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 This work introduces a power management scheme based on the fuzzy logic 

controller (FLC) to manage the power flows in a small and local distributed 

generation system. The stand-alone microgrid (MG) includes wind and PV 

generators as main power sources. The backup system includes a battery 

storage system (BSS) and a diesel generator (DG) combined with a 

supercapacitor (SC). The different energy sources are interconnected through 

the DC bus. The MG is modeled using MATLAB/Simulink Sim_Power 

System™. The SC is used to compensate for the shortage of power during 

the start-up of the DG and to compensate for the limits on the 

charging/discharging current of the BSS. The power balance of the system is 

the chief objective of the proposed management scheme. Some performance 

indexes are evaluated: the frequency-deviation, the stability of the DC bus 

voltage, and the AC voltage total harmonic distortion. The performance of 

the planned scheme is assessed by two 24-hours simulation sets. Simulation 

results confirm the effectiveness of FLC-based management. Moreover, the 

effectiveness of the FLC approach is compared with the deterministic 

approach. FLC approach has saved 18.7% from the daily load over the 

deterministic approach. The study shows that the quality of the power signal 

in the case of FLC is better than the deterministic approach. 
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1. INTRODUCTION 

The microgrid (MG) under investigation in this study is off-grid and all power sources are connected 

through a DC bus as shown in Figure 1. This configuration makes the integration of RES easier, more 

effective, and is considered a remarkable solution for off-grid power systems [1]. The quality of the power 

signal must be within an accepted range. Steady supply voltage and AC frequency, lower total harmonic 

distortion of the voltage signal (THDv) [2]. The MG in this study primarily includes wind energy (WEG) and 

PV energy generators (PVEG). For maximum utilization of the attainable energy battery storage system 

(BSS) is used as primary energy storage, it keeps DC-bus voltage within the rated range in case of 

unexpected load deviations. The diesel generator (DG) joined with Supercapacitor (SC) is used as a 

secondary backup. The system must be suitably controlled to achieve high efficiency and a better balance of 

load supply. The DG is a consistent backup energy source and can provide durable backing, it is commonly 

used in stand-alone MG power systems [3]. Its output voltage and frequency take a few seconds to reach 

stability due to slow dynamic behavior [4]. SC will provide energy compensation during the starting up of 

https://creativecommons.org/licenses/by-sa/4.0/
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DG. It supplies energy in electrical form, has a fast response, and is capable to fast accommodate large 

amounts of energy [5].  

This research considers a stand-alone DC MG based on WEG, PVEG, BSS, and DG combined with 

SC. It is modeled and controlled using MATLAB/Simulink Sim_Power System™. It proposed an energy 

management strategy to supply the load with the least loss of power supply. The DC bus is regulated within 

the accepted range (380-400 V) under different weather conditions and various load demands. More 

precisely, voltage-regulation, power-sharing, and energy storage management should be confirmed [6]. For 

this purpose, a management system unit is required to control the main components based on the power 

generated from WEG and PVEG, the BSS state of charge (SoC), and SC.  

Building and applying a conventional management approach for such a complicated system is not 

easy. It encounters low dynamic performance, higher steady-state error. The switching losses of the power 

converters and high fault-tolerant negatively affect the THD of the output voltage signal. The management 

strategy needs flexibility and fast reactions. So, a fuzzy logic controller (FLC) approach is suggested in this 

paper. FL is a mathematical system that evaluates analog input values in terms of logical variables that take 

on continuous values between 0 and 1, contrary to classical or digital logic, which works on discrete values 

of either 1 or 0 [7]. It is very suitable for controlling systems with high complexity whose behaviors are not 

well understood, and/or in situations where a fast approximate solution is warranted [8]. FLC can play a 

significant role because knowledge-based design rules can straightforwardly be realized in systems with 

unknown structures. The proposed control algorithm confirms an optimal operating system at different 

climatic conditions, it proposed an ideal solution for operating the standalone application. The proposed 

control algorithm ensures effective transferring of all produced power from PVEG and WEG, reduces 

dependency on DG, ensures continuous charging and discharging of the BSS.  

References from [9-23] discussed the energy management of MG based on RES. In [9], a supervisor 

energy management strategy based on FLC of hybrid WEG/PVEG/DG with BSS is implemented. In [10], 

FLC is utilized to achieve a standalone DC MG based on PVEG/SC energy flow balance. The SC is used for 

unexpected power demand while BSS is used for the long-term period. In [11], an MG mainly consisted of 

PVEG, and SOFC is considered. An optimization method is proposed based on FLC to optimize energy flow 

between MG and SC. The control strategy ensures smooth dynamic response and stability. The output power 

signal is assessed using THD, it is found within the IEEE recommended range. In [12], and energy 

management algorithm based on FLC is designed for residential on-grid MG based on RES and ESS. The 

objective of the design is to control the power quality of the grid and reduce fluctuations. The study used the 

MG energy rate of change and the SOC of the BSS to maintain the power delivered or absorbed by the grid. 

In [13], and energy management strategy based on FLC is designed for supplying a residential load with PV-

grid connected system and BSS. The strategy is implemented to manage the residential energy demand based 

on load priority. In [14], a PVEG with BSS is attached with an FLC system to cover the demands of a 

residential DC load, it adjusts the power conditioner to control the power flow from/to BSS. Results show the 

preferences of FLC over the conventional PID controller. In [15], and FLC is utilized to manage a PVEG 

standalone MG system. FC and BSS are included to ensure a reliable power supply. The management 

strategy optimizes the proposed power generation and maximizes the production of hydrogen. In [16], FLC 

based energy management scheme is utilized to optimize the energy generated from PVEG and FC to fulfill a 

water pumping load. The storage system is mechanical and electrochemical. The controller assurances 

uninterrupted power production and water availability with the least cost. In [17], A FLC scheme is 

implemented to manage the power flow of a PVEG/WEG/BSS standalone MG. The main objective of the 

scheme is to balance power generation and the load despite its fluctuations. Simulation results validate the 

approach capability. 

In [18], an FLC energy management system was developed for the multi-operation mode of smart 

MG. The residential MG consists of PVEG, FC, and BSS. The control scheme is designed to choose the 

suitable procedure style considering both real and long-term forecast data of the energy generation and 

consumption. Energy distribution and energy cost analysis are accomplished for each scenario to confirm the 

control scheme. In [19], the optimal design of FLC is performed to manage the power flow from different 

RES. Various storage systems including BSS, SC, and hydrogen storage tanks were considered to overcome 

RES generation fluctuations. [20] Utilized the FLC energy management approach to lessen the unsystematic 

and irregular nature of RES to the MG system. The MG simulation model mainly includes PV systems and 

BSS units. The MG under diverse working styles in addition to the PV system are empowered through 

harmonized control of the bidirectional DC/AC converter and the BSS unit. In [21] a smart BSS management 

strategy is proposed for MG consisted of PVEG, BSS, and a small suburban group. The case study is located 

in high solar radiation potential but suffering from the frequent movement of the clouds. The management 

strategy is built using FLC that defines the rules based on the behavior of the residents, energy from PVEG, 

SOC of BSS, in addition to the price of the kWh purchased from the distribution company. The strategy 
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succeeded to supply electric power to houses without disturbance to the grid and maintaining the SOC of 

BSS at maximum. In [22] two FLCs were used to manage the energy generated from PVEG, WEG, FC, DG, 

and BSS. MATLAB/Simulink is utilized for simulating the MG RES. Results show that intermittency in RES 

can be controlled by FLCs to offer uninterrupted power. In [23] a balance in power flow from different 

energy sources is preserved by the aid of FLC. A small number of rules is used to keep continuous, 

decreasing the use of BSS; and observing a balance between power sources, storage, and load. 
This paper comes with the following contributions and enhancements: Energy management strategy 

based on FLC approach for a stand-alone DC MG is realized. The scheme is based on matching DC-bus 

voltage using WEG/PVEG/load’s sharing and PID controllers. The DG is utilized as a backup if BSS is 

discharged. The scheme considers the slow dynamic of DG during starting up by utilizing SC. This work 

utilizes SC also for discharging/charging energy when the deficient/excess power is greater than the capacity 

of BSS. This strategy considers the problem of the fast self-discharging problem of SC. A dump load is 

considered in the system to effectively manage the excess power in the case of fully charged BSS and SC. 

This work solved the low dynamic performance encountered in the deterministic approach, reduce steady-

state error, and switching losses of the power converters. It also reduces THDv of the output voltage signal.  

 

 

2. RESEARCH METHOD AND SYSTEM CONFIGURATION  

The research method followed in this study is mainly based on simulation analysis using 

MATLAB/Simulink Sim_Power System™ software. Figure 1 shows the schematic diagram of the 

considered DC microgrid power plant. The main elements are WEG, PVG, BSS, SC, and DG. Each 

component is modeled and validated. The management strategy is built using the FLC approach. The main 

objective is to maintain an effective power balance from the different sources at the same time preserve high 

power quality. Different simulation sets were performed at different load and weather conditions. Various 

technical indicators were defined. 

 

 

 
 

Figure 1. Representation of the standalone power system 

 

 

2.1.  PVEG system 

The PV cell model used in this study depends on one-diode with four parameters as shown in  

Figure 2. In (1) to (6) are modeling the PV modules used in this study [24]. 

 

 
(1) 

 

  
(2) 
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(3) 

 

+  
(4) 

 

 

(5) 

 

 

(6) 

 

Where a is the ideality-factor, I is operation current, IL is light-current, I0 is diode reverse saturation-current, 

k is Boltzmann’s constant (J/°K), Kv is the voltage coefficient temperature, V/°C. ki is the current-coefficient 

temperature, A/°C, Ns is the number of cells in the panel connected in series, q is electron’s charge, Rs is the 

equivalent series resistance of the array, T is PV cell temperature at STC (°K), V is operation voltage of the 

array and Vt is the thermal voltage of the array. Tcell is the cell temperature and NOCT is the nominal 

operating conditions temperature. The model is validated as shown in Figure 3. PVEG is annexed with 

observation algorithms (P&O) MPPT controller [25]. The topology of the control system and its validation is 

shown in Figure 4. The total power rating of the PV system is 1.88 kWp. 

 

 

 
 

Figure 2. One-diode PV cell equivalent circuit model 

 

 

  
 

Figure 3. I-V characteristics of the solar array model at different solar radiation and 25 °C cell temperature 

 

 

  
(a) (b) 

 

Figure 4. DC/DC boost-converter controlled by (a) MPPT control scheme, and (b) its validation 
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2.2.  WEG system 

A vertical axis micro wind turbine with three helical blades has been modeled. The wind turbine is 

fitted with a permanent magnet synchronous generator (PMSG). The mathematical model of the WEG 

system is illustrated in (7) through (9). The power generated from the rotor turbine wind is given by (7)  

[26, 27]. 

 

 (7) 

 

Where At is swept area of the turbine, Cp is wind power coefficient, 𝛒a is air density and Vw is wind 

velocity. The power coefficient (Cp) curve is shown in Figure 5. The wind turbine torque (Tt) on the shaft 

can be calculated from the wind power as in (8), in which the rotational speed of the blades Ω is measured 

from the mechanical model of the PMSG. 

 

 
(8) 

 

The generated shaft mechanical torque (Tt) is used as an input mechanical power to an electrical 

generator. The mechanical system of the electrical generator is represented by (9) [28].  

 

 
(9) 

 

Where F is combined viscous friction of rotor and load, Te: electromagnetic torque, J has combined inertia of 

rotor and load and ωr is the angular velocity. Te is calculated using the sinusoidal electrical model in the 

synchronous reference frame [29]. Figure 6 shows the schematic diagram of the WEG model and its 

validation. 
 

 

 
 

Figure 5. Power coefficient vs different wind speeds 
 

 

  
(a) (b) 

 

Figure 6. Schematic of the Simulink SimPowSys model of (a) WEG model, and (b) its validation 

 

 

2.3.  Diesel generator (GD) 

The DG's basic components are the engine, governor, excitation, and synchronous generator. The 

DG model mainly consists of engine speed control, synchronous generator, and voltage regulator. A 
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schematic of the DG module is shown in Figure 7(a) [29] and The MATLAB/Simulink SimPowSysTM 

simulation model is shown in Figure 7(b). The mechanical aspect is defined by the combustion process and 

engine model while the electrical aspect is defined by the synchronous generator and voltage regulation. The 

model uses tabulated mechanical power data concerning rotational speed (rad/s) to estimate output 

mechanical power [30]. The automatic voltage regulator (AVR) is responsible for regulating the excitation 

voltage of the synchronous generator, it controls the rotor angle and the generator terminal voltage to obtain a 

good dynamic system and improves the stability.  
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Control 
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(b) 

 

Figure 7. Modeling of DG: (a) Schematic of DG model, and (b) MATLAB/SimPowSys simulation model 

 

 

2.4.  Battery storage system (BSS) 

The built-in SimPowerSys™ [31] block model of a lead-acid BSS is considered in this simulation 

study, it mainly consisted of a controlled voltage source that is a function of battery charging and discharging 

current and battery capacity. The model is shown in Figure 8(a). The battery is attached to the DC bus via 

boost/buck DC/DC converter. The schematic of the control strategy is shown in Figure 8(b).  

 

 

 
 

(a) (b) 

 

Figure 8. Modeling and control of battery storage system: (a) The equivalent electrical circuit of the lead acid 

BSS, and (b) The schematic of the control strategy of the battery and DC bus 

 

 

A constant resistance is assumed during the different modes of battery. The controlled source is 

described using (10) and (11) [31]. 

 

 
(10) 

 

 (11) 

 

The SoC-BSS is estimated using the (12). 

 

 
(12) 

 

Where A is the exponential zone amplitude, B is the exponential zone time constant inverse, Ebatt is no-load 

voltage, is E0 is battery constant voltage, Ibatt is battery charging and discharging current, K is polarisation 

voltage, Q is battery capacity, it is extracted capacity, Rin is the internal resistance of the battery, and Vbatt is 

the terminal voltage of the battery. 
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2.5.  Super-capacitor SC 

The SC is modeled as internal resistance and a controlled voltage source as shown in Figure 9(a) 

[31]. Figure 9(b) shows the performance of the SC model during charging and self-discharging. The 

supercapacitor output voltage Vsc, supercapacitor current 𝑖𝑠𝑐, and self-discharge current 𝑖𝑠𝑒𝑙𝑓_𝑑𝑖𝑠 are 

expressed using (13) through (15). 

 

 

 
 

(a) (b) 

 

Figure 9. Modeling and validation of super-capacitor SC: (a) Equivalent electrical circuit of SC, and  

(b) its performance during charging and self-discharging 

 

 

 (13) 

 

 
(14) 

 

 @  (15) 

 

Where 𝑉𝑇 is the stern equation which is a function of the number of parallel and series supercapacitor, 

electric charge 𝑄𝑇 , the permittivity of a material, operating temperature, number of electrode layers, 

Interfacial area between electrodes and electrolytes [31]. The model is built based on the Stern model as 

explained and validated in [32]. The SoC-SC of the supercapacitor is calculated using the (16). 

 

𝑆𝑜𝐶𝑆𝐶 =
𝑄𝑖𝑛𝑖𝑡𝑖𝑎𝑙−∫ 𝑖(𝑡)𝑑𝑡

𝑡
0

𝑄𝑡
  (16) 

 

Where Qinitial is the initial amount of supercapacitor electric charge and i(t) is a function of supercapacitor 

current and self-discharge current. The rated capacitance of the supercapacitor is 99.5 F and the rated voltage 

is 48 V. 

 

2.5.  Dump load (DL) 

The DL consists of a power converter and a bank of resistors. The DL-rated power is selected to be 

28% larger than PVEG and WEG rated output power. The DL is connected to the DC bus [33]. 

 

 

3. FUZZY LOGIC ENERGY MANAGEMENT (FEM)  

Each fuzzy logic system is composed of rules, fuzzifier, inference, and defuzzifier as shown in 

Figure 10(a). The FLC model consisted of fuzzy inputs of SoC of SC and BSS in addition to control current 

of BSS. The inputs are entered into an inference block that includes the rules. The main components of each 

FLC are shown in Figure 10(b). The fuzzy input sets and rules are entered into the inference block. The rules 

are derived from human experience. The interesting thing is that numerical data obtained from measurement 

or sensors and linguistic information obtained from human experience are utilized to form a fuzzy rule. 

Fuzzy inference expresses the input to an output using fuzzy logic. In this study, the fuzzy inference is built 

using Mamdani-type [34]. The aggregate output fuzzy set is entered into the defuzzification process. The 

output is a single number. Though, the aggregate of a fuzzy set includes a variety of output values, and so 
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must be defuzzified to decide a single output value from the set. The centroid which calculates the center of 

the area under the curve is used in this study. The main objective of FEM is to ensure the continuity of power 

flow to the load. The FEM operates in excess and deficit power modes. The excess mode has occurred when 

the energy generated from RES is greater than the required power from the load while the deficit mode has 

occurred when generated power is less than load power. The controlling current is estimated by the control 

strategy based on the Pnet, thus it indicates the working mode. In the case of excess power, the surplus 

energy will be directed into the storage system or to DL in case of the storage system is full. In the case of 

deficit power, the shortage will be covered by a storage system or DG. The control strategy depends 

primarily on three inputs data: The controlling current of BSS (𝑖𝐵𝑆𝑆), the state of charge of the BSS (SoC-

_BSS), and the state of charge of SCs (SoC_SC).  

 

 

  
(a) (b) 

 

Figure 10. Fuzzy logic control system: (a) Main components of FLC, and (b) common configuration of the 

FLC model 
 

 

3.1.  Fuzzification  

The FEM has three fuzzy inputs and one fuzzy output as shown in Figure 11. The three inputs are 

𝑖𝐵𝑆𝑆SoC_BSS, and SoC_SC. The SoC_BSS and SoC_SC are VL, L, M, H, and VH which stands for very 

low, low, medium, high, and very, respectively. The 𝑖𝐵𝑆𝑆 is HD, D, LD, LE, E, and HE which stands for the 

high deficit, deficit, low deficit, low excess, excess, and high excess, respectively.  

 

 

 
 

Figure 11. Membership-functions of the inputs SOC-BSS, SOC-SC, and controlling current 

 

 

3.2.  Inference 

Table 1 indicates the fuzzy-rules for the FEM depending on the power mode. Two modes are 

depicted, the excess power mode, and the deficit power mode. The outputs of the fuzzy inference system 

(FIS) are the probability P(t) to select certain mode: (CS) charging SC, (CB) charging BSS, (CS+CB) 

charging BSS and CS, (CB+DL) charging BSS, and dump load, (DL) charge DL, (DB) discharge BSS, 

(DS+DB) discharge SC and BSS, (DG) turn on the DG, and (LL) limit load. In the next step, the If-Then 

logic inference is defined. An explanation example is introduced to one of the cases that may occur at low 

excess mode: IF the power mode is at HD AND SOC_BSS is VL AND SOC_SC is M THEN the probability to 

make DG works is High. 

 

3.3.   Defuzzification  

The next step after applying the rules that correspond to the fuzzification, the defuzzification is 

defined. In this study, the method of the center of gravity is used. Figure 12 shows the output membership 

functions of the FEM system which contains sigmoid-functions with different values for each category. 
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Table 1. Fuzzy-inference of fuzzy-inputs 
Power Mode  SoC_BSS  SoC_SC  Action 

HD OR D AND VL OR L OR M OR H OR VH AND VL OR L THEN LL 

HD AND VL OR L OR M AND M OR H OR VH THEN DG 
H OR VH M OR H OR VH DS+DB 

 

D 

AND VL OR L AND M OR H OR VH THEN DG 

M OR H OR VH M OR H OR VH DS+DB 
 

LD 

AND VL OR L AND VL OR L  

THEN 

LL 

M OR H OR VH VL OR L OR M OR H OR VH DB 

VL OR L M OR H OR VH DG 
 

 

LE 

AND VL OR L OR M OR H OR VH AND VL OR L OR M  

 

THEN 

CS 

VL OR L OR M H OR VH CB 

H OR VH H CS 
H OR VH VH DL 

E OR HE AND VL OR L OR M OR H AND VL OR L OR M OR H  CS+CB 

 

E 

AND VH AND VL OR L OR M OR H  

THEN 

CS 

VL OR L OR M VH CB 

VH VH DL 

H VH CB+DL 
 

HE 

 

AND 

VL OR L OR M OR H  

AND 

VH  

THEN 

CB+DL 

VH VL OR L OR M  CS 

VH H OR VH DL 

 

 

 
 

Figure 12. Membership-functions of the output-variable for each element in the complex  

hybrid power system 

 

 

4. SIMULATION RESULTS AND DISCUSSION 

The simulation model of the MG under investigation is built using the MATLAB/Simulink 

Sim_Power environment. The converters are controlled using the proposed PID controller energy 

management control strategy, which aims to keep the DC-bus within a predefined accepted range and balance 

the power flow. The objective of the simulation tests is to confirm the effectiveness of the proposed energy 

management strategy using well-defined performance indexes; the frequency deviation, the stability of the 

DC bus voltage, and the THDv. In addition to that, the effective distribution of the required energy to the 

different power sources is another indicator of the effectiveness of energy management strategy.  

For performing the required analysis, simulation results were monitored and recorded, these outputs 

include generated power from PVEG, WEG, and DG. The energy is injected or extracted from BSS and SC 

systems. The SoC-BSS and SoC-SC as well. The charging 𝑖𝐶𝐵𝑆𝑆 and discharging 𝑖𝐷𝐵𝑆𝑆 controlling the current 

of BSS are also estimated. It is worth mentioning that the simulation is based on real weather data and load 

demand for a specific location. The solar radiation and load demand are expressed per unit (pu) at a base 

value of 1 kW/m2. The wind speed and temperature are expressed in m/s and oC, respectively. The time 

duration of the simulation set is 24 hours (86400 seconds). Figure 13 shows the annual average weather data 

and load profile applied to all simulation cases. Figure 13 simulates the event of changeover mode resulted 

from sudden cloud effect on PVEG, sudden wind drop effect on WEG, DG set takeover, and the energy dip 

to load situation. This is very important as it directly affects THD. 

 

 

 
 

Figure 13. The annual average weather data and load profile applied during simulation set 1 and set 2 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Fuzzy logic power management for a PV/Wind microgrid with… (Aysar M. Yasin) 

2885 

4.1.  Simulation set 1 

The simulation set is divided into 4 periods and the SoC-BSS and SoC_SC are assigned to 0.6. The 

renewable energy generated from PVEG and WEG is based on the data. The corresponding energy generated 

from PVEG and WEG is illustrated in Figure 14(a). The power injected from DG is zero all over the 

simulation period. The SoC_BSS, SoC_SC, and the BSS controlling current i_BSS clearly show the working 

mode of the BSS and SC.  

Surplus energy is generated in the interval from 0:00-6:00 AM. From 6:00 AM-9:45 AM, a 

deficiency in generated energy has occurred and compensated from BSS and SC. From 9:45 AM-7:25 PM 

surplus energy is generated and injected into BSS and SC. From 7:25 PM-12:00 PM, a power generation 

deficiency has occurred and compensated from BSS and SC. Details are illustrated in Figures 14(b) and (c). 

The frequency deviation, THDv in addition to the normalized DC bus voltage are investigated in this study. 

The THDv did not exceed the 4% threshold limit. The frequency deviation and the normalized DC bus 

voltage are within the accepted range. Details are illustrated in Figure 14(d). 

 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 14. Results of simulation set 1 (a) Power output from PVEG and WEG, (b) Injected/absorbed power 

from BSS and SC, (c) The SoC_BSS, SoC_SC, and (d) Controlling current i_BSS, THDv, and ∆f in addition 

to the normalized DC-bus voltage 

 

 

4.2.  Simulation set 2 

Compared to simulation set 1, the metrological data and load demand are kept constant. The 

corresponding energy from PVEG and WEG are identical to simulation set 1. Details are shown in  

Figure 14(a). Simulation set 2 assumed that SoC-BSS and SoC_SC are equal to 0.4. The power-sharing 

among the power produced from PVEG, WEG, load demand, BSS, and SC, generated DG power are 

illustrated in detail in this study. Details are shown in Figure 15(a). The charge/discharge mode of the BSS 

under different circumstances of PVEG and WEG produced power and load variation is illustrated in this 

study. Details are shown in Figure 15(b). The simulation study shows that the quality of the power signal is 

high. Details are shown in Figure 15(c). Once again, the simulation results of set 2 shown in Figure 15 

confirms the applicability of the control strategy. 

To show up the advantageous features of FLC over the deterministic approach, a simulation 

comparison study is implemented. The study is based on data other than used in simulation sets 1 and 2. 

Details of the data are shown in Figure 16(a). The average daily load is 10.67 kWh. The comparison is based 

on the amount of energy flow from/to the energy storage system, energy injected to DL, and the energy 

generated from DG. A better management approach ensures higher energy injection to the storage system, 

less energy injection to DL, and lower dependency on DG. The system components, capacities, and 

constraints are identical to ensure a fair comparison. The control approach has a great effect on the 

charging/discharging mode of the BSS and SC. This mainly affects the amount of energy injected into DL 

and the operating hours of DG. The amount of energy injected into DL is zero in the case of the FLC 

approach, while it is not in the case of a deterministic approach. This is considered a drawback of the 

deterministic approach.  
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The energy generated from DG is zero for both deterministic and fuzzy approaches. This is 

illustrated in Figure 16(b). The SoC of SC and BSS is a good indicator of the amount of energy 

injected/delivered to the storage system. The SoC of BSS and SC at fuzzy and deterministic approaches are 

studied in the comparison set study. The SoC analysis study shows that the SoC of BSS at the fuzzy approach 

increases from 0.6 to 0.67 while it keeps 0.6 in the deterministic approach. Energy-wise the difference is 

equal to 2.5 kWh/day. In the same context, SoC of SC increased from 0.6 to 0.81 and from 0.6 to 0.84 for the 

fuzzy approach and deterministic approach, respectively. Energy-wise the difference is equal to 0.5 kWh/day. 

The amount of energy saved by using a fuzzy approach is 2 kWh/day which is about 18.7% of the daily load. 

This is illustrated in Figure 16(c). The comparison study results of the performance indexes show that DC-

Bus in the case of the FLC approach is more stable than the deterministic approach. The THDv and 

frequency deviation in the case of FLC is acceptable while it is not in the case of a deterministic approach. 

Figure 16(d) shows the comparison study results of the performance indexes. 

 

 

  
(a) (b) 

 
(c) 

 

Figure 15. Results of simulation set 2: (a) Injected/absorbed power from BSS, SC, and DG,  

(b) The SoC_BSS, SoC_SC, and controlling current i_BSS, (c) THDv and ∆f in addition to the normalized 

DC-bus voltage 

 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 16. Results of simulation comparison study: (a) Input data of the comparison simulation set,  

(b) Energy generated from DG and injected to DL, (c) SoC of SC and BSS for both cases: a fuzzy and 

deterministic approach, (d) DC_Bus, THDv, and frequency deviation for both case 
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5. CONCLUSION 

The results indicate that the FLC-based scheme is capable to adjust the DC bus voltage within 

assigned limits. A power balancing is confirmed even with the sporadic power output nature of WEG and 

PVEG. The outcomes approve the efficiency of the suggested power management scheme and are considered 

as a foundation for practical realization. The outcomes display that DG is effective backup power. The DG 

can’t instantly combine with the DC-bus because of its sluggish dynamic behavior and SC effectively 

overwhelmed this drawback. The SC also charges and discharges BSS in case of a high shortage and surplus 

power. The scheme utilizes a dumping load to preserve the stability in the DC-Bus during surplus power 

cases. This work resolved the low dynamic performance encountered in the conventional approach, lessen 

steady-state error and switching losses of the power converters. It also lessens THDv of the output voltage 

signal. 
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