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 Wireless networks are currently used in a wide range of healthcare, military, 

or environmental applications. Wireless networks contain many nodes and 

sensors that have many limitations, including limited power, limited 

processing, and narrow range. Therefore, determining the coordinates of the 

location of a node of the unknown location at a low cost and a limited 

treatment is one of the most important challenges facing this field. There are 

many meta-heuristic algorithms that help in identifying unknown nodes for 

some known nodes. In this manuscript, hybrid metaheuristic optimization 

algorithms such as grey wolf optimization and salp swarm algorithm are 

used to solve localization problem of internet of things (IoT) sensors. 

Several experiments are conducted on every meta-heuristic optimization 

algorithm to compare them with the proposed method. The proposed 

algorithm achieved high accuracy with low error rate (0.001) and low power 

consumption. 
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1. INTRODUCTION 

The internet of things (IoT) depends on powerful technologies such as wireless sensor networks 

(WSN) and Radio-frequency identification (RFID), which have changed the current world in which we live 

in conjunction with the tremendous development in sensor technology and cloud computing [1]-[3]. This 

development led to some problems in identifying remote sensing areas and linking them together. There are 

also other challenges, such as providing a safe environment for this type of wireless network, and there is 

another challenge in how to create a coordinated and synchronous link between different sensing means that 

perform the same task. You can learn how to create an ontology to link data and important points that 

perform the same task through research [4], [5]. 

WSNs are small network nodes that record their surroundings collectively. WSNs are used in 

several applications, such as weather, location search, location, hygiene, home self-regulation, and 

transportation control. The sensor system contains a sensor segment, a conversion segment, and a power sector. 

There are various types of sensor nodes. The primary type is the Prospector, which handles as Calculator. The 

second type is thermal prospectors. The final third type is some of the things that are related to feelings [6], [7].  

Localization is a significant problem in WSN. The positioning of a particular node position is 

defined as a localization dilemma. In WSN, there will be many unlocalized nodes, densely packed in places 

that may not be identified. In addition, the large number of devices in the IoT leads to problems with power 
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consumption. In addition, the internet of things system is complex and dynamic. Therefore, many algorithms 

of the international system have been developed to account for such complex activities involving simple people.  

The global positioning system (GPS) can be used to locate the sensor nodes. The base station is 

listening to GPS to find the coordinates of the sensor. But this method is expensive. An alternative approach 

is communicating and listening beacon nodes [6]. In general, localization algorithms that are not affected by 

GPS changes can be used in band-dependent and band-free authorizations. In distance-dependent localization 

algorithms, a point-to-point distance setting or an angular line between sensor nodes is used. Under these 

circumstances, the sensor nodes' settings are given with the help of a triple anchor. In contrast to area switch 

location algorithms, domain-free location algorithms do not remove any information required to belong to 

unknown nodes. 

In the previous related works, combinations of metaheuristic methods have been utilized to resolve 

the localization dilemma in WSNs. Various optimization algorithms in wireless sensor networks (WSN) such 

as practical swarm optimization (PSO), salp swarm algorithm (SSA), butterfly optimization algorithm 

(BOA), grey wolf optimization (GWO), bacterial foraging algorithm (BFA), artificial bee colony algorithm 

(ABC), H-best particle swarm optimization (HPSO), biogeography-based optimization (BBO), genetic 

algorithm (GA), and the artificial bee colony (ABC) are used to solve the localization problem. The 

document's main contribution is to conduct several experiments using hybrid meta-heuristic optimization 

algorithms to solve the localization problem in WSNs. Results were analyzed using many meta-heuristic 

algorithms according to performance, speed, and cost. These contributions will be summarized as follows: i) 

use hybrid meta-heuristic optimization algorithms to solve the localization problem. ii) solve power 

limitation in IoT sensors by enhancing meta-heuristic optimization algorithm, iii) conduct several 

experiments to prove the efficiency of the system used, iv) make a comparison between related works and 

proposed method. Table 1 represent some of the related works. 

The remaining parts of this manuscript are designed as follows: section 2 provides a brief 

explanation of the various meta-heuristic algorithms. Section 3 introduces the research method and the 

proposed algorithm to solve the localization problem using a hybrid of meta-heuristic algorithms. Section 4 

covers the implementation of experiments and the discussion of the results. Finally, Section 5 represent the 

conclusion. 

 

 

Table 1. Literature review of some related works 
Ref. Year Metaheuristic algorithm Localization technique Mean localize error 

[8] 2009 PSO and BFA  Anchor based-Range based PSO: 0.3 

BFA: 0.2 

[9] 2011 PSO and ABC Anchor based-Range based PSO: 25.3 
ABC: 34.1 

[10] 2011 DV distance and PSO Anchor based-Range based SAL: 21% 

TSA: 14% 
[11] 2012 PSO and HSPO Anchor based-Range based PSO: 0.184 

HPSO: 0.138 

[12] 2012 PSO Mobile Anchor Broadcasts Too many Results 
[13] 2012 Genetic and ANN Anchor based-Range based RMSE is 0.41 meters 

[14] 2012 Adaptive PSO Anchor based-Range based PSO DV-HOP: 0.38 

[15] 2013 BBO and PSO Anchor based-Range based PSO: 0.33 
BBO: 0.52 

[16] 2014 PSO and Binary PSO Anchor based-Range based PSO: 0.109 

BPSO: 0.122 

[17] 2014 DV-hop based on Genetic Algorithm Anchor based-Range based DV-HOP: 8.8% 

GADV: 6.5% 

[18] 2015 PSO, Genetic and Firefly Algorithm (FA) Anchor based-Range based PSO: 0.1 
GA: 0.4 

FA: 0.8 

[19] 2017 BOA and PSO Anchor based-Range based BOA: 0.21 
PSO: 0.78 

[20] 2017 PSO and GWO Anchor based-Range based PSO: 0.30 

GWO: 0.658 
[21] 2019 PSO and ABC Anchor based-Range based Too many results 

 

 

2. METAHEURISTIC ALGORITHMS 

This article will create a new algorithm that addresses the localization problem of different sensors 

in the wireless sensor network using anchors nodes by combining several algorithms, namely PSO, GWO, 

and SSA. Therefore, the pseudocodes for each algorithm are described in this section [22]. 

 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 1, February 2022: 660-668 

662 

2.1.  Practical swarm optimization (PSO) 

PSO is a computational approach that enhances a research problem by repeatedly attempting at a 

given scale of quality to develop a candidate's solution concerning. It solves a difficulty by having a set of 

particles and moving these particles in the search space according to easy mathematical equations on particle 

position and velocity. Each particle's motion is influenced by its most prominent local location but is also 

directed towards the best-known places in the search space, which are updated as other particles found more 

suitable positions. The 𝑖th particle in the swarm can be denoted as 𝑝𝑖 = [𝑝𝑖1 , 𝑝𝑖2, … , 𝑝𝑖𝑑] and its speed can be 

denoted by vector 𝑆𝑖 = [𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑑]. Let the best location ever visited in the past by the ith particle be 

denoted by 𝐿𝑖 = [𝐿𝑖1, 𝐿𝑖2, … , 𝐿𝑖𝑑]. After many times, the whole swarm is partitioned into more miniature sub-

swarm, and each sub-swarm has its own local best particle. Algorithm 1 introduces the pseudo code of PSO. 
 

Algorithm 1. Pseudocode of PSO 
1: Function Start 

2:    Generate initial population of m particles  

3:    While (t  >Max_Gerneration) 

4:         Foreach m 

5:               measure fitness value 

6:               best_fitness = fBest 

7:               Current value = new_fBest 

8:         End Foreach_loop 

9:         Select m with fBest 

10:       Assign value = gBest 

11:       For each particle 

12:             Measure velocity  

13:             Set Position  

14:       End For_loop 

15:   End While_Loop 

 

2.2.  Butterfly optimization algorithm (BOA) 

Arora and Anand [23] produced a metaheuristic algorithm based on a mathematical model, inspired 

by nature, to find food for butterflies, and this is a good strategy for research, which is BOA. Butterflies use 

sensory receptors to determine the source of their food/nectar. These sensory receptors, also called 

chemoreceptors, can perceive smells and are scattered throughout a butterfly's body. Algorithm 2 introduces 

the pseudo-code for BOA. 
 

Algorithm 2. Pseudocode of BOA 
1: Function Start 

2: PoB = population of Butterflies  

3: Set t := 0 (counter initialization) 

4: While t  >maximum counter do 
5:       Foreach x in PoB do 

6:             measure fitness function for x  

7:       End Foreach 

8:       Find best x 

9:      Foreach x in PoB do 

10:        n = random value from [0,1] 

11:         If n > t then 
                     g = best solution 

12:                Move towards g 

13:         else 

14:                Move randomly 

15:         End If 

16:         Evaluate the fitness function 

17:         Assign and Update g 

18:    End Foreach 

19: End While 

20: Return g 

21: End Function 

 

2.3.  Grey wolf optimization (GWO) 

Mirjalili et al. [24] was developed a new algorithm also inspired by nature, but this algorithm 

focuses on gray wolves' social behavior and this method is called GWO. The GWO method assumes the 

management authority and hunting mechanism of gray wolves in nature. Four gray wolves, such as alpha, 

beta, delta, and omega are adopted to assume leadership authority. Gray wolves remain in combinations of 5-

12 wolves. α, and are four gray wolf classes that follow a rigid common hierarchy. α is the authoritative wolf 

between wolves who perform various decisions, attended by other yielding gray wolves. During the hunting 

manner, the wolves can invest their victim in a way that can be mathematically represented as (1), (2): 
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�⃗⃗� = |�⃗� . 𝑋𝑝
⃗⃗⃗⃗ − 𝑋(𝐿)

⃗⃗ ⃗⃗ ⃗⃗  | (1) 

 

𝑋(𝐿+1)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = |𝑋𝑝(𝐿)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − �⃗⃗� . �⃗⃗� |  (2) 

 

The vectors coefficient named A  and C  can be demonstrated as (3), (4): 

 

�⃗⃗� = | 𝑟𝑎𝑛𝑑1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . 2�⃗� − �⃗�  | (3) 

 

�⃗� = 2 𝑟𝑎𝑛𝑑2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    (4) 

 

2.4.  Salp swarm algorithm (SSA) 

Mirjalili et al. [25] proposed an algorithm inspired by the natural marine environment, called salp, to 

solve the improvement problems with single or multiple goals. This work presents a new optimization 

algorithm called the salp swarm algorithm (SSA) and the salp swarm multipurpose algorithm (MSSA), which 

breeds crowds when navigating and foraging in the ocean. These two algorithms are examined on numerous 

numerical optimization functions to control and confirm their effective operations in determining optimal 

solutions to optimization difficulties. Figure 1 represents the SSA flowchart.  

 

 

 
 

Figure 1. Flow chart of SSA 

 

 

The mathematical function results show that the SSA algorithm can efficiently optimize the first 

random solutions and concentrate on the better. To find out the leader's position, we suggest (5), and it can 

also determine and update the leader's position [25]: 

 

𝑥𝑗
1 = {

𝐹𝑗 + 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗)          𝑐3 ≥ 0

𝐹𝑗 − 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗)          𝑐3 < 0
 (5) 
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where 𝑥𝑗
1 shows the position of the first salp (leader) and 𝑐1, 𝑐2, and 𝑐3 are random numbers. As shown in (5) 

shows that the leader only updates its position with respect to the food source.  

 

𝑐1 = 2𝑒
− (

4𝑙

𝐿
)
2

   (6) 

 

Where L = max of iterations.  

 

𝑥𝑗
𝑖 =

1

2
𝑎 𝑡2 + 𝑣0𝑡 (7) 

 

Considering 𝑣0 = 0, this equation can be expressed as (8): 

 

𝑥𝑗
𝑖 =

1

2
 (𝑥𝑗

𝑖 + 𝑥𝑗
𝑖−1) (8) 

 

 

3. PROPOSED METHOD 

Our method's principal objective is locating target IoT sensor nodes using nature-inspired methods 

such as GWO, and SSA. Also, we need to estimate the greatest density of target nodes using precise 

information about anchor or beacon nodes' position. The proposed algorithms are produced in algorithm 3 

and algorithm 4, respectively. 

 

Algorithm 3. Hybrid method (SSA and GWO) 
Input: itmax, GWO population X, SSA 

population Y, Size M, learning factors 

C1,C2 

Output: optimal solution 

1: Function Start 

2: for i=1 : M 

3:     for =1 : R 

4:          initialize SSA population Y 

5:          compute fitness for each agent 

6:          chaotic sequence Generation 

7:      End for (j) 

8: End for (i) 

9: for t = 1 : itmax 

10:for i=1 : M 

11:        for j=1 : R 

12:           compute 𝒙𝒋
𝟏, 𝑫𝜶

⃗⃗ ⃗⃗  ⃗, 𝑫𝜷
⃗⃗ ⃗⃗  ⃗, 𝑫𝜹

⃗⃗⃗⃗  ⃗ 

13:           compute 𝒘𝟏,𝒘𝟐,𝒘𝟑 

14:           compute 𝒙𝒊𝒃𝒆𝒔𝒕 
15:           update position and velocity  

16:         End for (j) 

17: End for (i) 

18: Compute value of fitness function and     

19: Update values of 𝜶, 𝜷, 𝜹 
 

Algorithm 4. Proposed method 
Input: Unknown Nodes, Anchor Nodes and 

Communication Range (R) 

Output: Localized Nodes and Error Rates 

1: Procedure Start 

2: Randomly Initialize target nodes with  

    unknown position  

3: Randomly Initialize anchor nodes with      

    known position  

4: For each anchor node (i) with R do 

5:   Calculate the distance from target 

     node 

     (x,y)and anchor nodes within R    

𝒅𝒊 = √(𝒙 − 𝒙𝒊)
𝟐 + (𝒚 − 𝒚𝒊)

𝟐 

6:   Calculate Objective Function 

          𝒇(𝒙, 𝒚) = 𝒎𝒊𝒏∑ (√(𝒙 − 𝒙𝒊)
𝟐 + (𝒚 − 𝒚𝒊)

𝟐)𝟐𝑴
𝒊=𝟏  

7:   Calculate Localization Error 

         𝑬𝒍 = 
𝟏

𝑵𝒍
∑ √(𝒙𝒊 − 𝑿𝒊)

𝟐 + (𝒚𝒊 − 𝒀𝒊)
𝟐𝒍

𝒊=𝟏  

8:   If all Target Node get localized 

9:           Break 

10:    Else 

11:        Continue  

12:End For 
 

 

 

4. RESULTS AND DISCUSSION 

4.1. Environmental parameters 

All the measurements of experiments for the three algorithms (PSO, BOA, and proposed algorithm) 

are implemented using R2019b version of MATLAB on a platform of Windows 10 operating system, Intel 

Core i7 CPU, and RAM 16 GB. The factors’ values of the environment area are displayed in Table 2. 

 

 

Table 2. Environmental parameters  
Factors Values 

Target nodes (i) 
∑𝑖 ∗ 2

4

𝑖=1

5 

Anchor or beacon nodes (b) 𝑡𝑎𝑟𝑔𝑒𝑡 𝑛𝑜𝑑𝑒𝑠/4 

Range of Node transmission (R) 30 m 

Environment Area (A) 100 m*100 m 

Iteration Numbers (t) 100 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Comparative study between metaheuristic algorithms for … (Rana Jassim Mohammed) 

665 

4.2.  Experimental results 

Many experiments are conducted through this paper. PSO algorithm is implemented with 7, 13 and 

19 anchors and with 25, 50 and 75 target nodes as shown in Figure 2. Also, BOA algorithm is implemented 

with 7, 13 and 19 anchors and with 25, 50 and 75 target nodes as shown in Figure 3. Finally, proposed hybrid 

algorithm is implemented with 7, 13 and 19 anchors and with 25, 50 and 75 target nodes as shown in Figure 4. 

 

 

   
(a) (b) (c) 

 

Figure 2. Experiment 1 using PSO: (a) results of 7 anchors and 25 target nodes, (b) results of 13 anchors and 

50 target nodes, (c) results of 19 anchors and 75 target nodes 

 

 

   
(a) (b) (c) 

 

Figure 3. Experiment 2 using BOA: (a) results of 7 anchors and 25 target nodes, (b) results of 13 anchors and 

50 target nodes, (c) results of 19 anchors and 75 target nodes 

 

 

   
(a) (b) (c) 

 

Figure 4. Experiment 3 using proposed GWO and SSA: (a) results of 7 anchors and 25 target nodes,  

(b) results of 13 anchors and 50 target nodes, (c) results of 19 anchors and 75 target nodes 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 1, February 2022: 660-668 

666 

The results of the above experiments using 7, 13, 19, 25 anchors and 25, 50, 75 and 100 target nodes 

are displayed in Table 3. Error of localized node in meter (EL(m)), Time in seconds (Ts) and number of 

localized nodes (NL) are displayed also in Table 3. We found form Table 3 that the proposed algorithm 

achieved highest NL and lowest EL than other related works. 

 

4.3.  Comparison between proposed algorithm and other related works 

According to the results shown in Tables 3 and 4, we found that the proposed method using the 

hybrid optimization algorithms (SSA and GWO) achieved higher accuracy and lowest error than other related 

works. Also, we found that the proposed method achieved low error rate with high number of localized 

nodes. The error rate (m) and time consumption (s) between proposed method and other related works are 

represented in Figures 5 and 6 respectively. 

 

 

Table 3. Results of applying the various localization algorithms where E=Error, T=Time and N=number of 

localized nodes 
Target nodes Anchor nodes PSO BOA Proposed Algorithm 

EL(m) T(s) NL EL(m) T(s) NL EL(m) T(s) NL 

25 7 0.25 0.4 19 0.1 0.3 22 0.04 0.3 24 

50 13 0.08 0.7 46 0.02 0.6 49 0.001 0.5 50 
75 19 0.04 0.9 72 0.01 0.8 74 0.001 0.6 75 

100 25 0.1 1.3 91 0.05 0.9 95 0.01 0.7 99 

 

 

Table 4. Comparison between proposed method and other related works 
Reference Method Type Error (m) 

[18] PSO, Genetic and firefly algorithm (FA) Anchor based-Range based PSO: 0.1 

GA: 0.4 

FA: 0.8 
[19] BOA and PSO Anchor based-Range based BOA: 0.21 

PSO: 0.78 

[20] PSO and GWO Anchor based-Range based PSO: 0.30 

GWO: 0.658 

Proposed Method SSA and GWO Anchor based-Range based 0.01 

 

 

  
A labeled for Anchors and T labeled for Target             A labeled for Anchors and T labeled for Target 

  

Figure 5. Error chart in meters for each localization 

algorithm in different experiments  

Figure 6. Time chart in seconds for each localization 

algorithm in different experiments 
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5. CONCLUSION 

In this article, hybrid localization algorithm based on dynamics inspired algorithms (SSA, and 

GWO) has been proposed and treats node location as an optimization dilemma. The suggested method has 

been performed and verified in different WSN deployments using various target nodes and beacon nodes. 

Besides, the proposed algorithm was assessed and compared with known optimization methods, namely PSO 

and BOA, concerning localization accuracy, computing time and the number of local nodes. The proposed 

method achieved high accuracy with lower error rate (0.001) and localized high number of IoT nodes. 
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