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 Economic growth with industrialization and urbanization lead to an extensive 
increase in power demand. It forced the utilities to add power generating 
facilities to cause the necessary demand-generation balance. The bulk power 
generating stations, mostly interconnected, with the penetration of distributed 
generation result in an enormous rise in the fault level of power networks. It 
necessitates for electrical utilities to control the fault current so that the 
existing switchgear can continue its services without up-gradation or 
replacement for reliable supply. The deployment of fault current limiter 
(FCL) at the distribution and transmission networks has been under 
investigation as a potential solution to the problem. A saturated core fault 
current limiter (SCFCL) technology is a smart, scalable, efficient, reliable, 
and commercially viable option to manage fault levels in existing and future 
MV/HV supply systems. This paper presents the comparative performance 
analysis of two single-core SCFCL topologies impressed with different core 
saturations. It has demonstrated that the single AC winding configuration 
needs more bias power for affecting the same current limiting performance 
with an acceptable steady-state voltage drop contribution. The fault state 
impedance has a transient nature, and the optimum bias selection is a critical 
design parameter in realizing the SCFCL applications.  
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1. INTRODUCTION  

The modern power systems across the world have undergone reforms with a tendency to separate 
the generation, transmission, and distribution entities. In an environment of decentralization, the utility 
handling the power network exercises no control over the locations as well as the scheduling of electricity 
generation. The dispersed generation is also the demand of the time as increased power demand can be met 
efficiently using the green energy resources coupled with the existing grid. The deployment of distributed 
generation (DG) can improve environmental pollution, defer the need for network expansions, reduce power 
losses, improve reliability and power quality [1]-[3]. The wind and solar generation are dominant renewable 
energy sources in the modern grids [4].  

The power system networks, due to the coupling of these independent power producers, become 
very complex and the power system stability, as well as security, has become an issue of crucial importance. 
The modern power system stability and security can be augmented with rapid fault control and segregation 
[5]-[7]. However, modern power networks are spread over a wide area and exposed to environmental 
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conditions and accidents, the chances of an unforeseen incident (faults) are inevitable. The fault effects are 
also then widespread and the high magnitude short circuit leads to severe thermal and mechanical stresses on 
the circuit components such as T & D lines, transformers, and protective gears.  

The applied protective gears, especially the circuit breaker, must be rated to handle the fault level 
and the higher the fault current the higher is the cost. The surging of mega power plants with an influx of the 
non-conventional dispersed generations particularly contributed to the high rise in fault level [8]. The fault 
currents approach or even exceed the limits of the short circuit handling capacity of the power network. The 
researchers, therefore, found considerable interest in the devices that can limit or control the ill effects of 
short circuit current [9], [10]. 

A fault current limiter is a device that can restrain extensive short circuit currents within the early 
instants of a fault. The successful implementation of the technology shall relieve the network hardware from 
the stresses. It leads to the longer service span of equipment with deferral of up-gradations or replacement. In 
the event of the new addition of the network, the application of FCL allows the use of equipment with lower 
specifications that may facilitate cost savings. The application of FCL in the network controls the 
contribution of subsystems to the short circuit problems. The reduction in fault current amplitudes also 
enables high system availability with parallel connection of generators and transformers, enhanced load-
bearing capacity of subsystems, reduction of voltage sags and flicker, reduction of harmonics. [11]. The FCL 
application area lies in the bus couplers, incoming feeders, or the outgoing feeders. 

The FCLs, based on whether the superconductor employed, are classified into two main technology 
groups as superconducting and non-superconducting as shown in Figure 1. The solid-state FCLs use power 
semiconductor switches and provide a very low impedance during steady-state operation with comparatively 
high power losses. However, these FCLs need ancillary electronics circuitry for fault detection and control, 
which results in delayed response and reaction to the fault [12]. Superconducting FCLs may be divided into 
two categories viz. quench type and non-quench type [13]. The quench type FCL relies on the transformation 
of the zero impedance state of a superconductor during steady-state operation to a significantly high 
impedance state during a fault condition. However, it also suffers from slow fault response and high recovery 
times, in addition to the costly superconductors with cryogenics for the application of these FCLs [14], [15]. 
The SCFCListhe non-quench type of FCLs. 

 
 

 
 

Figure 1. Classification of FCL technology 
 
 

The SCFCL essentially uses the nonlinear magnetic characteristics of a core to realize a variable 
inductance. The limiting action, passively, can be realized without any external trigger circuit. The SCFCL 
technology shares similar electromagnetic principles of electrical devices as in transformers and power 
inductors, and hence it is a compatible introduction in the network. It is rugged in construction and offers 
immediate action and recovery with multi-shot ability. Since the SCFCL offers an inductive impedance 
during the fault, the fault energy remains stored in the magnetic field, and most of it returns to the system that 
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enables efficient operation of the device. The SCFCL, being non-semiconductor based technology, is 
especially suitable for applications in medium and high voltage power distribution and transmission grids. It 
offers high impedance under transient conditions to enable the current limitation, and acts transparent to the 
system under steady-state. The instantaneous reaction and recovery, consecutive faults control, and high 
current clipping ability during transient operation (even for consecutive faults) are the strengths of the 
SCFCL. Although it possesses inherent advantages, the original double core configuration of SCFCL had a 
costly solution due to the substantial size and material requirements for its core and the windings. The AC-
DC coupling during the transient operation, large size, weight, volume, and cost have been challenges before 
commercialization of this topology. Recently, the advent of high-temperature superconductors regained the 
focus in the development of SCFCL and various small scale prototypes have been suggested in the literature 
[16]-[18]. The concept in its basic form [19] has seen many modifications and studies while following the 
developments. The improved characteristics of novel SCFCL can easily be tuned to the general and specific 
grid requirements by adjusting the physical parameters of the magnetic core structure, AC and DC winding 
parameters and by controlling the DC bias current [20], [21]. The work addressed here belongs to the non-
superconducting, novel SCFCL. 

In this paper, the two single-core novel SCFCL configurations have been examined experimentally 
and compared under similar operating environments. Since the SCFCL exploits the non-linear magnetic 
properties of the iron-core for affecting the current limiting action, the effect of changing the core magnetic 
states had investigated under four different DC bias levels, viz. 0A-3A with a step of 1A. The transient 
performance of the device during the faulted operation had also investigated. 
 
 
2. SCFCL: GENERAL PRINCIPLES AND WORKING 

The conventional dual-core configuration [19], [22] consist of three main parts, viz. magnetic cores, 
DC winding(LV), and the AC windings(HV), as shown in Figure 2. The iron cores have biased with a low 
voltage DC coil powered by a separate DC power source. It necessarily keeps them saturated during normal 
operations. For the clipping of each half-cycle of the current wave, two iron-cores have been used. In 
addition to full-cycle clipping, the induced emf (transformer action) at the DC coil during normal, steady-
state operation is counter-balanced by the double core arrangement. The AC windings are connected 
differentially in series with the power line to be protected, producing anti-parallel magnetic fields. 

During the steady-state operation, to force the iron cores in a deep saturation state, the DC bias 
current is kept injected in the DC coil. Therefore, it results in the low permeability of the magnetic core 
leading to very little impedance to the AC windings. The magnetic-core, in this case, works in the saturation 
region of the magnetization curve. During the faulted operation of the system, the limiting action has enabled 
to control of the short-circuit. In each half-cycle of the short-circuit current, high under the limiting state 
operation, the iron cores are, alternately, forced out of saturation. The operating point of the magnetic-core 
shifts in the linear (unsaturated) region of the B-H curve. Thus, a high inductance to the AC coil realized by 
the increased permeability controls the evolution of the short circuit current in the line. It is a passive 
triggering of the reactive impedance.  

 
 

 
 

Figure 2. Dual core configuration of SCFCL 
 
 
For the transperentsteady-state operation, the voltage drop, hence insertion impedance is required as 

minimum as possible. The necessary DC magnetizing force required to push the cores in the saturation 
during the non-limiting operation is given by, 
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      2 ( 2   2  )DC DC DCN I H w h= × +  (1) 
 

where NDC: number(total) of DC turns, IDC: DC(bias) coil current, HDC: magnetic field intensity generated by 
the bias(DC) current, w: mean width of the core, and h: mean height of the core. In order to realize the 
transparent operation, in this case, the selected bias should be such that, 
 

DC SATH   H   (2) 
 

where, HSAT is the magnetic field intensity at saturation of the iron-core. The impedance under the non-
limiting state, an insertion impedance, may be approximately calculated [23] as, 
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where, ω: angular frequency, µ0: the permeability of the core, NAC: number of AC coil turns, AC: the cross 
sectional area, lAC: the effective core length under AC coil(height of the AC coil), β: the correction factor to 
account for the actual core geometry. 

Under the fault (transient) condition, the magnetic cores are taken out of saturation alternately in 
each half-cycle, permeability increases resulting in high inductance to the coil that limits the fault current. In 
this case, the high magnitude short-circuits current results in comparatively large, de-magnetizing force at the 
core (alternatively), in each half cycle of the AC wave. For affecting the effective current limiting, the 
demagnetizing force is required [24] to be such that, 

 
( ) ( )ˆ        -   DC SAT AC F DC SATH H l N I H H l+ ≥ ≥     (4) 
 

where,  : the mean length of the core, ˆFI : is the peak value of the short-circuit current. The iron cores, 
during the limiting state operation, alternately forced out of saturation. The de-saturated core offers high 
permeability resulting to high impedance for the affiliating AC coil, which dominates the total fault 
impedance realized by the device. The application of electromagnetic principles may be used to calculate the 
approximate fault impedance [23] given as, 
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where, BSAT: saturation flux density of the iron-core, and IF: the rms value of the limited short-circuit current. 
The DC bias selection is very crucial for the desired SCFCL operation. If the bias applied to locate 

the operating point far away from the knee(on the right) of the magnetization curve, the magnetic state of 
even the differentiating fields (desaturating) core may still be in the saturation, and may not attend the high 
impedance faults, where the short-circuit currents are relatively lower. Whereas in the case of operating point 
location in the extra-shallow saturation region, the magnetic state of the same core(where the differential 
fields are acting) may lie on the linear region of the magnetization, which may lead to the high impedance 
state even during the non-limiting SCFCL operation. These two operating extremities demand the proper bias 
application that will ensure the acquirement of high impedance(lower currents) faults besides adequately low 
impedance(high transparency) running during the healthy state of the system. 
 
 
3. SINGLE CORE TOPOLOGIES 

Many feasible configurations, with the same principle of inherent impedance change, have been 
proposed in the literature. These configurations mainly differ in the bias designs, core shape, and AC circuit 
arrangements, aimed at dealing with the challenges in terms of large volume, cost, and the induced voltage in 
DC bias due to AC-DC coupling [25]. Furthermore, the use of superconductors has also been a barrier before 
commercialization. The following two single-core topologies, which can alleviate these issues, are the subject 
matter of the work presented in this paper. 
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3.1.  Single AC winding model 
The novel topology, as shown in Figure 3(a), has a DC bias coil wound over one of the short legs of 

the strongly elongated magnetic core, and the AC coil over the complete core encircling both the longer legs. 
The design provides a closed magnetic path for the DC flux, and it acts as an open core for the AC flux. As 
the mean length of magnetic circuit has reduced, it can be forced to the saturated mode by moderate DC bias 
magnetizing force. The AC flux supports the DC flux in one of the legs and counteracts the DC flux in the 
other longer limb of the core. In steady-state operation, the magnetic core is driven to saturation by the DC 
bias. The steady-state AC load current is unable to cause desaturation of the iron-core resulting in the low 
inductance to the AC coils and transparent to the system. In a faulty case, a large current alternately 
desaturates the core segments carrying counteracting AC-DC flux. Hence, the high permeability leads to 
increased inductance to the AC coil initiating the limiting action. This design has the advantage of only one 
magnetic core and one AC coil for each phase. The novel design reduces iron-core volume, weight, cost, and 
enable it to be adaptable to the specific service requirements. Also, the orthogonal placement of the winding 
reduces the AC-DC coupling and consequent induced emf across the DC circuit [26]. 

 
3.2.  Double AC winding model 

The other modified design of the single iron-core configuration, as shown in Figure 3(b), has two 
DC bias coils and two AC coils. The basic principles of an open AC magnetic circuit and an orthogonal 
placement of AC and DC coils remain unchanged [21]. The two DC coils are wound over the shorter limbs 
while the two AC coils are on the long limbs. The DC flux travels through the complete core section and 
follows the closed magnetic path through the core. The AC coils are differentially coupled and resulting AC 
fluxes complete their path through air behaving like an open (AC) magnetic circuit. The AC fluxes reverse 
their direction with each alternate half cycle of the AC wave. The operating principle, as described in 
subsection 3.1, remains the same. 

 
 

  
(a) (b) 

 
Figure 3. Single core topologies; (a) single AC winding model, (b) double AC winding model 

 
 

4. TEST SYSTEM DISCRIPTION 
The similar elongated cores of high-grade M4 electrical steel material have been used for the 

SCFCL models with the physical parameters as described in Table 1. A simple power system with a single-
phase autotransformer (0-250V) as a source and a lamp bank as a load (resistive) has been realized in the 
laboratory. A controlled DC source (0-10A) has biased the core. The worked-out digital logic has enabled the 
contactor to realize the controlled short circuit (7 cycles) across the load. The different faults are applied with 
the variations in the DC bias. A 50 MHz, dSpaceMicroLab box is used to capture the fault events data with a 
sampling frequency of 10 kHz. The faults at the operating voltage of 100 V (RMS) were executed across the 
load. The low voltage is selected looking at the safety of the wiring and pieces of equipment. The CT/PTs of 
appropriate specifications scaled-down the parameters for measurements in the simple power system. A 
picture of an actual experimental setup is shown in Figure 4(a). 

 
 

Table 1. Physical parameters of the test models (core dimensions in mm) 
Leg width Leg depth Mean width Mean height Area of 

C.S.( mm2) 
Mean Length Turns DC(total) Turns AC(total) 

16 30 54 138 480 384 140 300 
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The two single-core configurations of the SCFCL have been implemented as laboratory test models. 
The two models use the same core material, dimensions, and the quantity of copper material employed for 
the DC and AC windings. The only difference lies in the arrangements of DC and AC winding as depicted in 
the Figure 3. The separate experiment is carried out to study the magnetic behaviour of an iron core, and the 
experimentally plotted B-H curve is shown in Figure 4(b). The B-H curve data is also fitted by least square 
approximations, and the analytical model is given by, 

 
b

B = aH  + c          (6) 
 

b-1dB
μ =  =  abHdH  (7) 

 
where the coefficients (using cftool in MATLAB) are given by a=-4.452, b=-0.2067 and c=3.724. As the 
current limiting performance is largely affected by the magnetic behavior of the iron-core, the characteristics 
of the iron-core were studied first. The analytically calculated DC bias of 1A to force core in the saturation 
had validated from the plotted B-H curve. It leads the decision on the values of bias current, to note the effect 
of working magnetic states of the iron-core. The experimental findings on the current limiting performance 
are discussed in the next section. 

 
 

 

 
 

 
(a) (b) 

 
Figure 4. A picture of; (a) an experimental setup, (b) B-H curve for the core material 

 
 

5. RESULTS AND DISCUSSION 
5.1.  The current reduction and insertion drop 

Initially, the faults are realized without FCL in the circuit. The short circuit current (without FCL) 
has a maximum peak of 119A, the steady-state peak value of 111, and the rms measured current of 77A. It 
has significantly reduced by the application of SCFCL models. Figure 5 shows the prospective short circuit 
current superimposed with the controlled current for the double and the single AC winding models. 

 
 

 
(a) 

 
(b) 

 
Figure 5. The prospective and limited currents; (a) double AC winding model, (b) single AC winding model 
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The zoomed sections of the controlled currents are shown in Figure 6. It has been noticed that, in 
both cases, the controlled current peak magnitudes have marginally increased with the increasing bias. The 
quantitative representation of current reduction is expressed in terms of current reduction rates [10], as 
defined in (8)-(10), 
 
 

 
(a) 

 
(b) 

 
Figure 6. The zoomed limited currents; (a) double AC winding model, (b) single AC winding model 

 
 

I - Ip cmax maxδ =max Ipmax
 (8) 

 
Ip   -  Icss ssδ  = ss Iss

 (9) 

   
Ip  - Icrms rmsδ  = rms Iprms

  (10) 

 
where, Ip , Ip  and Ipmax ss rms  are the maximum peak, the steady-state peak, and the rms current of 
prospective fault current and Ic , Ic  and Icmax ss rms  are that of controlled current respectively. The measured 
values of current reduction rates for the double AC winding model and the single AC winding model with the 
voltage drop contributions in the system are mentioned in Table 2. 

 
 

Table 2. The current reduction rates and the insertion drops 
DC 

bias(A) 
% Current reduction rates % voltage 

drop max-peak steady-state peak rms 
Double AC winding model 

0 66.1 66.65 68.04 11.49 
1 65.81 63.73 66.45 4.31 
2 65.54 63.38 66.11 3.56 
3 64.93 63.08 65.7 3.08 

Single AC winding model 
0 85.27 86.77 87.25 18.22 
1 83.18 85.78 86.76 15.81 
2 83.12 84.66 85.6 12.50 
3 83 84.56 85.49 12.38 

 
 
The first peak, the steady-state, and the rms current reduction rates, in both cases of the models, 

were found to be decreasing with the increasing level of the DC bias. It has been minimum for maximum 
applied bias and vice-versa. It is because the increase in bias level shifts the operating point towards the right 
on the magnetization curve. The net demagnetizing force, a resultant of DC and counteracting AC field, then 
available to bring the core operation towards linearity reduces. While the operating point progresses towards 
the right, the value of the working permeability decreases, and the resulting impedance offered by the device 
decreases.  

The unbiased core operation (DC bias of 0A) has shown maximum current reduction at the cost of 
objectionable voltage drop under pre-fault operation (non-limiting state) for both the double and single AC 
winding models. The substantial voltage drop contributions, in this case, reveals the linear region (below the 
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knee point) operation of the device under its nonlimiting state. Since the permeability of the core is high in 
this region, it results in a high impedance to the AC coils and subsequent higher voltage drop. The maximum, 
and discouraging values of voltage drop (0A bias) for both the models expose the normal-reactor operation of 
the device. It is an impractical operating condition, and against the working principle of the device, however, 
useful to compare the performance with the other cases of bias. 

The current reduction rates in the case of the double AC winding model are marginally varying from 
the bias level of 1A. Also, the percent voltage drop under normal conditions (insertion voltage drop) does not 
vary remarkably with the higher levels of bias. For the double AC winding model, the operation at 1ADC 
has, therefore, confirmed the core saturation under normal operation where the voltage drop is acclaimed as 
4.31%, a significant change from 11.49% at 0A. For all the other higher biasing, the voltage drop is, also, 
seen to be reducing insignificantly at the cost of minor curtailments in current clipping. This demonstrates the 
excess excitation of the core does not turn out significant performance improvement, and the optimum 
selection of bias is an influential consideration while designing the SCFCL system. 

In the case of the single AC winding model, though the current reduction rates are acclaimed 
significantly on the higher side, the insertion drops are unacceptably high, more than 12% in all the cases of 
the bias. This demonstrates the shallow saturation region (around the knee point region) operation of the core 
even beyond the bias of 1ADC. The graphical comparison of insertion drops for both models is shown in 
Figure 7. The single AC winding model hence appeals more bias compared with the double AC winding 
model for affecting the identical performance. As bias level increases, the insertion drop in the single AC 
winding model also decreases, indicating shifting of operating point towards the nonlinear region of the 
magnetization curve. Since the current reduction is to be maximized and insertion drop to be minimized for 
the efficient operation of the FCL, there must be a trade-off while designing the bias.  

 
 

 
 

Figure 7. The insertion voltage drop 
 
 

5.2.  The fault to pre-fault impedance ratio 
The fault to pre-fault impedance ratio is of critical importance in the current limiting process of the 

SCFCL. It is desired to have as large as possible the fault impedance under limiting state for effective current 
limitation, and the pre-fault impedance as small as possible for affecting the lowest possible voltage drop in 
the system. The ratio of fault to pre-fault impedance for both of the models is given in Table 3. The 
comparative variations in the impedance ratio with bias are graphically plotted in Figure 8. 

It has been noted that both the pre-fault and fault impedance decreases with the increasing bias. 
However, the rate of reduction of pre-fault impedance dominates that of fault impedance, and hence the 
resulting ratio increases. The changes in the impedances with bias in the case of the single AC winding 
model were found to be marginal as against noticeable in the double AC winding model. However, the take-
off of a fault by the device is not smooth but associated with transients. The nature of the impedance during 
the pre-fault, fault, and transient conditions (zero degrees fault inception on voltage wave) is shown in  
Figure 9. 

 
 

Table 3. The fault to pre-fault impedance ratio 
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Figure 8. Fault to pre-fault impedance ratio 
 
 

 
(a) 

 
(b) 

 
Figure 9. Impedance during the pre-fault, fault, and transient conditions; (a) double AC winding model,  

(b) single AC winding model 
 
 

In the case of a double AC winding model, the unbiased operation has offered a significant steady-
state impedance (above 6 Ω). The high impedance value had demonstrated the non-saturated core operation. 
For the bias of 1A and above, the steady-state impedance dropped to lower magnitudes and was decreasing as 
the bias level increases. The change above 1A DC bias is very marginal. The extensively high steady-state 
impedance values in the case of a single AC winding model had measured for all the designated DC bias. It 
also validates the more demand for the DC bias to force the core in the saturation region. The steady-state 
impedance affects the voltage drop contribution of the device and hence desired to be as minimum as 
possible. The higher values of the voltage drops in the single AC winding model are evident as recorded in 
Table 2. Also, as can be seen in Figure 7, the performance of the double AC winding model in terms of the 
voltage drop has been recorded much better compared with that of the single AC winding model.  

The performance in terms of the asymmetry (transient) of the limited current waveform is also 
analyzed. The percentage rise from the steady-state peak to the maximum-peak of the controlled current has 
given in Table 4. The higher values of the overshoots (DC component) in the short-circuit current handled by 
the single AC winding model have been noted. The DC component may be seen as an offset, and its 
magnitude is dependent upon the fault inception in addition to the system X/R ratio. It results in a higher 
instantaneous current than the steady-state short circuit current. The rated short-circuit breaking current is the 
highest value of current that the circuit breaker must be capable of breaking at its rated voltage. It is 
characterized by the rms value of its AC component and the aperiodic DC component. The level of the peak 
current before the interruption is the most significant parameter controlling the breaker’s ability to clear 
faults. The longer and higher the dc offset value at the time of contact separation, the harder it will be for the 
breaker to interrupt the current. Hence, the fault control with the single AC winding model may credit a 
comparatively higher burden on the circuit breaker recruited for handing of the fault. 
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6. CONCLUSION  
It was evident from the magnetization characteristics that the injected DC bias controls the coil 

impedance, more the DC bias lower is the impedance to the AC coils. The magnetization curve plotted 
experimentally has validated the analytical calculations which, enabled the decision to select the bias levels. 
The 0A bias iron-core operation, although an unrealistic operating condition, was useful to compare and 
contrast the other applied biasing levels. 

The two test models have exhibited the proof-of-the concept, though the performances under 
identical operating conditions are different. The current clipping of more than 65% had demonstrated by 
these test models. However, the voltage drop contributions in the case of the double AC winding model is 
well below the general statutory limits at and above the DC bias of 1A. For the single AC winding model, the 
voltage drop contributions are exceedingly high and are unacceptable. It reveals the need for comparatively 
more DC bias for a single AC winding model.  

The performance in terms of current reduction, and the voltage drop, for the double AC winding 
model above 1 A DC bias, generated trivial improvements. It exposes that the under biasing of the core 
contributes to the higher voltage drop, and the over biasing, in addition to possible increased steady-state 
losses, may result in marginal performance improvements. Also, the fault to pre-fault impedance ratio 
decreases with the bias as the decrease in the pre-fault impedance (rate) is more with the bias. It is due to the 
shifting of the iron-core operating point towards the right on the saturation curve with the DC bias. And the 
larger component of the de-magnetizing AC force is compromised by the then applied bias.  

The asymmetry in the transient impedance decreases with an increasing bias for both the models. 
The higher values of the overshoots (DC components) in the short-circuit current handled by the single AC 
winding model have been noted, which may recruit more burden on the subsequent circuit breaker taking the 
fault. The future work includes development of design methodology and its validation with the commercial 
design tool. 
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