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 The demand for credit is increasing constantly. Banks are looking for 

various methods of credit evaluation that provide the most accurate results in 

a shorter period in order to minimize their rising risks. This study focuses on 

various methods that enable the banks to increase their asset quality without 

market loss regarding the credit allocation process. These methods enable 

the automatic evaluation of loan applications in line with the sector 

practices, and enable determination of credit policies/strategies based on 
actual needs. Within the scope of this study, the relationship between the 

predetermined attributes and the credit limit outputs are analyzed by using a 

sample data set of consumer loans. Random forest (RF), sequential minimal 

optimization (SMO), PART, decision table (DT), J48, multilayer perceptron 
(MP), JRip, naïve Bayes (NB), one rule (OneR) and zero rule (ZeroR) 

algorithms were used in this process. As a result of this analysis, SMO, 

PART and random forest algorithms are the top three approaches for 

determining customer credit limits. 
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1. INTRODUCTION 

Data analysis and data mining techniques are used in many domains to convert raw data into 

knowledge [1]. These methods are applied on various fields such as medical diagnosis [2], travel 

reccomenders [3]–[5], fraud detectors [6], numerous classification problems [7] and many more. Banking 

domain is one of these fields with a wide range of data analysis needs [8]. Credit assessment process is an 

important data mining application area in this domain. 

One of the main activities of a bank is credit lending. In order to improve market share and increase 

sales profitability, banks need to develop a good credit assessment process in which they can carry out 

lending [9]. This is an important requirement for banks due to the constantly evolving market and increasing 

competition. The credit assessment process mainly aims to make an analysis to determine whether the party 

requesting the loan has the power to fulfill its obligation to repay the loan at the end of the loan agreement 

and to reduce the likelihood of non-payment of the loan as much as possible by determining whether it has 

the willingness to pay the loan [10]. 

Developing a unique credit assessment system which produces accurate, stable and reliable results 

in a short time is an important advantage in competitive market conditions. Additionally, such a unique credit 

assessment system, which should be equipped with safe techniques, should help the bank achieve its strategic 

goals in the corporate field and create user satisfaction by meeting the expectations of the customers. For this 
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reason, many banks use data mining methods to extract meaningful information from customer data and try 

to manage the loan evaluation process by taking this information as a core reference [11]–[17].  

In this study, the characteristics of people requesting credit were evaluated and the effects of these 

features on the available credit limit was examined. The main purpose of this study is to propose a  

decision-making approach to minimize the risk of non-repayment of loans. In order to achieve this goal, a 

sample data set containing attributes related to credit allocation is used. The relationship between the data set 

and the credit limit, which was harmonized with data mining methods, was examined with random forest 

(RF), sequential minimal optimization (SMO), PART, decision table (DT), J48, multilayer perceptron (MP), 

JRip, naïve Bayes (NB), one rule (OneR) and zero rule (ZeroR) algorithms. The obtained metrics of the 

produced prediction models were compared and analyzed. The models with the most accurate prediction 

results were proposed as possible decision-making approaches in credit allocation process. The rest of the 

paper is organized as follows: section 2 describes the data gathering process and includes a background of the 

data mining algorithms used in this research. Section 3 presents the obtained results and section 4 contains 

conclusion and future plans of this study. 

 

 

2. RESEARCH METHOD 

A total of 10 different data mining algorithms were used in this research to find the best approach 

for determining customer credit limits. The data set and applied data mining algorithms are described in 

detail in the following subsections. 

 

2.1.  Data gathering and processing 

The data set reflecting the characteristics of possible customer credit requests and credit limits was 

generated by a banking specialist. 401 records were collected to run data experiments. It has 14 input 

attributes derived from 4 main attribute groups and it has one output attribute which is the corresponding 

credit limit. Table 1 lists attribute groups, attributes and their descriptions. Credit limit attribute was 

discretized into 7 categories based on its data range. Table 2 lists credit limit categories by minimum and 

maximum credit values. 

 

 

Table 1. Data set attributes 
Attribute groups Definition Attributes 

Monthly income-installment 

ratio (MIIR) 

Customer’s ratio of monthly income over 

installment. 

- Up to 50% 

- Between 50% and 60% 

- Between 60% and 70% 

- Between 70% and 80% 

Income type Customer’s income type. - Private sector paid worker 

- Private sector unpaid worker 

- Public sector paid worker 

- Public sector unpaid worker 

Investigation result level Customer’s status about previous credit payments.  - Reject (Bad reputation according to past 

payment history) 

- Unclear 

- Accept (Good reputation according to past 

payment history) 

Risk level Customer’s risk level based on investigation result 

level and previous banking history.  

- High 

- Medium 

- Low 

Credit limit Customer’s credit limit based on Monthly Income-

Installment Ratio, Income Type, Investigation 

Result Level and Risk Level attributes. 

- Credit Limit 

 

 

Table 2. Credit limit categories 

Credit limit category 
Minimum credit 

value (in TL) 

Maximum credit 

value (in TL) 

Group 1 0 8200 

Group 2 8201 16400 

Group 3 16401 24600 

Group 4 24601 32800 

Group 5 32801 41000 

Group 6 41001 49200 

Group 7 49201 82000 
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Preprocessed data set was converted to attribute-relation file format (ARFF) to run data mining 

algorithms. Each numeric attribute in the ARFF data file may contain 0 or 1 where 1 represents true and 0 

represents false. Figure 1 shows the structure of the ARFF data file. Info gain attribute eval algorithm [18] is 

used to measure the information gain of each attribute against the credit limit attribute (output class). 

According to the attribute rankings unclear investigation result level attribute has no effect on decreasing the 

overall entropy, therefore it has been removed from the data set. Table 3 lists information gain attribute 

rankings.  

 

 

 
 

Figure 1. Data file structure 

 

 

Table 3. Information gain attribute rankings 
Attribute Name Attribute Rank 

MIIR_7080 0.608 

MIIR_50 0.475 

PrivateSector_Unpaid 0.449 

MIIR_6070 0.438 

InvestigationAccept 0.4 

InvestigationReject 0.367 

LowRiskLevel 0.283 

HighRiskLevel 0.226 

PrivateSector_Paid 0.213 

PublicSector_Paid 0.197 

MIIR_5060 0.183 

MediumRiskLevel 0.154 

PublicSector_Unpaid 0.13 

InvestigationUnclear 0 

 

 

2.2.  Data mining algorithms 

RF, SMO, PART, DT, J48, MP, JRip, NB, OneR and ZeroR algorithms were used for building 

prediction models for classification of customer credit limits. Brief descriptions of these algorithms are listed: 

− Random forest (RF): RF is an ensemble learning method which is a mixture of several tree-based 

predictors. Output of the algorithm is the mode of the classification classes that the forest contains [19].  

− Support vector machines (SVM) and sequential minimal optimization (SMO): SVM is a supervised 

learning approach for classification tasks in machine learning domain. The algorithm tries to find a 

hyperplane to classify data points in a given data set distinctly. SMO is an optimization in SVM which 

solves the quadradic programming problem in SVM model training phase [20], [21].  

− PART: Generates classification rules by creating partial decision trees without global optimization. The 

algorithm is an efficient separate-and-conquer rule learning technique [22]. 

− Decision table (DT): DT is a simple but effective supervised learning algorithm used in classification 

problems. It has a collection of rules called decision list which is used in the classification process. Each 

rule is processed sequentially until a matching rule is found [23]. 

− J48: J48 is a similar version of C4.5 decision tree algorithm which is implemented using Java 

programming language. The algorithm is capable of generating a pruned/unpruned decision tree based on 

information entropy [24]. 
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− Multilayer perceptron (MP): MP is a feed-forward artificial neural network which uses backpropogation 

for training classification models [25]. 

− JRip: It is the implementation of repeated incremental pruning to produce error reduction (RIPPER) 

approach which is a rule-based classifier [26]. 

− Naïve bayes (NB): NB is probabilistic classification approach based on Bayes' theorem. It assumes that a 

feature of a class is independent of any other feature [27]. 

− One rule (OneR): It is a simple classification algorithm which tries to find the one rule with the minimum 

prediction error according to a training data set [28]. 

− Zero rule (ZeroR): This algorithm is another simple classification approach which ignores predictors 

other than the target (class) attribute. The mean is calculated for numeric classes and mode is computed 

for nominal classes [29]. This study uses ZeroR for determining the baseline performance for machine 

learning algorithms.  

 

2.3.  Comparing algorithms 

Accuracy, precision and recall metrics are computed for comparing data mining models used in this 

study. These metrics are calculated using true positive (TP), true negative (TN), false positive (FP) and false 

negative (FN) values extracted from confusion matrices of prediction models. A confusion matrix holds the 

number of actual values in its rows and keeps the number of predicted values in its columns. 

TP is the number of values where the classification model correctly predicts the positive class 

instances. In a similar way, TN is the number of values where the classification model correctly predicts the 

negative class instances. FP respresents the number of incorrectly predicted positive class instances whereas, 

FN is the number of values where the classification model incorrectly predicts the negative class instances. 

Accuracy, precision and recall scores are calculated according to the described TP, TN, FP and FN values. 

Accuracy is the percentage of correctly predicted instances. Precision is the radio of TP values divided by the 

sum of TP and FP values. Recall is the ratio of TP values divided by the sum of TP and FN values.  

 

2.4.  Building classification models 

Waikato environment for knowledge analysis (WEKA) is an open-source machine learning platform 

[30]. It is used for training and testing the classification models with the described bank-customer data set. 

Each model is tested with both 10-fold cross-validation and 66% percentage-split methods. Comparison 

metrics are collected for both of these testing approaches and results are discussed in the next section. 

 

 

3. RESULTS AND DISCUSSION 

The algorithms mentioned in section 2.2 are applied on the final version of the banking data set. 

Two test experiments are conducted based on two different testing approaches. Accuracy, precision and 

recall metrics are calculated based on these experiments. Obtained results are listed in Table 4. 

 

 

Table 4. Performance results of classification models 

Algorithm 
Experiment 1: 10-Fold Cross-Validation Experiment 2: 66% Split Test 

Accuracy (%) Precision Recall Accuracy (%) Precision Recall 

RF 96.76 0.97 0.97 93.38 0.94 0.93 

SMO 96.51 0.97 0.97 93.38 0.95 0.93 

PART 96.51 0.97 0.97 93.38 0.95 0.93 

DT 95.51 0.96 0.96 90.44 0.92 0.90 

J48 95.51 0.96 0.96 91.91 0.94 0.92 

MP 95.26 0.95 0.95 91.91 0.94 0.92 

JRip 94.51 0.95 0.95 91.91 0.94 0.92 

NB 86.03 0.90 0.86 84.56 0.88 0.85 

OneR 44.14 0.55 0.44 38.24 0.49 0.38 

ZeroR 26.69 0.26 0.26 22.06 0.22 0.22 

 

 

According to the performance results of classification models, RF algorithm has the best 

classification accuracy and recall scores in both of the experiments. And it has the best classification 

precision score in Experiment 1 whereas SMO and PART algorithms have the highest classification precision 

score in Experiment 2. All classification models produced better scores than ZeroR baseline performance. 

Table 5 shows comparison results of prediction models. Each row in the table starts with a 

prediction model. The columns after the prediction model list the names of other algorithms that produced 

lower results than the model in that row according to the accuracy, precision and recall scores. These results 

are listed for both experiments. The last column contains information about how many times the prediction 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 1910-1915 

1914 

model in the row produces better results than other algorithms. For example, SMO and PART has better 

results in 43 comparisons with other algorithms based on the results of both experiments whereas RF has 

better results in 41 comparisons. J48, DT, MP, JRip, NB, OnerR and ZeroR algorithms have no better 

comparison results than 27. Based on the presented results in Tables 4 and 5, RF algorithm has the highest 

scores in most of the metrics for both of the experiments whereas SMO and PART algorithms have the 

greatest number of better comparison results. 

 

 

Table 5. Comparison results of classificaiton models  
Algorithm Experiment 1: 10-Fold Cross-Validation Experiment 2: 66% Split Number 

of 

Better 

Results 

Has Better 

Accuracy 

Than 

Has Better 

Precision 

Than 

Has Better 

Recall Than 

Has Better 

Accuracy Than 

Has Better 

Precision 

Than 

Has Better 

Recall Than 

SMO DT, J48, MP, 

JRip, NB, 

OneR, ZeroR 

DT, J48, MP, 

JRip, NB, 

OneR, ZeroR 

DT, J48, MP, 

JRip, NB, 

OneR, ZeroR 

J48, MP, JRip, 

DT, NB, OneR, 

ZeroR 

RF, J48, MP, 

JRip, DT, 

NB, OneR, 

ZeroR 

J48, MP, JRip, 

DT, NB, OneR, 

ZeroR 

43 

PART DT, J48, MP, 

JRip, NB, 

OneR, ZeroR 

DT, J48, MP, 

JRip, NB, 

OneR, ZeroR 

DT, J48, MP, 

JRip, NB, 

OneR, ZeroR 

J48, MP, JRip, 

DT, NB, OneR, 

ZeroR 

RF, J48, MP, 

JRip, DT, 

NB, OneR, 

ZeroR 

J48, MP, JRip, 

DT, NB, OneR, 

ZeroR 

43 

Random 

Forest 

SMO, PART, 

DT, J48, MP, 

JRip, NB, 

OneR, ZeroR 

DT, J48, MP, 

JRip, NB, 

OneR, ZeroR 

DT, J48, MP, 

JRip, NB, 

OneR, ZeroR 

J48, MP, JRip, 

DT, NB, OneR, 

ZeroR 

DT, NB, 

OneR, ZeroR 

J48, MP, JRip, 

DT, NB, OneR, 

ZeroR 

41 

J48 MP, JRip, NB, 

OneR, ZeroR 

MP, JRip, 

NB, OneR, 

ZeroR 

MP, JRip, 

NB, OneR, 

ZeroR 

DT, NB, OneR, 

ZeroR 

DT, NB, 

OneR, ZeroR 

DT, NB, OneR, 

ZeroR 

27 

Decision 

Table 

MP, JRip, NB, 

OneR, ZeroR 

MP, JRip, 

NB, OneR, 

ZeroR 

MP, JRip, 

NB, OneR, 

ZeroR 

NB, OneR, 

ZeroR 

NB, OneR, 

ZeroR 

NB, OneR, 

ZeroR 

24 

Multilayer 

Perceptron 

JRip, NB, 

OneR, ZeroR 

NB, OneR, 

ZeroR 

NB, OneR, 

ZeroR 

DT, NB, OneR, 

ZeroR 

DT, NB, 

OneR, ZeroR 

DT, NB, OneR, 

ZeroR 

22 

JRip NB, OneR, 

ZeroR 

NB, OneR, 

ZeroR 

NB, OneR, 

ZeroR 

DT, NB, OneR, 

ZeroR 

DT, NB, 

OneR, ZeroR 

DT, NB, OneR, 

ZeroR 

21 

Naive Bayes OneR, ZeroR OneR, ZeroR OneR, ZeroR OneR, ZeroR OneR, ZeroR OneR, ZeroR 12 

OneR ZeroR ZeroR ZeroR ZeroR ZeroR ZeroR 6 

ZeroR None None None None None None 0 

 

 

4. CONCLUSION 

This study shows a detailed data mining algorithm comparison for customer credit allocation 

process using two different experiment sets. RF, SMO, PART, DT, J48, MP, JRip, NB, OneR and ZeroR 

algorithms are trained and tested on a banking data set which has characteristics of possible customer credit 

requests and credit limits. Obtained test results suggest that SMO, PART and RF algorithms are the most 

accurate three data mining approaches for customer credit allocation process. Proposing a hybrid data mining 

solution using SMO, PART and RF algorithms for the implementation of a customer credit allocation tool is 

planned as a future study. 
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