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1. INTRODUCTION

Polluted air and heavy traffic jam are knotting issues related to transport in densely populated cities.
Therefore, the urban electric train is one of the useful means of transportation to address these problems.
However, its major disadvantage lies in consuming a large amount of electric energy in operation [1]-[4].
Therefore, reducing energy consumption and enhancing operation effectiveness of metro lines has long been
one of hot studies worldwide. Many researchers, and engineers have tried their best to obtain remarkable
achievements in theory and application, which has contributed in sustainable development of urban railway
transportation. These theoretical and applied achievements include: recuperating regenerative braking energy
by onboard/stationary energy storage systems [5]-[12], equipping the traction substations with reversible
converters or active rectifiers so as to pump back the regenerative braking energy into utility source, as a
result, all regenerated energy can be recuperated [13], [14], and optimizing scheduled timetables makes the
regenerated energy among trains interchange easier [4], [15], [16], lowering energy losses in the power
supply system, and in on-board traction equipment [17], applying optimal theory to seek the optimal speed
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profile to minimize operating energy [18]-[23], using interger linear programing determining optimal
position for substations in order to reduce power loss [24]. Among above approaches, tracking the optimal
speed curves to decrease energy consumption becomes one of the measures which does not need to invest in
equipment or infrastructure of existing metro lines, so this one is most suitable for metro lines in Vietnam to
have just been installed. The researchers of South Australia University in [25]-[29] outlined an energy-saving
driving strategy for a train trip on a track with uphill and downhill gradients by designing control laws to
calculate location of optimal switching points, and then determining the optimal speed profile but not to
mention fixed running time. Baranov at al. [30] proposed a solution to minimize energy consumption and
consider fixed trip time by supplementing Lagrange multiplier in objective function. Calculating to find the
actual time equal to demand time is not easy, and repeated. Therefore, in this paper, pontryagin's maximum
principle (PMP) has been presented to determine optimal speed profile for Cat Linh-Ha Dong metro line in
Vietnam, and calculating fixed-running time by numerical analytical method thanks to maple software.
Simulation results are conducted in two scenarios: running time of trains tracking the optimal speed profile is
equal to that of original speed profile, and the other with running time of trains is longer than the original
speed profile.

2. TRAIN MODELING
The continuous-space model of urban electric train operates in three motion regimes: Accelerating,
coasting, braking is shown [31]-[33].

dt 1

dx v 1)
v = e for (9) = e for (9) = Wo () = fyraa (2)

Where v,t,2,m represent train velocity (m / s), operation time (s), train position (m), full load mass of train

(tone) , u, ,u, are defined traction and braking control variables of train, f ,f | fg

oo Uy are forces per unit

rad
mass; traction force applied at the wheels, braking force, mechanical force, gradient force acting on the train.
where:

T _ 'F;]md
S =
m

grad
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In which F| | F) 7Wo7qu

L are traction, braking, main resistance, gradient resistance forces, and these forces

d
also have been differed from three motion phases for short inter-stations as shown in Figure 1.
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Figure 1. A typical speed profile with three motion phases for short inter-stations
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Manufacturers have given traction force F;'_, braking force FM_ [34]. The traction force F;'_, braking

force F, are described as show in (2):

; _{ 13.2 (0<v<32) )
o = 1-25-10"5v3 4+ 0.007 - v? — 0.66v + 28.35 (32 < v < 80) &Y

—0.254v + 31.21(65 < v < 75) (3)

14.7(0 < v < 65)
Fbr -
—0.2027v + 27.36(75 < v < 80)

Davis formula is used to calculate the basic resistance w, [35]

W
wO:—O:a+bv+cv2 4
m

In which a,b,c are coefficients of train’s resistance.

The gradient force qu caused by slope of road:

d

F  =mgsina (5)

grad

g, are the gravity acceleration and the rail track slope respective.

3. DETERMINATION OF FIXED TRIP TIME
Ensuring the trip time complying with scheduled timetable when train operation tracks the optimal
speed profile is the main goal of this section.

3.1. Optimal speed curve determination based on PMP

The optimal speed curve is determined thanks to seek the optimal switching points between the
operation regimes, and detecting these switching points based on PMP. From the state (1), boundary
conditions include (6), (7).

v(0) = 0,v(X) = 0,(0) =0 (6)
0<v(z)<V(@),0<t(X)<T,0<z<X @)

Where V(z) is the maximum allowable velocity, X is the terminal of the train operation, v(0),v(X) are the

velocity at the beginning, at the end of the route, 7' is duration of the trip is also given by the timetable.
The problem is how to lessen the train's consumption energy. The objective function is presented:

X

J = futrftr(v)dx — min ()

0

According to pontrygin’s maximum principle, maximizing hamiltonian equation of the objective
function J is going to find its optimal solutions. From (1) to (8), a Hamilton function is written as show in (9).

H=—u f )+ 42
v v

(u, £, (0) = u, £, (0) = w,(v) = £, (2)) ©9)

Given, p,, p, are co-state variables. Co-state variables are defined by (10):

dp,  0H

e S e 10
dx at (19)
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Define p = e ,80 p-v = p,. Therefore,
v
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dp 1 /dp, dv

L R 13
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Given

dv _ utrf;r(v> - ubrj;;r(v> - W, (U) - '];md (x)

ke (14)
dx v
Therefore, Hamiltonian function is reformed:
Ll 15
H = (p - 1)utr o pubrfi‘)r B p(wO + fgmd) + 7 ( )
With the values of u, and u, related to p
Uy =1 if p>1 Uy, =0 if 0<p<1
U, €(0,1) if p=1landi{u, € (01) if p=0 (16)
Uy =0 if p<l1 Uy =1 if p<O0

Optimal control laws are designed to maximize Hamiltonian function:
—  Full power (FP):u, = 1L,u, =0 when p >1
- Partial power (PP):u, €[0,1], u, =0 whenp =1
—  Coasting (O): u, = 0,u, =Owhen 0 <p <1
—  Full braking (FB): u, = 0,u,, =1 when p <0
—  Partial braking (PB):u, =0, u, €[0,1] when p =0
3.2. Fixed trip time
The trip time in every operation regime needs to be calculated so that the total running time of the

whole line is abided by the train scheduled timetable exactly. Calculating the total running time is divided in
to three phases.

3.2.1. Accelerating phase
Equation motion of the train in optimal traction mode:

v _

o £, () —w,(v) (17)

Using the variable dissociation method, the running time in accelerating phase is expressed as (18).
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dv

- —dt- - -
For® = o) ~ : 1, For0) = wo(®) %)
=| dt-»| ——————=t,

0 o for(@) —wo(v)
Where: f;-is calculated as (2), from (18) the acceleration time may be employed (19):
32 Uy

_ dv dv
Ol yme i ym e

32 Jir

32 Uy

_ f dv +f dv
~J132 ) (725~10’5v3+0007~027066v+28 35)7(a+bv+m}2>
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U

+[20(12.35-10%¢ ~25.8210" v
0
+12.35-10"2 b +1.52-10"
15.25-10" ac — 3.81-10"b* — 31.89-10"%a — 936.16 - 10" b
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—123.5-10° arctan

32

\/15.25 10" ac — 3.81-10"b° — 31.89-10"a — 936.16- 10" b — 33.72-10" ¢ + 13.04 - 10"

Using the MAPLE software tool, the acceleration time as a function of velocity. Acceleration distance is
calculated as (20):

dx vdv vdv
From: 3¢ = v~ dx =vdt = 2700 - Jotdx = [ For @ -wo)
f vdv J‘ p J‘ vdv
X =
fr@) —we ) for ) = wo(v) (20)

vdv

¢ o Jer(®) —wo(v)

3.2.2. Coasting phase
Motion equation of the train in optimal coasting mode:

" = —w,(v) 2D

Using the variable dissociation method, the running time in coasting phase obtains:

Y ot g dv 1 2cv+b
7dt_>f—w (V) f =, :‘[a+bv+cv2 :2\/4acsz aretan \/4acfb2 @)

In which braking velocity v, is given as follows [35], [36].

Y(vy) ,
vy = withp () = v - wo(v), P(v) = v* - wy(v)
S (f(vh) Vh _ Un (23)
P we@) o atwbtey)
viWo (V4) vy(b + 2cvy)

Coasting distance is computed as (24):
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vdv Xqt+X
N f a c
—wo (V) Xa

Y pdv Vi vdv 24)
dx = f —— X, = f S e—"
v ~Wo(V) vy, @bV +cv

d
From:d—):=v—>dx=vdt=

3.2.3. Braking phase
Motion equation of the train in optimal braking mode (25):

= —u,(0) - £, (v) @s)

Using the variable dissociation method, the running time in braking phase is given by (26):

dv 0 dv
- = dt - e —
~for (V) = wo(v) fbr (V) = wo(v)
ta+tc+tb (26)
= =t
LHC f for @) + wo(v) (v) +wo) P
F, 1s calculated as shown in (3)
From (4) the braking time can be written as (27).
“ 2cv+0b
t, = f dv = 2 ! arctan 27
0 'f;”m“ + (a + b’U + cv ) \/4(10 - b2 + 46]3! max \/4(10 - b2 + 4 fl’u max
The braking distance is calculated (28).
dx vdv Xqt+Xc+Xp
—=v—>dx=vdt=——>f
dt _fbr (U) — Wy (U) Xqt+xc 28
J 0 vdv by vdv (28)
X = —_— X, = _—_—
wp—for @) —wo@) " Sy for @) + wo(v)

4. RESULTS AND DISCUSSION

The simulation parameters shown in Table 1, Table 2 collected from Cat Linh-Ha Dong metro line,
Vietnam with 12 stations and 12.661 km long [34]. Simulation results carried out with two scenarios: running
time complies with scheduled timetable, and running time is one second longer than scheduled timetable. The
first scenario: The running time complies with scheduled timetable.

Table 1. Electric train parameters

Parameters Unit Value
Train grand-up 2M2T
Mass kg 246700
Number of traction motors 08
Max speed km/h 80
Base speed km/h 40

Max acceleration/braking rates  m/s* 0.94/1

Table 2. Coefficients of basic resistance force

Parameters Value
a 1.19-10°7
b 2.56-10°"
c 1.54-10"*

The second scenario: The running time is one second longer than scheduled timetable. The trip time
complied with scheduled timetable indicated in Figure 2, Table 3. Figure 3 showed optimal switching points
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change, so do optimal accelerating, coasting, braking distances considerability. Table 3 also demonstrated
that the lowest saving energy is 3.33% while the highest saving energy is to 10.15%; therefore, saving energy
of the whole route is 8.7%. In the second scenario, running time is one second longer than original time
indicated in Figures 4, 5, and Table 4, but saving energy of the whole route is 11.96%.
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Figure 3. Responses of optimal velocity profile and original velocity profile

Table 3. Results of energy consumption with/without energy optimal strategy, and fixed trip time

Stations Distance  Trip time Actual energy Optimal energy Energy saving
(m) (s) consumption (kWh) consumption (kWh) (%)
Cat Linh-La Thanh 931 88 8.31 7.50 9.75
La Thanh-Thai Ha 902 78 10.20 9.40 7.84
Thai Ha-Lang 1076 91 10.20 9.86 3.33
Lang- Thuong Dinh 1248 103 11.73 10.60 9.63
Thuong Dinh- Ring Road 3 1010 79 13.41 12.23 8.80
Ring Road 3-Phung Khoang 1480 104 16.75 15.82 5.55
Phung Khoang-Van Quan 1121 86 13.85 12.66 8.59
Van Quan - Ha Dong 1324 97 15.74 14.17 9.97
Ha Dong-La Khe 1110 84 14.30 13.18 7.83
La Khe-Van Khe 1428 101 16.75 15.53 7.28
Van Khe-Yen Nghia 1032 81 13.40 12.04 10.15
Total energy consumption 144.64 132.99 8.7
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Figure 5. Responses of optimal time profile and original time profile without fixed trip time

Table 4. Results of a comparison of energy consumption with/without energy optimal strategy and non-fixed

trip time
Stations Distance Original trip Actual energy Optimal trip Optimal energy Energy
(m) time (s) consumption (kWh) time (s) consumption (kWh)  saving (%)
Cat Linh-La Thanh 931 88 8.31 88.81 7.31 13.68
La Thanh-Thai Ha 902 78 10.20 78.83 9.08 12.33
Thai Ha-Lang 1076 91 10.20 91.85 9.60 6.25
Lang- Thuong Dinh 1248 103 11.73 103.82 10.37 13.11
Thuong Dinh- Ring 1010 79 13.41 79.8 11.78 13.84
Road 3
Ring Road 3-Phung 1480 104 16.75 104.85 15.44 8.48
Khoang
Phung Khoang-Van 1121 86 13.85 86.82 12.26 12.97
Quan
Van Quan - Ha Dong 1324 97 15.74 97.83 13.80 14.06
Ha Dong-La Khe 1110 84 14.30 84.77 12.77 11.98
La Khe-Van Khe 1428 101 16.75 101.86 15.15 10.56
Van Khe-Yen Nghia 1032 81 13.40 81.82 11.62 15.32
Total energy 144.64 129.18 11.96

consumption
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5.

CONCLUSION
Simulation results with data collected from Metro line Cat Linh-Ha Dong, Vietnam indicated that

applying the numerical-analytical method to calculate running time equal to demand time is easy when using
Pontryagin's maximum principle finds the optimal speed curve, and levels of energy saving (8.7%, and
11.96%). This research also has supported for designing the optimal speed profiles with the trip time suitable
for operation stages of metro lines being in the technical design phase.
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