out and turn brown [23]. Hispa is another disease that is 

caused by a pest named Dicladispa armigera where the armigera insect scrapes the upper surface of the 

leaves leaving only the lower epidermis. Similar to hispa, stemborer is a pest that also attacks the leaves of 

rice plants. The stem borer initially resides at the base of the rice plants and later the stem borer larva drill 

through the upper nodes and feeds the tillers which cause the tillers to dry out [24]. Different environmental 

factors along with excessive use of nitrogen fertilizers are the main reason for these disease occurrences. 

 

 

      
(a) (b) (c) (d) (e) (f) 

      

      
(g) (h) (i) (j) (k) (l) 

 

Figure 2. Sample images of our collected rice plant disease dataset (a) bacterial blight, (b) brown 

planthopper, (c) brown spot, (d) false smut, (e) hispa, (f) leaf blast, (g) leaf scald, (h) leaf smut, (i) neck blast, 

(j) sheath blight, (k) stackburn, and (l) stemborer 
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Table 1. Total collected sample images with different symptom variations 
Name Sample image variation No. of collected images Total images 

Bacterial blight Early stage yellowish brown 46 126 

Later stage full brown 80 

Brown plant hopper Early stage of attack 50 75 

Later stage of attack 25 

Brown spot Small size spots 102 102 

False smut Black smut 78 112 

Brown smut 34 

Hispa Visible pests on the leaves 56 86 

Visible spots on the leaves without pests 30 

Leaf blast Deep brown spot 110 136 

Yellowish grey spot 26 

Neck blast Blast spot on neck 225 225 

Leaf scald Dark brown lesion 23 73 

Greyish white lesion 50 

Leaf smut Spots on the whole leaf 103 103 

Sheath blight Black stem 112 228 

White stem 116 

Stemborer Grain symptom 171 187 

Stem symptom 16 

Stackburn Symptom on whole leaf 49 71 

Symptom on a part 22 

Healthy Healthy leaf 90 153 

Healthy grain 63 

 

 

2.2.  Image preprocessing 

After collecting the rice plant sample images, we processed the sample images before inputting 

them to the convolutional neural network model. At first, we removed out-of-focus and blurry images from 

our collected dataset. Once the faulty images were discarded, we move on to the image augmentation process 

to increase the size of our dataset. Since we have small number of images for each of the class indicated by 

Table 1, hence for better interaction and considering all possible dependencies at the feature level, we 

perform image augmentation. The first augmentation method we carried out is the contrast stretching method. 

Due to the gloomy weather and mobile camera lens, few sample pictures had very low contrast, hence 

making it difficult to differentiate between the foreground subject and the background. This sort of low 

contrasting pictures will prompt false positive and false negative rates in the network resulting in low 

accuracy. Therefore, we utilised the contrast limited adaptive histogram equalization method described by 

Pizer et al. [25] to enhance the low contrast sample images. We performed local histogram enhancement 

using the contrast limited adaptive histogram equalization (CLAHE) method. CLAHE restricts the 

amplification level by clipping the histogram at a predefined value before calculating the cumulative 

distribution function. The clipping value depends upon the normalization of the histogram hence on the size 

of the local area. The result of the histogram equalization process is illustrated in Figure 3, where Figure 3(a) 

shows input image with distribution range in Figures 3(b) and (c). Figure 3(d) shows histogram equalized 

image with distribution range in Figure 3(e) and (f). 

It is evident that the intensity values of histogram equalized images are spread through the full 

dynamic range hence the details are considerably more discernible. After performing the histogram 

equalization method, we performed various image augmentation methods on our dataset. We performed 

flipping, skewing, random rotation, random zoom, shear transformation, noise and distortion as distinct 

image augmentation processes. Using these procedures, 10 augmented images have been created for each 

example image and thus our dataset increased to a total of 16,770 training images. We used 80-20 data split 

on our dataset by which we have 13,415 and 3,355 images for training and validating the model respectively. 

 

2.3.  State-of-the-art CNN architectures 

Eight different state-of-the-art CNN architectures have been employed on our rice disease dataset 

based on different criteria. We used VGG net which has 3×3 filters throughout the CNN architecture and they 

are very deep CNN architectures with a large number of parameters [26]. The Inception-v3 architecture by 

Szegedy et al. [27] has an inception module. Despite being a very deep architecture, the inception module 

greatly reduces the amount of the parameters. By the use of asymmetric convolution, factorization is 

performed which reduces the complexity of this model. ResNet architecture has residual networks with skip 

connections and overcomes the problem of overfitting in ImageNet dataset [28]. The Xception [29] 

introduced depthwise separable convolutions along with residual connections. Mobilenet v2 architecture also 

uses depthwise separable convolutions having inverted shortcut network with linear bottleneck [30]. NasNet 

Mobile architecture is similar to Mobilenet v2 architecture and it is used primarily for mobile devices. We 
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intended to see how our dataset performs on these models and later compared the results of these state-of-the-

art CNN models with our proposed CNN model. 
 

 

 

  
(a) (b) 

 

  
(c) (d) 

 

  
(e) (f) 

 

Figure 3. Contrast limited adaptive histogram equalization method (a) low contrast input image,  

(b) histogram of input image, (c) RGB channel of input image, (d) high contrast output image,  

(e) histogram of output image, and (f) RGB channel of output image 

 

 

2.4.  Proposed depthwise CNN model 

We proposed a deep CNN architecture based on depthwise separable convolution. In the 1st layer of 

our proposed CNN model, we use a 3×3 2D convolution followed by batch normalization and 2×2  

max-pooling. In the 2nd layer, we used a depthwise separable convolution layer which consists of a 3×3 

depthwise convolution followed by a 1×1 point-wise convolution. Unlike the normal convolution, depthwise 

separable convolution deals with not only the spatial dimension but also the depth dimension. 

For normal convolution considering a kernel K having spatial height 𝐾ℎ and spatial width of 𝐾𝑤 and 

image tensor with input and output channels of 𝐼𝑖 and 𝐼𝑜  respectively. The convolution layer is represented 

by, 𝐶 ∈ ℝ𝐼𝑖×𝐼𝑜×𝐾ℎ×𝐾𝑤. After applying the filter to a 3D tensor x, with size 𝐾ℎ ×  𝐾𝑤  ×  𝐼𝑖, we obtain a 

response vector 𝑦 ∈ ℝ𝐼𝑜. 
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𝑦 = 𝐶 ∗  𝑥 (1) 

 

where 𝑦𝑜 = ∑ 𝐶𝑜,𝑖 ∗ 𝑥𝑖 , 𝑜 ∈  𝐼𝑜 , 𝑖 ∈  𝐼𝑖 ,
𝐼𝑖
𝑖=1  Here ∗ is the convolution operator. 𝐶𝑜,𝑖 =  𝐶[𝑜, 𝑖, : , : ] is a tensor 

patch along the i-th input channel and o-th output channel. 𝑥𝑖 =  𝑥[𝑖, : , : ] is a tensor patch along the i-th input 

channel of 3D tensor x. 

For depthwise separable convolution, the convolutions are performed at each depth by which the 

output is split for each dimension. Then pointwise convolution is performed for projecting the outputs into a 

single channel space. Pointwise convolution is done by performing 1×1 cross-channel convolutions. Since the 

depthwise convolution is performed at each depth at a time hence the kernel tensor is 𝐶𝑑 ∈ ℝ𝐼𝑖×1×𝐾ℎ×𝐾𝑤  and 

for pointwise convolution the kernel tensor is  𝐶𝑝 ∈ ℝ𝐼𝑖×𝐼𝑜×1×1. After applying this to a 3D tensor x, we 

obtain a response vector y' as, 

 

𝑦′ = (𝐶𝑝  ∘  𝐶𝑑) ∗  𝑥 (2) 

 

where 𝑦𝑜′ = ∑ 𝐶𝑝𝑜,𝑖
(𝐶𝑑𝑜,𝑖

∗ 𝑥𝑖),
𝐼𝑖
𝑖=1  ∘ is a element wise operation. 𝐶𝑝(𝑜,𝑖)

=  𝐶𝑝[𝑜, 𝑖, : , : ] is a tensor patch 

along the i-th input channel and o-th output channel. 𝐶𝑑(𝑖)
=  𝐶𝑝[𝑖, : , : ] is a tensor patch along the i-th input 

channel of 3D tensor x. 

As we can see, rather than performing the convolution in spatial dimension in RGB images, 

depthwise separable convolutions are performed for each color channel separately. Due to single-channel 

calculation, the overall complexity of the depthwise separable convolution is less than the normal 

convolution on spatial dimension which accelerates the overall classification process. Because of the small 

parameter size and faster execution, we specifically used depthwise separable convolution in our proposed 

CNN model.  

Our proposed CNN network starts with a normal 3×3 convolution followed by 2 depthwise 

separable convolutions and then again a normal 3×3 convolution. Finally, we used 2 fully connected layers 

having 128 neurons each and a 0.3 dropout layer in between the dense layer to reduce overfitting. 2×2 max 

pooling and batch normalization were performed after every convolution. The rectified linear unit (ReLU) 

activation function has been used for every layer except for the final dense layer which uses the softmax 

activation function for the classification task. For updating the weights, several loss functions such as Adam, 

RmsProp, Stochastic gradient descent, Hingeloss were utilized, and their performance was evaluated. Our 

proposed depthwise CNN architecture is demonstrated in Figure 4. 

 

 

 
 

Figure 4. Proposed depthwise separable CNN model 

 

 

Our proposed CNN model's hyperparameters are listed below. 

− Fold: 10-fold cross validation − Total Data: 16770 

− MiniBatch: 64 − Data Split: 80-20 

− Epochs: 100 − Training Data: 13415 

− Activation Function: ReLU − Validation Data: 3355 

− Momentum: 0.9 − Testing Data: 1600 

− Dropout: 0.3 − Image Size: 224×224 
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All the images were resized to 224×224 pixels before inputting them in the CNN model. The first 

layer of our CNN model takes an input (224, 224, 3) and produces an output tensor of (222, 222, 32). After 

every convolution, batch normalization and 2×2 max-pooling are performed. Table 2 shows the kernel 

dimension of each layer along with the generated feature maps of our proposed CNN model. 

The output tensor (12, 12, 28) is fed through the flatten layer which maps the input matrix into a 1-D 

vector of 18432 values. This vector is passed through two fully connected layers each of them consisting of 

128 neurons and finally, we get 13 probabilistic values and thus the classification is performed. Figure 5 

demonstrates the input images along with their feature maps generated by the last convolution layer. 

 

 

Table 2. Proposed model generated feature vector output of each layer 
Layer name Kernel dimension Stride Input feature vector Output feature vector 

Conv_2d 3×3 - 224×224×3 224×224×32 

Maxpooling1_2d 2×2 2 224×224×32 112×112×32 

SeparableConv1_2d 3×3 - 112×112×32 109×109×32 

Maxpooling2_2d 2×2 2 109×109×32 54×54×32 

SeparableConv2_2d 3×3 - 54×54×32 52×52×64 

Maxpooling3_2d 2×2 2 52×52×64 26×26×64 

Conv3_2d 3×3 - 26×26×64 24×24×128 

Maxpooling4_2d 2×2 2 24×24×128 12×12×128 

Flatten - - 12×12×128 18432 

 

 

 
 

Figure 5. Final convolution layer feature map output for each class 

 

 

3. RESULTS AND DISCUSSION 

In this section, the detailed analysis of various state-of-the-art CNN models performance along with 

our proposed model are discussed. Also, the findings are reported extensively. The complete result analysis 

has been discussed in appropriate subheadings. 

 

3.1.  State-of-the-art CNN models performance 

For experimental work, Keras framework with TensorFlow back-end consisting Tesla P-100 GPU 

has been used to train the models. For the training process, we used two different methodology transfer 

learning and fine-tuning. In the transfer learning method, every model had pre-trained ImageNet weights 

associated with them. Randomly initialized weights are only used to train the final dense layer. The  

fine-tuning technique however unfreezes the final dense layer of the CNN and freezes all other layer weights. 

Then the dense layers are trained using our rice plant dataset and different weights are initialized to the 

nodes. The networks later adjusted the weights using optimizers. 10-fold cross-validation accuracy has been 

considered as the model performance metric. We used different train, validation and testing set for multiple 

instances and recorded the mean results. Table 3 shows the mean training, validation and testing result after 

100 iterations of the rice plant disease dataset on different state-of-the-art CNN architectures. 
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The result reported at Table 3 indicates that, fine-tuning produced a better result than the transfer 

learning method for all of the CNN models. The performance curve of 8 state of the art CNN architectures 

are shown in Figure 6 with transfer learning validation accuracy in Figure 6(a) and fine tuning validation 

accuracy in Figure 6(b). Among the state-of-the-art CNN architectures, MobileNet v2 architecture performed 

best in terms of accuracy. VGG-16 architecture provided high mean validation and testing accuracy. The 

other deep CNN architectures (e.g. Inception, ResNet-50) with big parameters size mostly failed to identify 

the test and validation rice plant images correctly. In the transfer learning method, we noticed that most of the 

CNN architectures showed overfitting problem thus resulting in low testing accuracy. Even during the  

fine-tuning method, Inception v3 and ResNet-50 model showed overfitting characteristics. The architectures 

performed better in training data but failed in validation and test data. 
 

 

 

Table 3. Statistical analysis of different CNN architectures on rice plant disease dataset. Here bold numbers 

indicate best result 
Architecture Training method Mean train accuracy Mean validation accuracy Mean test accuracy Total parameters 

VGG 16 Transfer learning 94.2±1.8% 80.3±1.5% 78.2±1.0% 134 million 

Fine tuning 98.6±0.9% 97.1±0.4% 95.7±0.5% 

VGG 19 Transfer learning 89.5±1.5% 81.3±3.5% 79.1±2.0% 143 million 

Fine tuning 97.3±0.7% 93.6±0.3% 86.2±1.5% 

Inception v3 Transfer learning 84.8±3.0% 65.2±2.5% 61.7±3.0% 24 million 

Fine tuning 98.6±0.4% 84.1±1.5% 83.2±2.0% 

Xception Transfer learning 90.2±2.5% 84.2±1.5% 79.4±2.0% 20 million 

Fine tuning 99.3±0.6% 95.1±0.8% 93.1±0.6% 

MobileNet v2 Transfer learning 88.5±3.0% 83.2±2.0% 78.6±1.4% 3.5 million 

Fine tuning 98.9±0.5% 97.3±0.4% 95.7±0.3% 

ResNet-50 Transfer learning 39.2±6.0% 24.1±4.5% 20.2±5.0% 25 million 

Fine tuning 67.7±1.5% 58.5±3.0% 52.1±2.5% 

DenseNet-121 Transfer learning 94.2±2.8% 84.1±0.9% 78.0±1.5% 8 million 

Fine tuning 98.1±0.9% 95.7±0.5% 92.3±1.0% 

NasNet Mobile Transfer learning 94.1±1.0% 85.0±1.0% 78.4±1.8% 4.3 million 

Fine tuning 97.6±0.5% 93.2±1.0% 91.0±1.2% 

Proposed CNN Train from scratch 98.7±0.3% 96.5±0.3% 95.3±0.5% 2.4 million 

 

 

 
(a) 

 

 
(b) 

 

Figure 6. Performance curve of different CNN models on transfer learning and fine tuning method,  

(a) transfer learning validation accuracy and (b) fine tuning validation accuracy 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 4, August 2022: 3642-3654 

3650 

3.2.  Proposed CNN model performance 

Our proposed model was trained from scratch and the weights were updated accordingly. We used 

different hyperparameter combination and evaluated the performance thus selected the most suitable 

parameters for our proposed model. By hyperparameter tuning, our model achieved a mean validation and 

mean testing accuracy of 96.5% and 95.3% respectively. Considering the small parameter size, our model 

performed significantly well in diagnosing rice plant diseases. We used different optimizers in our proposed 

model and achieved the best accuracy using the Adam optimizer. Figure 7 demonstrates the best loss and 

accuracy curve achieved with our proposed model using Adam optimizer with a 0.001 learning rate. 

From the loss and accuracy curve, it is evident that our proposed model slowly converged to the 

without showing any overfitting characteristics. We employed a variety of optimizers, including Adam, 

stochastic gradient descent (SGD), Rmsprop, Hingeloss along with variable learning rates on our model. 

Among the optimizers, adaptive moment estimation (Adam) [31] outperformed all the other optimizers in 

terms of accuracy. Rmsprop optimizer performed similarly to Adam optimizer. Table 4 shows the 

performance of using different optimizers with variable learning rates on our rice plant disease dataset. 

 

 

 
 

Figure 7. Performance curve of the proposed CNN model using Adam optimizer with 0.001 learning rate 

 

 

Table 4. Different optimizers performance with variable learning rate on rice plant disease dataset 
Optimizer Learning rate Mean validation accuracy 

Adam 0.01 95.4±0.4% 

0.001 96.5±0.3% 

0.0001 95.1±0.4% 

RmsProp 0.01 94.1±0.3% 

0.001 95.01±0.3% 

0.0001 94.4±0.4% 

HingeLoss 0.01 78.2±1.8% 

0.001 82.7±1.2% 

0.0001 73.5±1.5% 

SGD 0.01 89.2±1.0% 

0.001 88.5±1.5% 

0.0001 82.1±1.5% 
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From Table 4 it is evident that, stochastic gradient descent (SGD) and the support vector machine 

SVM optimizer Hingeloss didn’t perform as well as Adam or Rmsprop. Adam and Rmsporp performed quite 

similarly. The accuracy curve of the Adam optimizer with variable learning rates on our dataset is illustrated 

in Figure 8. 

From Figure 8 we can observe that the learning rate of 0.01 converged very quickly to our rice 

disease dataset. On the other hand, the learning rate of 0.001 converged slowly to our dataset but achieved 

overall maximum accuracy in the validation dataset. The learning rate of 0.0001 also performed well and 

provided good accuracy. Hence, the optimal learning rate for our proposed CNN model is 0.001. However, 

the difference is subtle and learning rate of 0.01 and 0.0001 can be used on our proposed model. The 

normalized confusion matrix for the testing data of our proposed model is shown in Figure 9. 

 

 

 
 

Figure 8. Adam optimizer with variable learning rate 

 

 

 
 

Figure 9. Normalized confusion matrix 
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Our proposed model achieved a mean testing accuracy of 95.3%. By analyzing the normalized 

confusion matrix, we observe that, apart from the brown spot disease all of the other disease classes have 

high detection accuracy which clearly indicates that our proposed model can recognize the disease classes 

correctly. The comparison of our proposed model with existing related works is represented in Table 5. We 

observe from Table 5 that the majority of the research has focused on a small number of disease types. And 

their proposed method comprising lower accuracy than us. Taking a modest parameter size into account, it is 

evident that our proposed model performed significantly well in detecting rice plant diseases. 

 

 

Table 5. Comparison of our proposed model with existing works 
Authors Proposed Method Dataset Iteration Performance 

Lu et al. [2] A simple 5-layer CNN architecture 500 sample images of 10 classes 

collected from fields 

10 Simple CNN: 95.38% 

Liu et al. [3] A custom 6-layer CNN architecture 693 sample images of 2 classes 

collected from fields 

10,000 Custom CNN: 99.5% 

AlexNet-8: 98% 

VGGNet-11: 96.7% 

Jagan et al. [4] SIFT combined with different 

classifiers 

120 sample images of 3 classes - SVM classifier: 91.1% 

KNN classifier: 93.33% 

Sowmyalakshmi  

et al. [5] 

Inception ResNet v2 integrated with 

OWELM 

115 sample images of 3 classes - Inception ResNet v2: 94.2% 

Krishnamoorthy  

et al. [7] 

Inception ResNet v2 with transfer 

learning method 

3 types of disease classes along 

with healthy plants 

- Inception ResNet v2: 95.67% 

Simple CNN: 84.75% 

Sethy et al. [15] Faster R-CNN to localize disease 

spots 

50 sample images of false smut 5 In most cases the model can 

identify the false smuts 

Rahman et al. [17] A simple CNN architecture 1,426 sample images of 9 classes 

collected from fields 

100 Simple CNN: 94.33% 

VGG-16: 97.12% 

Proposed CNN A CNN model based on Depthwise 

separable convolutions 

1,677 sample images of 13 classes 

collected from fields 

100 Proposed CNN: 96.5% 

 

 

3.3.  Discussion 

From our experimental analysis we have obtained some interesting findings regarding our rice 

disease dataset. We identified some interesting facts about how different model parameter metrics improve 

the performance of classification model. The findings are reported as follows: i) using transfer learning 

method with pre-trained ImageNet weights on state-of-the-art CNN architectures cannot provide higher 

classification accuracy. In all eight state-of-the-art CNN architectures, the fine-tuning method outperforms 

the transfer learning method in terms of accuracy; ii) the lightweight CNN architectures (MobileNet v2, 

NasNet Mobile, DenseNet) converge quickly to our dataset and provides a greater degree of precision;   

iii) the deep CNN architectures with pre-trained ImageNet weights cannot converge quickly to our rice plant 

disease dataset and mostly shows overfitting characteristics; iv) categorical cross-entropy with Adam 

optimizer performs better in updating the weights for the dense layer on proposed model. However, different 

learning rate provides almost similar performance which indicates that learning rate has very limited effect 

on updating the weights, and v) on our proposed model, a learning rate of 0.001 and momentum of  

0.9 performs well and produces better accuracy in classifying rice plant diseases. 

 

 

4. CONCLUSION 

In this paper, a depthwise separable convolution based neural network model has been proposed that 

can effectively identify 12 distinct rice plant diseases along with healthy rice plants. Initially, the raw sample 

images were collected from different regions of Bangladesh and during the pre-processing method contrast 

limited adaptive histogram equalization algorithm (CLAHE) has been implemented to enhance the contrast 

of the images and to reduce the noise. Along with histogram equalization different image augmentation 

method has been performed by which the sample images of the dataset are increased to 16770 images. 

Besides our proposed model, 8 different state-of-the-art CNN architectures have been used on the rice disease 

dataset. Among all CNN architectures in terms of accuracy, MobileNet v2 was found to have the best 

validation and testing accuracy of 97.3% and 95.7% respectively. The proposed CNN model has been 

evaluated with different loss functions along with variable learning rates. Adam optimizer with a learning 

rate of 0.001 provided the best mean validation and mean test accuracy of 96.5% and 95.3% respectively for 

our proposed CNN model. Based on our model's performance, it is evident that the proposed model was able 

to properly diagnose a variety of rice plant diseases. Considering a small parameter size of 2.4 million we 

conclude that, the proposed model is a substantial improvement over the traditional convolutional neural 

network architectures in rice plant disease detection. 
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