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 In this paper, we consider the hybrid vehicle routing problem (HVRP) at 

which the vehicle consumes two types of power: fuel and electricity. The aim 

of this problem is to minimize the total cost of travelling between customers, 

provided that each customer is visited only once. The vehicle departs from 

the depot and returns after completing the whole route. This optimization 

problem is solved using a modified simulated annealing (SA) heuristic 

procedure with constant temperature. This approach is implemented on a 

numerical example and the results are compared with the SA algorithm with 

decreasing temperature. The obtained results show that using the SA with 

constant temperature overrides the SA with decreasing temperature. The 

results indicate that SA with decreasing temperature needs twice the number 

of iterations needed by the SA with constant temperature to reach a near 

optimum solution. 
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1. INTRODUCTION  

Vehicle routing problem (VRP) was first introduced by Dantzig [1], where the optimum routing was 

considered for a fleet of gasoline-delivery trucks traveling between a depot and terminal customers and some 

service stations. They proposed the first mathematical linear programming formulation and algorithmic 

approach. Cao [2] listed eight points to classify the VRP according to; number of distribution centers, type of 

vehicle, characteristics of the task, time constraints, vehicle loading, optimization of the number of goals, 

ownership of the points, and mastering the information of certainty. 

Vehicles capacity plays a very big role in the VRP; therefore, researchers add the capacity 

constraints to the original problem to align with real world case which is known as capacitated vehicle 

routing problem (CVRP). For example, Faulin et al. [3] have used algorithms with environmental criteria to 

solve the CVRP, where environmental costs were considered together with cost, distance, number of vehicles 

and profit. Mahvash et al. [4] proposed the CVRP with new constraints for three-dimensional shaped 

products, where they have used a column generation (CG) technique-based heuristic.  

On the other hand, in vehicle routing problem with time windows (VRPTW); the service time at 

each customer is within a specific time window, a two stage algorithm is proposed by Lim [5] to solve 

VRPTW; in the first stage the algorithm minimizes the number of vehicles with an ejection pool, then it 

minimizes the total travel distance using a multi-start iterated hill-climbing algorithm. Yuliza et al. [6] solved 

an open capacitated vehicle routing problem for waste transporting problems, with uncertain amount of waste 

and travel time.  

https://creativecommons.org/licenses/by-sa/4.0/
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VRPs can be solved using different approaches, including the exact approach; El-Sherbeny [7] 

classified the exact method for the VRPTW into three categories: Lagrange relaxation-based methods, 

column generation, and dynamic programming. Iori et al. [8] proposed an exact approach based on a branch-

and-cut algorithm for the capacitated VRP. The problem was considered with two-dimensional additional 

loading constraints. Baldacci et al. [9] used an exact method that decomposes the two-echelon capacitated 

vehicle routing problems (2E-CVRP) into a limited set of multi depot capacitated vehicle routing problems 

with side constraints.  

Heuristic algorithms have been used to replace the decision criteria of the exact approach algorithm 

to effectively narrow the search space which is known as intelligent heuristic algorithm. For example, 

Tavakoli [10] used particle swarm optimization (PSO) to solve the CVRP, they referred to each found 

solution as a point in n-dimensional space that has an initial velocity, while particles (solutions) were 

evaluated according to some fitness criteria. However, PSO might be stuck into local optima; therefore, 

multi-swarm particle swarm optimization (MSPSO) has been used by other researchers, where the swarm is 

divided into sub-swarms, and the movement process of a particle is enhanced with a probability of bisection 

method, see Alfarisy et al. [11]. Puspita et al. [12], [13] have modeled an optimization waste transport as a 

CVRP and solved it using branch and bound method with the aid of LINGO 13.0.  

One of the most important methods that can be used for solving VRP is simulated annealing which 

is a common local search meta-heuristic used to address discrete, and to a lesser extent, continuous 

optimization problems. Annealing is referred to, as tempering certain alloys of metal, glass, or crystal by 

heating above its melting point, holding its temperature, and then cooling it very slowly until it solidifies into 

a perfect crystalline structure. The simulation of this process is known as simulated annealing (SA), the basic 

idea is to find a global minimum amount of energy to produce a defect-free crystal material. The first 

appearance of simulated annealing was in 1953 by Metropolis et al. [14]. In Kirkpatrick et al. [15] developed 

the similarities between the statistical mechanics and combinatorial optimization. The key algorithmic feature 

of simulated annealing is that it provides a mean to escape local optimum by allowing hill-climbing moves 

(i.e., moves which worsen the objective function value), as the temperature parameter decreases, the 

probability of accepting a worse objective function will also decrease. 

The SA algorithm starts with an initial solution, Szabo [16] tested the effectiveness of choosing the 

initial solution in SA for a flow shop problem. Then, the objective function is evaluated, after that a new 

(neighborhood) solution is generated, Cruz-Chavez [17] presented a mechanism to generate a new 

neighborhood solution for the job shop scheduling problem (JSSP). Initial temperature plays an important 

role in SA since the acceptance ratio strongly depends on the temperature, Shakouri et al. [18] discussed the 

initial temperature and proposed an approach to speed up the algorithm of SA while obtaining accurate 

solutions for the traveling salesman problem (TSP). The generated solution is compared to the old solution, if 

the new solution has better objective function value, the algorithm moves to that solution, otherwise a 

random number between 0 and 1 is generated and compared with a probability ratio that decides whether to 

accept or reject the new solution. Baizal et al. [19] used the simulated annealing for solving the TSP and have 

shown through examples that the SA much better than some other competent methods. Another version of 

simulated annealing that uses constant temperature was presented by Alrefaei [20] and another version uses 

the ranking and selection method was proposed by Alrefaei [21]. Ariyani [22] solved the VRPTW using a 

hybrid GA-SA algorithm. Yu et al. [23] have used the simulated annealing to solve the hybrid vehicle routing 

problem (HVRP). The HVRP is an extension of the original VRP with the addition of the ability to recharge 

the vehicle electrically. More applications of simulated annealing on multi objective optimization can be 

found in [24]-[29]. More recent applications of the simulated annealing algorithm for solving engineering 

problems can be found in [30]-[33].  

The advantage of simulated annealing algorithm is that it reduces the number of solutions that must 

be tested to find the optimum solution. Moreover, the structure of the SA algorithm is consistent compared 

with other heuristic algorithms. Annealing at constant and decreasing temperatures were used in this study. 

The use of constant temperature considered here gives the algorithm more freedom to move around the state 

space and rapidly finds the optimal solution, Alrefaei and Andradottir [20]. This paper is organized as follow; 

in section 2, we formulate the VRP problem, in section 3, we present the methodology used to solve the 

problem, in section 4, a numerical example is given, and in section 5, we include the results followed by 

concluding remarks. 

 

 

2. RESEARCH METHOD 

Vehicle routing problem (VRP) is usually solved using the transport route optimization. The main 

goal of the vehicle routing optimization is to minimize the total cost with offering the needed service for 

every customer. This study employs parameters based on previous research, Yu et al. [29].  
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The following notations are needed throughout this paper: 

𝑣0  : Depot index. 

𝑉  : The set of all customers. 

𝐸𝑙  : The set of electric stations. 

𝐹𝑢  : The set of fuel stations. 

𝑅𝑒𝑓 : The set of all electric and fuel stations together with the depot. 

𝐴  : The set of all stations and all customers together with the depot. 

𝐷𝑒 : The remaining distance that the vehicle can cover using electricity. 

𝐷𝑓 : The remaining distance that the vehicle can cover using fuel. 

𝑇𝑚𝑎𝑥  : Maximum time that the vehicle is not allowed to exceed per round. 

𝑥i,j : Binary variable equal to one if the vehicle traveled from vertex 𝑖 to vertex 𝑗 and zero, otherwise. 

𝜏i,j : The time needed to travel form vertex 𝑖 to vertex 𝑗. 

𝑅𝑒i,j : The distance from vertex 𝑖 to vertex 𝑗 that is covered using electricity. 

𝑅𝑓i,j : The distance from vertex 𝑖 to vertex 𝑗 that is covered using fuel. 

𝑅𝑒  : The maximum distance that can be traveled when the vehicle is electrically fully charged. 

𝑅𝑓 : The maximum distance that can be traveled when the vehicle is fully filled with fuel. 

𝐸𝑐i,j : The electricity cost to travel from vertex 𝑖 to vertex 𝑗. 

𝐹𝑐i,j : The fuel cost to travel from vertex 𝑖 to vertex 𝑗. 

𝐷i,j : The distance between vertex 𝑖 and vertex 𝑗. 

𝐸𝑐𝑟  : The electricity consumption rate. 

𝐸𝑐 : The electricity cost per kwh. 

𝐹𝑐𝑟  : The fuel consumption rate. 

𝐹𝑐 : The fuel cost per gallon. 

The HVRP is defined as a directed graph 𝐺 = (𝐴, 𝐸), where the vertex set A is a combination of the 

depot 𝑣0, the electric stations set, the fuel stations set, and the customers set. The set 𝑅𝑒𝑓 is the depot 

together with the electric stations and fuel stations. The set of edges 𝐸 =  {(𝑖, 𝑗): 𝑖, 𝑗 is the index for the 

visited customer or station}. Each pair in 𝐸 is associated with travel time, distance, and total cost till that 

point. As an example, denote the depot by 𝑣0, the electric stations set by 𝐸𝑙 = {𝐸1, 𝐸2 }, the fuel stations set 

by 𝐹𝑢 =  {𝐹3, 𝐹4} and the customers set by 𝑉 = {𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣9, 𝑣10 , 𝑣11 , 𝑣12 },  then the set A =
 {𝑣0, 𝐸1, 𝐸2, 𝐹3, 𝐹4, 𝑣5, 𝑣6, 𝑣7, 𝑣8, 𝑣9, 𝑣10 , 𝑣11 , 𝑣12} and 𝐸 =  {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝐴, j ≠ i}. The mathematical 

formulation of HVRP is as (1): 

 

min ∑ (Eci,j + Fci,j)i,j ∈A   (1) 

 

Subject to 

 
∑ xi,jj∈A

j≠i 

= 1, ∀i ∈ V (2) 

 

0 <  ∑ xi,j 𝜏𝑖,𝑗  𝑖,𝑗∈ 𝐴 <  𝑇𝑚𝑎𝑥     (3) 

 

0 < Rfi,j + Rei,j ≤ Re + Rf ,    𝑖, 𝑗 ∈ A  (4) 

 

𝐸𝑐𝑖,𝑗 =  𝐷𝑖,𝑗  ∗  𝐸𝑐𝑟  ∗  𝐸𝑐  (5) 

 

𝐹𝑐𝑖,𝑗 =  𝐷𝑖,𝑗  ∗  𝐹𝑐𝑟 ∗  𝐹𝑐  (6) 

 

The objective function is given in (1) which is the total cost including electricity cost as well as fuel 

cost that can be evaluated using formulas (5) and (6). The first constraint is to make sure that all customers 

were visited only once is given by (2). The second constraint is to keep the total time for every round less 

than the maximum time that the vehicle is not allowed to exceed (3). The third constraint is to ensures that 

any movement from vertex 𝑖 to vertex 𝑗 can be covered at most by the electricity and fuel storage (4). The 

vehicle can be recharged at the depot as well as the electric stations. The vehicle can be refueled at the depot 

as well as fuel stations. 

Hybrid vehicle routing problem (HVRP) is an extension of the green vehicle routing problem 

(GVRP). In GVRP, the vehicle is pure electric. However, in HVRP, the vehicle runs on electricity and fuel 

which extends the distance travelled. Therefore, hybrid vehicle can serve more customers. Mathematically, 
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the problem is to minimize the total cost 𝑇𝑐 over the set of feasible solutions S. Hybrid vehicle can use both 

electric and fuel storage, in our study, we give the priority to consume electric, since it costs less according to 

the used vehicle specifications. Figure 1 shows an example of HVRP. 

 

 

 
 

Figure 1. Example of a vehicle need three rounds to complete the trip 

 

 

In HVRP, the vehicle departs from the depot and serves as many customers as it can. At each step, 

electricity and fuel levels, remaining time to reach next costumer, and closeness to electricity or fuel recharge 

station need to be checked. If the electricity or fuel level is not enough to reach the nearest customer; a check 

on the nearest station need to be made. If the electricity and fuel levels are not enough to reach a recharge 

station, the vehicle goes back to the depot, refills fuel and electricity, and starts a new round. The trip ends 

when all customers are served. There are no constraints on the number of rounds (departure from and return 

to the depot is considered as one round).  

To solve the HVRP, a modified version of the simulated annealing technique with constant 

temperature is used to find the optimum solution. Many local optimizers can be handled using this method 

since it has the hill climbing feature as the original simulated annealing algorithm. At the beginning, a 

feasible initial solution 𝑥 for the problem is used, then, the objective function (total travel cost) 𝑓(𝑥) is 

computed based on the initial solution, after that, a candidate solution 𝑦 is generated based on replacing one 

customer with another one randomly. Then, the total travel cost 𝑓(𝑦) is computed at 𝑦, if 𝑓(𝑦) < 𝑓(𝑥), then 

the algorithm accepts the move to the candidate solution. However, if 𝑓(𝑦) ≥ 𝑓(𝑥), then there is possibility 

that a better solution is hidden behind the candidate solution, so the candidate solution 𝑦 will be accepted 

with probability 𝑃𝑟𝑜𝑏(𝑥, 𝑦) that depends on the difference between the two objective function values  

∆= [𝑓(𝑦) − 𝑓(𝑥)]. The acceptance probability 𝑃𝑟𝑜𝑏(𝑥, 𝑦) is given by: 

 

𝑃𝑟𝑜𝑏 (𝑥, 𝑦) = {𝑒−(
∆

𝑇
)                           if 𝑓(𝑦) ≥𝑓(𝑥)

1                         other wise
  

 

where 𝑇 is a controller parameter; called the temperature. In implementation, a uniform random number 𝑈 

between 0 and 1 is generated and compared with 𝑃𝑟𝑜𝑏 (𝑥, 𝑦), if 𝑈 ≤ 𝑃𝑟𝑜𝑏 (𝑥, 𝑦), the move is accepted, 

otherwise a new solution is generated from the neighborhood of 𝑥, and the process is repeated until a 

stopping rule is reached. The simulated annealing procedure is presented in the flow chart in Figure 2. 
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Figure 2. Simulated annealing procedure with constant temperature  

 

 

3. NUMERICAL EXAMPLE 

Consider the HVRP problem with depot 𝑣0, two electric stations {𝐸1, 𝐸2}, two fuel stations {𝐹3, 𝐹4}, 

and seven customers {𝑐5, 𝑐6, 𝑐7, 𝑐8, 𝑐9, 𝑐10, 𝑐11, 𝑐12}. The vehicle specifications are given in Table 1. The 

vehicle should visit all customers, starting from the depot and return to it, the HVRP described in (1)-(6) is 

solved using SA algorithm. The SA is implemented using constant temperature and is compared with a 

decreasing temperature as suggested by [9]. We use three different values for the constant temperature  

𝑇 = 1, 𝑇 = 5 and 𝑇 = 10. We use the solution that has the minimum value so far as the optimal solution as 

in the algorithm of Alrefaei and Andradóttir [20]. The candidate solution is generated by replacing a random 

customer with another random one. We used two types of stopping rules, in the first stopping rule, the 

algorithm stops when there is no improvement for five consecutive iterations, while in the second stopping 

rule, we ran a specific number of iterations, then stop the algorithm. Now, we discuss the results in detail. 

The distances between customers, stations, and depot are shown in Table 2. 

 

 

Table 1. Vehicle specifications 
Specification  

Electric consumption rate 0.5 KWh /mile 
Maximum electric distance 21 miles 

Electric cost US$0.12 /KWh 
Fuel consumption rate 17.7 mpg 

Maximum fuel distance 150.5 miles 

Fuel cost US$ 4.18 /gal 
Maximum round time 11 hours 

Speed Limit 40 mph 
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Table 2. Distance matrix 
  0 Es1 Es2 Fs1 Fs2 C5 C6 C7 C8 C9 C10 C11 C12 

0 0.00 26.71 14.34 95.78 196.87 49.23 18.4 22.37 46.17 66.9 33.00 79.00 55.00 

Es1 26.71 0.00 123.46 76.15 184.99 130.96 13.83 108.13 150.88 71.15 60.00 80.00 92.00 
Es2 14.34 123.46 0.00 47.65 72.77 8.19 110.02 27.15 31.7 104.31 45.00 43.00 43.00 

Fs1 95.78 76.15 47.65 0.00 115.06 54.9 62.55 39.28 23.03 32.74 33.00 56.00 86.00 

Fs2 196.87 184.99 72.77 115.06 0.00 69.69 172.85 77.38 41.46 41.28 74.00 48.00 50.00 
C5 49.23 130.96 8.19 54.9 69.69 0.00 117.43 34.72 18.25 12.37 54.00 23.00 22.00 

C6 18.4 13.83 110.02 62.55 172.85 117.43 0.00 95.66 137.92 67.79 70.00 103.00 93.00 

C7 22.37 108.13 27.15 39.28 77.38 34.72 95.66 0.00 43.88 78.41 36.00 32.00 29.00 
C8 46.17 150.88 31.7 23.03 41.46 18.25 137.92 43.88 0.00 119.48 91.00 63.00 53.00 

C9 66.9 71.15 104.31 32.74 41.28 12.37 67.79 78.41 119.48 0.00 84.00 25.00 18.00 

C10 33.00 60.00 45.00 33.00 74.00 54.00 70.00 36.00 91.00 84.00 0.00 57.00 50.00 
C11 79.00 80.00 43.00 56.00 48.00 23.00 103.00 32.00 63.00 25.00 57.00 0.00 12.00 

C12 55.00 92.00 43.00 86.00 50.00 22.00 93.00 29.00 53.00 18.00 50.00 12.00 0.00 

 

 

4. RESULTS AND DISCUSSION 

To find the optimum solution, we first generate an initial solution. Starting from the depot, check the 

ability to serve the nearest customer by checking the time as well as the electricity and fuel storage. Find the 

nearest customer and check if it can be reached and check the nearest station to the nearest customer, if it 

cannot be reached, then move to the nearest station of the current node. If the time is not enough to reach any 

of the mentioned nodes it will return to the depot and starts a new round. If the remaining time or power is 

not enough to return to the depot, the algorithm will reveal an infeasible solution. The total cost will be 

calculated based on the distance travelled, the power (electricity and fuel) consumption rate, and the power cost. 

Table 3 shows the generated initial solution for visiting all customers where the final total cost is 

$94.58. In this solution, the vehicle visited one electric station, which has index 2, and one fuel station, which 

has index 3. The algorithm starts from customer 6 then visits customer 9 then 5 and then 8. After that, the 

vehicle is run out of enough electricity and fuel, therefore the algorithm looks for the nearest station, which is 

node 3, after refueling, the vehicle moves to customer 10 then customer 7 and then customer12, then it needs 

to recharge again from station 2, and since it couldn’t go to other customer because the remaining time is not 

enough, it returns to the depot to start a new round to continue serving the rest customers. Then a candidate 

solution is generated, by changing the order of customers to be served and the total cost is computed. After 

that, we compare the current value of the total cost with the new one. We first consider a constant 

temperature with three different values for 𝑇, 𝑇 = 1, 5 and 10 and then use a decreasing temperature 

𝑇0 = 20, 𝑇𝑖+1 = 0.8 ∗ 𝑇𝑖. The four cases are described below. 

 

4.1.  The case when 𝑻 = 𝟏 

Figure 3 shows the SA performance when 𝑇 = 1. Where the dotted line (red) shows the objective 

function of the candidate solutions and the strict line shows the current objective function of the current 

solutions. If the strict line moves upward, then a worse solution is accepted, this is because a better solution 

may be hidden behind this solution. Note that the probability of accepting any worse objective function value 

is very small, as shown in Figure 3, it almost does not accept any worse function value, this means that 

algorithm stuck in a local minimum solution. It needs 60 iterations to reach the optimum value, which 

indicates that it keeps performing good but approaches the optimum slowly. According to the first stopping 

rule which is to have five iterations without improvement in the objective function value; the optimum value 

was $63.94 resulted after 12 iterations, which is a good solution, but is not the minimum. The minimum was 

obtained at iteration 65 with a value of $59.11. 

 

 

Table 3. The initial solution 
From To Electricity cost Fuel Cost Total Cost 

0 6 𝐸𝑐 = 0.55 𝐹𝑐 = 0.00 𝑇𝑐 = 0.55 

6 9 𝐸𝑐 = 0.09 𝐹𝑐 = 15.25 𝑇𝑐 = 15.89 

9 5 𝐸𝑐 = 0.00 𝐹𝑐 = 2.89 𝑇𝑐 = 18.78 

5 8 𝐸𝑐 = 0.00 𝐹𝑐 = 4.27 𝑇𝑐 = 23.05 

8 3 𝐸𝑐 = 0.00 𝐹𝑐 = 5.39 𝑇𝑐 = 28.44 

3 10 𝐸𝑐 = 0.00 𝐹𝑐 = 7.72 𝑇𝑐 = 36.17 

10 7 𝐸𝑐 = 0.00 𝐹𝑐 = 8.42 𝑇𝑐 = 44.59 

7 12 𝐸𝑐 = 0.00 𝐹𝑐 = 6.78 𝑇𝑐 = 51.38 

12 2 𝐸𝑐 = 0.00 𝐹𝑐 = 10.06 𝑇𝑐 = 61.45 

2 0 𝐸𝑐 = 0.43 𝐹𝑐 = 10.06 𝑇𝑐 = 61.88 

0 11 𝐸𝑐 = 0.63 𝐹𝑐 = 13.57 𝑇𝑐 = 76.09 

11 0 𝐸𝑐 = 0.00 𝐹𝑐 = 18.49 𝑇𝑐 = 94.58 
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Figure 3. Current versus new solution when T= 1 

 

 

4.2.  The case when 𝑻 = 𝟓 

Now we apply the SA algorithm with a constant temperature value T=5. In this case, the probability 

of accepting any worse objective function value is still small but it is better than the case where T=1. The 

results are depicted in Figure 4. 

 

 

 
 

Figure 4. Current versus new solution when T= 5 

 

 

4.3. The case when 𝑻 = 𝟏𝟎 

The SA algorithm with a constant value T=10. In this case, the probability of accepting any worse 

objective function value is larger than the previous two cases. Therefore, the current solution varies for all 

iterations, and it reached the minimum ($59.11) at iteration 12, as shown in Figure 5. 

 

 

 
 

Figure 5. Current versus new solution when T=10 
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4.4.  The case when 𝑻𝟎 = 𝟐𝟎 𝒂𝒏𝒅 𝑻𝒊+𝟏 = 𝟎. 𝟖 ∗ 𝑻𝒊 

Now to compare the results In the SA algorithm with a decreasing value starting at T=20 and 

decreases with ratio of 0.8. The algorithm accepts worse function value with high probability at the 

beginning, however, it did not accept any worse value for the objective function from iteration 9 to iteration 

29. It reached the minimum ($59.11) at iteration 22, as shown in Figure 6. 

Figure 7 presents the average performance of the algorithm over 10 replications using the above four 

cases of the temperature T. It is clear that, using a constant temperature 𝑇 = 10, allows the algorithm to 

explore the state space freely and then locate the optimal solution faster. However, using a small temperature 

𝑇 = 1 or 𝑇 = 5, the algorithm does not move freely so it stick in a local optimal solution. Moreover, using a 

decreasing temperature ends in locating a local optimal solution also, which requires restarting the algorithm 

to explore the state space. Table 4 shows a comparison between the optimum function value for the four 

cases of the temperature value using the two stopping rules over 10 replications. 

 

 

 
 

Figure 6. Current versus new solution at T=20 and deceasing at 𝑇𝑖+1 = 0.8 ∗  𝑇𝑖 

 

 

 
 

Figure 7. The average performance of the SA over 10 replications using four different values of the 

temperature 

 

 

Table 4. A comparison between the four cases of the temperature value 
Temperature value The first stopping rule The second stopping rule Average number of iterations 

T=1 66.343 63.178 23 

T=5 64.959 61.945 22 

T=10 62.809 60.826 22 

𝑇𝑖+1 = 0.8 ∗ 𝑇𝑖 , 𝑇0 = 20 65.339 61.945 19 
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5. CONCLUSION 

In this paper, we have studied the hybrid vehicle routing problem (HVRP) at which a vehicle is 

planned to visit all customers only once and return to the depot, the simulated annealing algorithm with 

constant temperature was used to solve the HVRP, this allows the algorithm to explore the state space freely, 

especially for large values of T. The results of the proposed method are compared with the SA algorithm 

using decreasing temperature. The results indicate that the average performance of the algorithm using SA 

with constant temperature gives better solution and less average number of iterations. 
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