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 This paper focuses on a common drawback in electromagnetic numerical 

computer aided design computer aided design (CAD) tools: high frequency 

structure simulator (HFSS), computer simulation technology (CST) and 

FEKO, where the excitation by using a wave-port below and close to the 

cutoff frequency has unreliable values for the reflection coefficient. An 

example for such problem is presented in the design of a dual horn antenna 

fed by two different waveguide sections. To overcome this numerical error in 

the results of these CAD tools, a tapered waveguide section is used in the 

simulation as an excitation mechanism to the feeding waveguide. The cross 

section of the input port at this tapered waveguide section is designed to have 

a cutoff frequency smaller than the lowest frequency under investigation for 

the original problem. Then, by extracting the effect of the tapered section from 

the obtained reflection coefficient, it would be possible to obtain the reflection 

coefficient of the original problem. 
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1. INTRODUCTION 

Electromagnetic numerical simulation computer aided design (CAD) tools like high frequency 

structure simulator (HFSS) [1], computer simulation technology (CST) [2] and FEKO [3] have critical roles in 

analysis and design of different antennas and microwave circuit configurations [4]–[13], [14]–[17]. The 

numerical techniques of these CAD tools like finite element method, finite difference method and method of 

moments are well investigated in literature [18]–[20]. However, these CAD tools are not open-source codes to 

enable their users to add or modify any feature to the available ones. This is the motivation to study the 

possibility of using the available capabilities of these CAD tools in different ways to simulate some problems 

which may not be suitable to be simulated by using conventional direct steps. As an example of these problems 

is the problem of using a wave-port below or close to its cutoff frequency.  

In these CAD tools, the wave-port is equivalent to a semi-infinite waveguide on the other side of the 

wave-port. This semi-infinite waveguide by default is excited by its dominant mode. In addition, higher order 

modes can also be included in simulation if they are required in the solution. From the analytical point of view, 

there is no wave propagation in the waveguide below its dominant cutoff frequency and subsequently the 

reflection coefficient at the wave-port below the cutoff frequency should be 0 dB [21]. However, from the 

results of different simulations, the authors noted that this condition is not valid for both HFSS, CST and 

FEKO. An example of a dual-band horn antenna [22], [23] fed by two different waveguides is presented in the 

Section 2 as an example on this problem. The problem of using wave-port analysis below and close to the 

cutoff frequency has a significant importance in simulating multi-band multi-fed antennas. It is also very 
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important in simulating artificial structures like epsilon-near-zero metamaterial which can be designed by a 

waveguide section operating near its cutoff frequency [24], [25].  

In this paper, an additional tapered waveguide section [26], [27] is used as an excitation to the original 

feeding waveguide. This tapered section is designed such that its feeding port would have a cutoff frequency 

much less than any frequency of interest in the required analysis. Thus, its wave-port is always above the cutoff 

in the proposed simulation. Then, this tapered section is simulated separately to extract its parameters. Finally, 

the parameters of the tapered section is extracted from the simulation results. By using this method, it would 

be possible to obtain the results for waveguide-excited structures below and close to the cutoff frequency. 

 

 

2. FORMULATION OF THE PROBLEM 

In this section we present an example of a dual-band horn antenna fed by using two different 

orthogonal waveguides as shown in Figure 1. This antenna is designed to be operating in K/Ka bands from  

20 to 22 GHz and from 33 to 35 GHz respectively. The length of the conical structure 𝐿1 = 35 𝑚𝑚, the radius 

of the radiating aperture is 𝑟 = 16.637 𝑚𝑚, and the radius of the lower feeding aperture is 𝑟𝑜 = 5 mm. This 

conical structure is connected to a short circuited cylindrical waveguide section of length 𝐿2 = 12 mm and a 

radius 𝑟𝑜 = 5 𝑚𝑚, respectively. The antenna is fed from this cylindrical waveguide section by using two 

orthogonal rectangular waveguide sections as shown in Figure 1. The waveguide section waveguide 1 (WG1) 

has a cross section dimensions 9 × 1.675 𝑚𝑚. These dimensions have a cutoff frequency for the dominant 

TE10 mode at 16.65 GHz. On the other hand, the waveguide section WG2 has a cross section dimensions  

6.228 × 1.87 𝑚𝑚. These dimensions have a cutoff frequency for the dominant TE10 mode at 24.2 GHz. 

This antenna configuration is simulated by using both HFSS and CST simulation tools. Two wave-

ports are used as excitations for the feeding rectangular waveguide sections. Figures 2 and 3 show the 

simulation results for the scattering parameter of this antenna configuration at the required two frequency bands 

by using both HFSS and CST. It can be noted that the performance of the WG1 which is designed to be the 

feeding waveguide section for the lower frequency band has normal conditions at lower band. In this case the 

reflection coefficient of WG1; 𝑆11; is less than 10 dB in the operating K band from 20 to 22 GHz as shown in 

Figure 2(a). On the other hand, it has a negligible transmission to WG2; 𝑆21; as shown in Figure 3(a), because 

the second waveguide section is blow the cutoff in this frequency band. The unconventional result in this case 

is that the reflection coefficient of WG2, which is below cutoff frequency at the lower band, has a very small 

reflection coefficient as shown in Figure 2(a). 

This notice introduces a question: If the excitation power from the wave-port 2 connected WG2 is not 

reflected and not transferred to port 1, where this power is dissipated? For such simple antenna configuration, 

it quite clear that the WG2 is below the cutoff frequency at the lower frequency band and the expected reflection 

coefficient should be 0 dB. At quite close to the cutoff frequency of WG2, the problem may need more 

justification and the reflection coefficient may not be exactly 0 dB. This was the motivation here to find a 

method to overcome this inconsistence. 

On the other hand, the simulation results of the upper frequency band, where both feeding waveguides 

are above cutoff, are consistent for both the reflection and transmission coefficients as shown in Figure 2(b) 

and Figure 3(b). The only note on the results of this upper frequency band is the high coupling between the 

two feeding ports. This is explained due to that both waveguides are above cutoff frequency in this case. This 

problem is solved for this antenna configuration by adding a low pass filter to WG1 to decouple the two feeding 

waveguides at the upper frequency band. This is a design problem, not a simulation problem. 

 

 

 
 

Figure 1. Geometry of a dual-band conical horn antenna fed by two different waveguides 
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(a) (b) 

 

Figure 2. Simulated reflection coefficient of the conical horn antenna feed by two rectangular waveguide 

ports (a) lower frequency band, (b) upper frequency band 

 

 

 
(a) (b) 

 

Figure 3. Simulated transmission coefficient of the conical horn antenna feed by two rectangular waveguide 

ports (a) lower frequency band and (b) upper frequency band 

 

 

As another check to this wave-port problem, we studied the scattering parameters of a straight 

waveguide section of the dimensions of WG2 with a length of 100 mm. The walls of the waveguide is assumed 

to be perfect electric conductor and the filling dielectric is vacuum to avoid any losses in the waveguide section. 

Figure 4 shows the reflection and transmission coefficients for this configuration. In addition to HFSS and 

CST, we used also FEKO in this simulation. It can be noted that the results of the transmission coefficient 

below the cutoff frequency, 𝑓𝑐 = 24.2 GHz, is consistent with the expected performance where it has a very 

small value. However, the reflection coefficient below the cutoff frequency should be around 0 dB which is 

not the case as shown in Figure 4(a). This result proves that the inconsistence in the simulation of the above 

dual-band horn antenna is due to the excitation of the feeding waveguide and is not related to the antenna 

configuration. On the other hand, the transmission coefficient is consistent below and above the cutoff 

frequency as shown in Figure 4(b). 
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(a) (b) 

 

Figure 4. S parameter of a straight waveguide section WG2 with dimensions 6.228×1.87×100 mm,  

(a) reflection coefficient and (b) transmission coefficient 

 

 

3. TAPERED WAVEGUIDE FEEDING STRUCTURE 

Based on the above results of the antenna configuration and the straight waveguide section, it can be 

concluded that the conventional wave-port model is not an adequate model below and close to its cutoff 

frequency. Thus, it would be required to use a wave-port with larger dimensions to have a cutoff frequency 

much lower than the lowest frequency of interest in the required analysis. This larger wave-port is not suitable 

to be used directly on the smaller aperture of the feeding waveguide. Thus, a tapered waveguide section which 

have an end with the larger dimensions and the other end with the dimensions of the cross section of the original 

feeding waveguide would be required to connect the larger wave port to the feeding waveguide. Figure 5 shows 

the geometry of the proposed tapered section. The tapering is assumed to be linear for simplicity. However, 

other configurations like exponential taper may have a better performance. The cross section at port 1 is 

assumed to be the same as WG2, 6.228×1.87 mm. On the other hand, the cross section at port 2 would have 

dimensions 18×1.87 mm. In this case the cutoff frequency of port 2 would be nearly one third the corresponding 

cutoff frequency of port 1. The length of the tapered section Lt is 40 mm. 

 

 

 
 

Figure 5. Geometry of tapered waveguide section 

 

 

To obtain the characteristics of this tapered section, two identical tapered sections are connected 

through their ports 1 and 1′ as shown in Figure 6. Then the excitation wave ports would be applied on the outer 

ports 2 and 2′. In this case the excitation wave ports have cutoff frequency around 8 GHz while the required 

analysis is above 17 GHz. Figure 7 shows the obtained reflection and transmission coefficients. It can be noted 

that the full transmission will be obtained above the cutoff frequency of port 1 which is 24.2 GHz. Also, below 

the cutoff frequency of port 1, the reflection coefficient is nearly 0 dB which is consistent with the normal 

performance. To extract the parameters of a single tapered section, the S-parameters of the two connected 

tapered sections are converted to ABCD matrix form [11]. Since both tapered sections are identical, the 

elements of the ABCDT matrix of a single tapered section can be extracted from the ABCD matrix of the two 

connected tapered section by solving the (1):  

 

[
𝐴𝑇 𝐵𝑇

𝐶𝑇 𝐷𝑇
] [

𝐷𝑇 𝐵𝑇

𝐶𝑇 𝐴𝑇
] = [

𝐴 𝐵
𝐶 𝐷

]   (1) 
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Figure 6. Geometry of two connected tapered sections 

 

 

 
 

Figure 7. Reflection and transmission coefficients of two connected tapered sections 

 

 

4. APPLICATION OF TAPERED WAVEGUIDE SECTION  

In this section, the proposed tapered section presented in Section 3 is added to the problem discussed 

in Section 2 to correct the simulation results below and close to the cutoff frequency of WG2. For the problem 

of the straight waveguide, two tapered sections are added to the two ends as shown in Figure 8. Figure 9 shows 

the resulting reflection and transmission coefficients of this configuration (in solid lines). It can be noted that 

below the cutoff frequency the reflection coefficient is nearly 0 dB as shown in Figure 9(a), while the 

transmission coefficient is nearly 0 dB above the cutoff frequency as shown in Figure 9(b). To extract the  

S-parameters of the waveguide section only, the obtained S-parameters of waveguide section with the two 

tapered sections is converted to ABCD matrix. Then by extracting the ABCD matrix of the two tapered section 

one can obtain the ABCD matrix of the waveguide only. Then, the ABCD matrix of the waveguide only is 

converted back to scattering matrix to obtain the reflection and transmission coefficients of the waveguide 

section only as shown in Figure 9 (in dashed lines). 

 

 

 
 

Figure 8. Geometry of a straight waveguide section with two tapered sections 

 

 

This result of the straight waveguide section shows the advantage of using the tapered section for the 

excitation to correct the simulation results below and close to the cutoff frequency of the waveguide section. 
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This configuration is also applied on the feeding waveguide WG2 of the horn antenna which is discussed in 

Section 2. By following similar steps as in the case of a straight waveguide, we obtained the results of the horn 

antenna after adding the tapered section at WG2 and extracting the parameters of this tapered section from the 

obtained results as shown in Figure 10. It can be noted that the reflection coefficient of Port 2 in this case is  

0 dB where it is below cutoff frequency as shown in Figure 10(a) while it is less than -10 dB above the cutoff 

frequency as shown in Figure 10(b). 

 

 

  
(a) (b) 

 

Figure 9. Coefficients (a) reflection and (b) transmission; (solid lines) with tapered sections, (dashed lines) 

without the tapered sections 

 

 

 
(a) (b) 

 

Figure 10. Simulated reflection coefficient of the conical horn antenna feed by two rectangular waveguide 

ports with TWG section at port 2` (a) Lower frequency band and (b) Upper frequency band 

 

 

5. CONCLUSION 

In this paper, we discussed a common problem in electromagnetic CAD tools like HFSS, CST and 

FEKO where the reflection coefficients of wave-ports close to and below their cutoff frequencies have 

unreasonable values. This problem is investigated in this paper on two examples; multiband horn antenna fed 

by two different rectangular waveguides and a straight waveguide section. To solve this problem, a waveguide 

tapered section is used as an excitation to the feeding waveguide where the feeding port of this tapered 

waveguide section has a cutoff frequency greater than the lowest frequency of interest in the simulation. The 

results of two tapered sections connected to each other are used to extract the parameters of a single tapered 

section. Then, this tapered section is added to the original problem under investigation to obtain the correct 

performance close to and below the cutoff frequency of the feeding waveguide. The parameters of the tapered 

section is then extracted from the results of the structure combined with the tapered section to obtain the results 

of the original structure separately. 
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