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 The jamming analysis transmission selection (JATS) sub-system is used in 

radar systems to detect and avoid the jammed frequencies in the available 

operating bandwidth during signal transmission and reception. The available 

time to measure the desired frequency spectrum and select the non-jammed 

frequency for transmission is very limited. A novel fast time (FAT) 

technique that measures the channel spectrum, detects the jamming sub-band 

and selects the non-jammed frequency for radar system transmission in real 

time is proposed. A JATS sub-system has been designed, simulated, 

fabricated and implemented based on FAT technique to verify the idea. The 

novel FAT technique utilizes time-domain analysis instead of the well-

known fast Fourier transform (FFT) used in conventional JATS sub-systems. 

Therefore, the proposed fast time jamming analysis transmission selection 

(FAT-JATS) sub-system outperforms other reported JATS sub-systems as it 

uses less FPGA resources, avoids time-delay occurred due to complex FFT 

calculations and enhances the real time operation. This makes the proposed 

technique an excellent candidate for JATS sub-systems. 
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1. INTRODUCTION 

 Wireless communication is recently one of the most important technologies of our time. It is used in 

different civilian, industrial, medical, military and space applications. The tremendous wireless applications 

enforced us to use wireless channels although they have many different impairments. Jamming is the main 

channel impairment in military applications. Jamming is a high-power signal generated at specific operating 

frequency or bandwidth to interrupt the received signal [1, 2]. That will compel the radar to operate badly in 

the presence of threat, which is risky. Many techniques have been used to overcome jamming from sidelobe-

point of view [3, 4]. JATS is widely used in tactical surveillance radar as an effective technique to overcome 

the jamming effect [5]. 

The main function of JATS is to measure the power spectral density (PSD) across the receiver 

operating frequency band and reveal the undesired jammed frequencies within this band. Then it selects the 

best frequency within the radar frequency band that has the minimum power and uses it for radar 

transmission. The designs and methodologies of using JATS to determined jammed frequencies have 

developed a lot over the last four decades. 

In [6] a surface acoustic wave device (SAW) is designed and used with an envelope detector to 

determine the amplitude of each frequency in the predetermined frequency band. The frequencies that have 

https://creativecommons.org/licenses/by-sa/4.0/
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amplitudes greater than a specific threshold are considered as jammed frequencies. The jammed frequencies 

are then avoided in the transmission frequency selection. The field-programmable gate array (FPGA) can be 

used to implement digital and analog modulation systems in modern radars [7, 8]. In [9] the FPGA is used to 

implement the JATS by utilizing the fast Fourier transform (FFT) core to monitor the spectrum of the 

channel and select either the best frequency that has minimum amplitude for transmission or the frequency 

agility mode with fast self-switching in real time. There are many advanced techniques to select the best 

single frequency or multiple frequencies in case of using frequency hopping spread spectrum [10-13]. 

To alleviate the FFT complexity and to enhance the time computation, the JATS is developed to 

calculate the average amplitude of each frequency by applying a simple algorithm using FPGA [14-17]. The 

JATS algorithm implemented on the FPGA determines whether the RADAR will use a fixed frequency or 

frequency agility mode and selects the best frequencies for RADAR transmission in a good real time. 

In this paper, a novel FAT technique for JATS sub-system is proposed. The novel FAT-JATS sub-

system is able to detect the jammer at very small jamming to noise ratio (JNR). Furthermore, the FPGA 

resources utilization is approximately 60% less. It can be utilized to countermeasure the jamming effect in 

pulsed radar system. The proposed system avoids the demand of high sampling rate and reduces the 

calculations complexity because it detects the jamming signal in time domain without monitoring the 

spectrum. That enhances the computation time to select the new clear non-jammed frequency for 

transmission in the required real time. The system is analyzed, designed, simulated and then implemented to 

validate the idea. The proposed system includes the design and implementation of the antenna, radio 

frequency (RF) receiver, the intermediate frequency (IF) receiver, and the FAT-JATS digital signal 

processing (DSP). 

 

 

2. RESEARCH METHOD  

The proposed FAT-JATS system is entirely designed, simulated and implemented from the antenna 

down to the signal processing for pulsed radar systems. It achieves lower processing time and lower 

hardware complexity compared to classical JATS sub-systems. The system will be presented as an antenna 

design, RF design, and DSP design. 

 

2.1.  The antenna design 

To improve the signal-to-noise ratio (SNR) performance of a wireless communication system, dual 

polarized antennas are widely used [18, 19]. An antenna with two orthogonally polarized dipoles ensures that 

the polarization vector of any incident wave would be aligned with, at least, one of the receiving orthogonal 

dipoles [20]. So, in the proposed FAT-JATS system, a ±45◦ dual-polarized cross-dipole antenna is utilized for 

omnidirectional coverage. The antenna consists of two elliptical-shaped crossed dipoles (Dipole A and 

Dipole B) printed on a square FR-4 laminate (lies in the XY plane) with a relative permittivity ϵr=4.3, a loss 

tangent of 0.025 and a thickness of 1.6 mm as shown in Figure 1. 

 

 

 
(a) (b) 

 

Figure 1. The proposed antenna; (a) structure (b) prototype 

 

 

Dipole A consists of two elliptical elements printed on the opposite sides of the laminate. The two 

elements are linked by a feeding strip and an RF exciting connector. Dipole B is a rotated replica of Dipole A 

with a relative angle of 90◦ around Z-axis. A minor difference in Dipole B is that its feeding strip is printed 
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on the bottom side of the laminate to avoid intersection with the feeding strip of Dipole A. The major and 

minor axes of the ellipse (𝐴𝑀𝑎𝑗 and 𝐴𝑀𝑖𝑛 respectively) are initially chosen such that current path length 

across the dipole varies from 0.5λmin=2𝐴𝑃 to 0.5λmax=2𝐴𝑀𝑎𝑗, where λmin and λmax are the free-space 

wavelengths at the start and the stop frequencies of the frequency band of interest respectively (1200 MHz 

and 1400 MHz in our case) and 𝐴𝑃 is half of the perimeter of the ellipse which is linked to 𝐴𝑀𝑎𝑗  and 𝐴𝑀𝑖𝑛 by: 

 

𝐴𝑃 = 𝜋 
√(

𝐴𝑀𝑎𝑗

2
)

2

+  (
𝐴𝑀𝑖𝑛

2
)

2

2
 

(1) 

 

The optimized dimensions of the proposed antenna can be summarized (in mm) as in Figure 1,  

𝐴𝑀𝑎𝑗=48, 𝐴𝑀𝑖𝑛=23.5, 𝐴𝑃=60, and Llam=77. The simulated and measured S-parameters are shown in Figure 2. 

A good agreement between simulations and measurements can be noticed. The antenna covers the frequency 

band from 1200-1400 MHz with a reflection coefficient better than -15 dB (VSWR≤1.5) and isolation 

between its ports better than -25 dB. It worth noting that both Dipole A and Dipole B have the same 

reflection coefficients because of the symmetry of the antenna structure. So, for simplicity, reflection 

coefficients of Dipole A are only presented. The antenna realized gain is shown in Figure 2. The antenna has 

an average realized gain of 2.2 dBi. Figure 3 presents the normalized radiation patterns at E- and H- planes 

(45◦ planes) at the start, centre and stop frequencies. 

 

 

 
 

Figure 2. S-Parameters and realized gain of the proposed antenna 

 

 

 
 

Figure 3. Normalized radiation patterns 
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As shown, the antenna enjoys a stable radiation pattern across the frequency band with uniform 

omnidirectional coverage. 3D radiation patterns at the centre frequency are presented in Figure 4 for Dipole 

A and Dipole B respectively. It worth noting that the received signals at the two ports are combined and then 

fed to the RF receiver. 

 

 

 
(a) (b) 

 

Figure 4. 3D radiation patterns of; (a) Dipole A (b) Dipole B 

 

 

2.2.  The RF design 

It is necessary to detect the jamming signal that is received by the antenna. The function of the RF 

receiver is to enhance the sensitivity of the system to detect low power signals that may jam the main signals. 

In addition, it protects the used components from high power jamming signal that may saturate or degrade its 

operational function. This section is divided into two parts. First, the design of the RF receiver is presented 

and illustrated using its general block diagram. Then, the proposed RF design will be analyzed. 

 

2.2.1. Principle of operation  

The received RF signal with remarkable amplitude compared to the noise signal at the end of the 

pulse repetition time (PRT) of a pulsed radar is considered as a jamming signal [21]. As shown in Figure 5, 

the jamming signal is received via an RF limiter to reduce the amplitude of the jamming signal to avoid 

exceeding a pre-determined power limit. The first stage limiter is used to protect the low noise amplifier 

(LNA) from being saturated. Then a band pass filter (BPF) is used to cancel out the undesired frequencies 

and pass only the desired frequencies. The LNA is used to amplify the received signal to enhance the 

sensitivity of receiver by amplifying the noise-like jamming signal, which its amplitude is close to the noise 

signal (i.e. JNR = 0 dB), to ease its detection. Then a second stage limiter is used to limit the power to the 

accepted input level of the RF input to the mixer. 

 

 

 
 

Figure 5. The RF receiver of the JATS system 
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2.2.2. Jammer signal detection model  

In this section, a jammer detection mathematical model is presented. The jammer signal that is 

received at the front end of the antenna can be presented as (2). 

 

𝑥𝐽(𝑡) = 𝐴𝐽 𝑒𝑗(2𝜋𝑓𝐽𝑡+ 𝜑𝐽(𝑡)) (2) 

 

where 𝑥𝐽(𝑡) is the jammer transmitted signal, AJ is the jammer transmitted signal amplitude, fJ is the jamming 

frequency, and 𝜑𝐽(𝑡) is the jammer signal phase. At the receiver, a stepped frequency modulated (SFM) 

signal is generated using voltage control oscillator (VCO). This signal can be presented as [22] 

 

𝑥𝑠(𝑡) = 𝐴𝑠  cos (2𝜋𝑓𝑠𝑡 + 𝜋
𝐵

𝑇
𝑡2 + 𝜑𝑠(𝑡))   (3) 

 

where 𝑥𝑠(𝑡) is the VCO generated signal, As is its amplitude, B is the bandwidth, T is the scan time period, 

𝜑𝑠(𝑡) is the initial phase. 𝑥𝑠(𝑡) can be represented as (4), (5). 

 

𝑥𝑠(𝑡) = 𝐴𝑠  cos (2𝜋𝑓𝑠𝑡 + (2𝜋
𝐵

2𝑇
𝑡) 𝑡 + 𝜑𝑠(𝑡)) 

=  𝐴𝑠  cos (2𝜋𝑡 (𝑓𝑠 +
𝐵

2𝑇
𝑡) + 𝜑𝑠(𝑡))   

(4) 

 

If the two signals 𝑥𝐽(𝑡) and 𝑥𝑠(𝑡) are mixed at the receiver, the output signal 𝑥𝑟(𝑡) can be 

represented as: 

 

𝑥𝑟(𝑡) = 𝐴𝑠 [cos (2𝜋𝑡 (𝑓𝑠 +
𝐵

2𝑇
𝑡) + 𝜑𝑠(𝑡))]

∗ 𝐴𝐽 [cos (2𝜋𝑓𝐽𝑡 + 𝜑𝐽(𝑡)) + 𝑗 sin (2𝜋𝑓𝐽𝑡 + 𝜑𝐽(𝑡))] 

=
𝐴𝑠𝐴𝐽

2
[cos (2𝜋𝑡 (𝑓𝑠 +

𝐵

2𝑇
𝑡 + 𝑓𝐽) + 𝜑𝑠(𝑡) + 𝜑𝐽(𝑡))

+ cos (2𝜋𝑡 (𝑓𝑠 +
𝐵

2𝑇
𝑡 − 𝑓𝐽) + 𝜑𝑠(𝑡) − 𝜑𝐽(𝑡)) 

+ 𝑗 sin (2𝜋𝑡 (𝑓𝑠 +
𝐵

2𝑇
𝑡 + 𝑓𝐽) + 𝜑𝑠(𝑡) + 𝜑𝐽(𝑡))

+ 𝑗 sin (2𝜋𝑡 (𝑓𝑠 +
𝐵

2𝑇
𝑡 − 𝑓𝐽) + 𝜑𝑠(𝑡) − 𝜑𝐽(𝑡))]   

(5) 

 

Using a low-pass filter (LPF), the higher frequency will be removed and (5) can be written as: 

 

𝑥𝑟(𝑡) = 𝐴 [cos (2𝜋𝑡 (𝑓𝑠 +
𝐵

2𝑇
𝑡 − 𝑓𝐽) + ∆𝜑)

+ 𝑗 sin (2𝜋𝑡 (𝑓𝑠 +
𝐵

2𝑇
𝑡 − 𝑓𝐽) + ∆𝜑)]                      

(6) 

 

where 𝐴 = 
𝐴𝑠𝐴𝐽

2
 and ∆𝜑 is the difference between the jammer signal phase 𝜑𝐽(𝑡) and the initial phase 𝜑𝑠(𝑡). 

∆𝜑 is an independent uniform distributed value and the amplitude 𝐴 has a Rayleigh distribution [9]. 

Suppose that the radar system is operating across a bandwidth equal to B from a lower frequency 

point 𝑓𝑙 to a higher frequency point 𝑓ℎ. Let 𝑓𝑠 is equal to 𝑓𝑙. At some time during VCO sweep time interval 𝑇, 

the value of 𝑓𝑠 +
𝐵

2𝑇
𝑡 will be approximately equal to 𝑓𝐽. This is the time that we are interested in. Assuming 

that the number of frequency steps generated by the VCO is 1000, then the time that we are interested in 

happens at one point from these 1000 points. When the mixer output 𝑥𝑟(𝑡) is filtered with LPF that has a 

cutoff frequency equal to 
𝐵

1000
, then the amplitude of 𝑥𝑟(𝑡) at this point will be: 

 

𝑥𝑟(𝑡) = 𝐴 [cos(∆𝜑) + 𝑗 sin(∆𝜑)] =  𝐴 𝑒𝑗∆𝜑  (7) 
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The instant when the jammer frequency 𝑓𝐽 is equal to the VCO frequency 𝑓𝑠 +
𝐵

2𝑇
𝑡, the signal 𝑥𝑟(𝑡) 

will have the lowest frequency during the time interval 𝑇. If we know the time at which the lowest frequency 

is observed, the frequency of the jammer can be estimated based on the VCO frequency at this instant as will 

be illustrated in the DSP design. 

 

2.3.  The digital signal processing design 

 The general block diagram of the proposed FAT-JATS system is presented in Figure 6. The jammer 

signal is mixed with the VCO output that scans the bandwidth B at 1000 points during the scanning time 

interval T. The mixer output is filtered using a LPF with a cutoff frequency equal to 1 MHz. The filter will 

pass the signal 𝑥𝑟(𝑡) that has the maximum amplitude at instant time 𝑡 (∀ 𝑡 ∈ 𝑇). That happens when the 

jammer frequency equals to the VCO frequency (i.e. ∆𝜑 = 0). The filter output is then digitized using 80 M. 

sample/second analog to digital converter (ADC). The sampled signal is then down-sampled 80 times using 

the FPGA board. Four main processes are implemented using the FPGA board: 10 KHz digital LPF, down 

sampling, peak estimation where the jammer frequency is estimated, and generating control signals for both 

the VCO and the radar system frequency generator. 

 

 

 
 

Figure 6. The general block diagram of the proposed FAT-JATS system 

 

 

In the first stage of design the system is simulated using MATLAB. It is supposed that the jammer is 

transmitting a microwave signal with a frequency equal to 1300 MHz, and there is a communication system 

working in L-band from 1200 to 1400 MHz. In the following simulations, a VCO is generating 1000 step in 

the frequency band from 1200 to 1400 MHz, which is 200 KHz in each step. The VCO chirp time is 12.8 μs. 

As given in Equation 5, the mixer output spectrum will have two main sub-bands. The first Sub-band is 𝑓𝑠 +
𝐵

2𝑇
𝑡 − 𝑓𝐽, which is [1200:1400]-1300 MHz, and the second sub-band is 𝑓𝑠 +

𝐵

2𝑇
𝑡 + 𝑓𝐽, which is 

[1200:1400]+1300 MHz. The frequency spectrum of the mixer output is investigated as shown in Figure 7. It 

is obvious that the two sub-bands are recognized from 0:100 MHz, and from 2500:2700 MHz respectively. 

While mixing the VCO output and the jammer signal, the minimum output frequency response is produced 

when the VCO frequency becomes very close to the jammer frequency. 

Consequently, the 200 KHz frequency step of the VCO gives a confident to expect that the VCO 

frequency output is very close to the jammer frequency 𝑓𝐽 with 100 KHz resolution error. That means 

minimum produced frequency of the mixer output will be 𝑓𝐽 ± 100 𝐾𝐻𝑧. If we follow the instants when this 

minimal frequency is produced, then we can follow the jammer frequency. The mixer output is filtered with 

an FIR LPF designed using the MATLAB FDA-tool. The passband and the stopband are 1 MHz and 10 MHz 

respectively, with 1 dB pass amplitude, -40 dB stop amplitude and the number of coefficients is 158. Figure 8 

shows the magnitude response of the 1 MHz LPF. 

The filtered signal will have a maximum amplitude when the VCO frequency is equal to the jammer 

frequency. In Figure 9, the horizontal axis represents a single scan of the VCO. This time axis refers to an 

equivalent VCO frequency step at every time instant. Figure 9 shows that the maximum amplitude is 

obtained at the jammer frequency, which is 1300 MHz. The analog signal is then digitized using ADC with a 

sampling rate higher than twice the maximum frequency component in this signal. Practically, it is preferred 
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to sample the analog signal with a sampler that has a sampling rate more than 5 times of the highest 

frequency component in the signal. In this simulation, it is supposed that we have an 80 MHz ADC to sample 

the analog signal.  

 

 

 
 

Figure 7. The spectrum of the mixer output 

 

 

 
 

Figure 8. 1 MHz FIR LPF magnitude response 

 

 

 
 

Figure 9. The 1 MHz FIR filter output signal 
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To enhance the resolution of the detected peaks in Figure 9, the mean of the signal is being tracked 

by a sliding window [23]. A moving average window with length equal to 100 samples is used to enhance the 

peak resolution and minimize the effect of the Gaussian noise. The output of the moving average sliding 

window can be presented by (8): 

 

𝑥𝑀𝐴(𝑛) =
1

100
  ∑ 𝑥(𝑛)

𝑛

𝑛−99

  (8) 

 

where 𝑥(𝑛) is the sampled signal and 𝑥𝑀𝐴(𝑛) is the output of the moving average sliding window filter. The 

digital signal will be processed on a processing field programmable gate array (FPGA) based board. For 

efficient processing time and least used resources, the digital signal is down sampled 80 times to reach a 

sampling rate equal to 1 MHz. Figure 10 shows the moving average sliding window filter output when the 

signal in Figure 9 is applied to it. The signal is down sampled with a down sampling ratio equal to 80:1. 

 

 

 
 

Figure 10. The moving average sliding window output for the signal 𝑥(𝑛) 

 

 

The signal is then applied to a digital FIR LPF with a passband frequency equal to 10 KHz to reduce 

the high frequency components that was generated from intermodulation, mismatch, and cross talk between 

tracks on the baseboard. Figure 11 shows the filtered signal using the 10 KHz LPF. To convert the bipolar 

signal to a unipolar signal, the absolute value for each consequent sample are summed and divided by two. 

The new unipolar signal 𝑥𝑈𝑀𝐴(𝑛) can be presented by (9). 

 

𝑥𝑈𝑀𝐴(𝑛) =
|𝑥𝑀𝐴(𝑛)| +  |𝑥𝑀𝐴(𝑛 − 1)|

2
 (9) 

 

Figure 12 shows the proposed FAT-JATS system output when the input is a unipolar signal 

𝑥𝑈𝑀𝐴(𝑛), which is 1300 MHz used as a jamming signal. To illustrate the jamming detection performance of 

the proposed system. A radar system is a perfect example for this proposed system. If the radar is working in 

the L-band from 1200 to 1400 MHz, then the worst channel to use in this case is around the 1300 MHz. 

Although the peak amplitude of the detected jamming signal (1302 MHz) is slightly shifted from the jammer 

frequency (1300 MHz), it will not affect the functionality of the FAT-JATS system. That is because the radar 

channels have a bandwidth, usually, not less than 5% of the whole system bandwidth. By jamming any 

frequency in a specific channel, all the channel will be considered jammed. 

Suppose that we have three jamming signals at frequencies 1280, 1300, and 1340 MHz. The three 

signals are applied to the proposed algorithm. The three Jamming signals are detected at the same frequencies 

successfully as shown in Figure 13. It is desirable to investigate the performance of the FAT-JATS system 

versus the jamming-to-noise ratio (JNR). Suppose that the JNR is 0 dB, which means that the jamming power 

is equal to the noise power. This case is the worst case that the FAT-JATS systems may encounter. If there 

are three jamming signals (e.g. at frequencies 1280, 1300, and 1340 MHz), and with a JNR equal to 0 dB, the 
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system will still be able to detect jammed channels at these frequencies. Figure 14 shows the detected 

amplitude for each jamming signal using the FAT-JATS system. 

 

 

 
 

Figure 11. The filtered signal using 10 KHz LPF 

 

 

 
 

Figure 12. The FAT-JATS system output unipolar signal 𝑥𝑈𝑀𝐴(𝑛) 

 

 

 
 

Figure 13. Three jamming signals detection at frequencies 1280, 1300, and 1340 MHz 
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Figure 14. Three jamming signals are detected at JNR=0 dB 

 

 

3. RESULTS AND DISCUSSION 

This section illustrates an experiment that is performed to prove that the methodology and 

simulations are the same as the real measurements. It was assumed that the jamming signal is composed of 

three frequency tones 1280, 1300, and 1340 MHz. These frequencies were generated using three SLSM5-12 

frequency synthesizers produced by Luff Research Company. The experiment setup was performed as shown 

in Figure 6. The jamming signals are mixed with the minicircuits ZX95-1750W-S+ VCO output signal using 

mini-circuits ZX05-C24LH-S+ RF mixer. The VCO control signal is generated using AD9280 digital-to-

analog converter and Spartan 6 Xilinx FPGA. Figure 15 shows the VCO control signal. The 10-bit digital 

words with digital values saved in a memory were used to generate the VCO control signal producing 1024 

steps which is consequently producing 1024 frequencies in the required bandwidth (1200-1400 MHz). The 

clock signal that is used to convert the digital word to the analog control signal is repeated every 12.5 ns, that 

the control signal is a sawtooth signal repeated every 12.5 ns×1024=12.8 μs. 

 

 

 
 

Figure 15. The VCO analog control signal 

 

 

The mixer analog output signal is filtered using a 1 MHz LPF then digitized using 80 MHz ADC. 

The digital signal is down sampled with a down sampling ration equal to 80:1 then processed on the Spartan 

6 Xilinx FPGA. The processing steps are: Applying a moving average window as presented in (8), applying a 

10 KHz digital LPF, converting the bipolar signal to a unipolar signal, and peak detection to estimate the 

jammer frequency. These steps were presented previously in section 2. Figure 16 shows the system output 

using ISE design suite. It is obvious that the three jammer frequencies are detected. Figures 11-13 are 

matched to the real implemented system output. 

The experiment setup is established according to Figures 5 and 6. The jamming frequency is 

assumed 1300 MHz and it is generated by a keysight frequency generator model N5171B as shown in  

Figure 17. The FPGA is used to control the sweep time of the VCO. The ADC output is received and 

illustrated on a computer screen. The bandwidth (200 MHz) is divided among 16 sub-bands from 1 to 16 (i.e. 

each sub-band is 12.5 MHz as prescribed by the band pass filter of the filter bank). It is noticed that sub-band 
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number 8 is detected as a jammer, which is related to the assumed jamming frequency (1300 MHz), and it is 

in the center of the operating bandwidth. Once the jamming sub-band is detected, a different sub-band with 

good channel characteristics will be selected to be used by the radar transmitter. 

 

 

 
 

Figure 16. The system output using ISE design suite 

 

 

 
 

Figure 17. The experiment setup 
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A comparison between the proposed FAT-JATS technique and the traditional FFT method [24, 25] 

is presented in this section from FPGA resources utilization point of view. The design is implemented for 

both methods on the Xilinx SPARTAN6 XC6SLX9-2tqg144. Table 1 shows the device utilization for both 

FAT-JATS technique and the traditional FFT method. The traditional FFT method consumes nearly three 

times the resources of the proposed FAT-JATS technique. 

 

 

Table 1. FPGA utilization for both FFT and FAT-JATS techniques 
Hardware resources Available resources FFT technique Proposed FAT technique 

slice LUTs 5720 673 (12%) 212 (4%) 

flip flops 11440 219 (2%) 120 (1%) 
bonded IOBs 102 30 (30%) 30 (30%) 

number used as BUFGs 16 4 (25%) 4 (25%) 

DSP slices 16 11 (70%) 0 (0%) 
LUT RAM 245 35 (15%) 33 (14%) 

block RAM 576 kb 151 (26%) 0 (0%) 

 

 

4. CONCLUSION 

The paper has proposed a complete design, simulation and implementation for a developed FAT-

JATS system to mitigate jamming in real time for radar systems. The conventional FFT method that is 

implemented on the same FPGA board to estimate the frequency spectrum of the operational bandwidth and 

to select the new non-jammed operating frequency utilizes approximately three more times resources than the 

proposed method. Furthermore, to implement the FFT method to achieve jamming analysis for the entire 

operating bandwidth (i.e. 200 MHz), we need a higher sampling rate ADC, which is practically five times the 

operating bandwidth (i.e. 1 GS). Otherwise, in the proposed method we just need an ADC with sampling rate 

not more than 10 M samples/sec because the interested bandwidth is less than 2 MHz after the sweep down 

conversion. The proposed FAT-JATS technique is able to detect the jamming sub-band and refresh the 

jamming detection every one full sawtooth signal (12.8 μs). That allows the radar system to change the 

operating frequency from pulse-to-pulse during the dead time without any time delay. To conclude, the 

proposed FAT-JATS system improves the complexity caused by the FFT methods, uses less FPGA resources 

and support the radar system to operate in real time. 
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