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 In this paper, the problem of direction of arrival estimation is addressed by 

employing Bayesian learning technique in sparse domain. This paper deals 

with the inference of sparse Bayesian learning (SBL) for both single 

measurement vector (SMV) and multiple measurement vector (MMV) and its 

applicability to estimate the arriving signal’s direction at the receiving 

antenna array; particularly considered to be a uniform linear array. We also 

derive the hyperparameter updating equations by maximizing the posterior of 

hyperparameters and exhibit the results for nonzero hyperprior scalars. The 

results presented in this paper, shows that the resolution and speed of the 

proposed algorithm is comparatively improved with almost zero failure rate 

and minimum mean square error of signal’s direction estimate. 
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1. INTRODUCTION  

Direction of arrival (DOA) estimation is a well-known problem in the field of array signal 

processing where, the angle of arrival (direction) of the signal at the receiver needs to be estimated from the 

knowledge of the received signal itself. This problem of direction of arrival estimation has attracted many 

modern researchers because of its large range of applications in certain fields such as RADAR, SONAR, 

seismology, wireless mobile communication and others. To solve this problem of signal’s direction 

estimation, an array of antennas with linear or non-linear structure having uniform or non-uniform antenna 

spacing can be used at the receiver. The signals which are generated from the far-field sources arrive at a 

particular direction and impinge on the antenna array. The received signals from the antenna array of ‘M’ 

sensors form the under-sampled observed signal samples. These observed signal samples contain the 

direction information and hence they are processed to estimate the signal source direction [1]. From past two 

decades, many algorithms were derived to solve the problem of DOA estimation. These algorithms can be 

broadly classified into: i) Conventional methods, ii) Subspace methods, iii) Sparse methods.  

The standard MUSIC algorithm proposed in [2, 3], decomposes signal and noise subspaces along 

with multiple signal classification methodology to estimate the number of signal sources as well as the spatial 

spectrum of the received signal. The drawback of this algorithm is that it fails for coherent signal sources. In 

[4], an improved and modified MUSIC algorithm is proposed by employing matrix decomposition to address 

the case of coherent signal sources but the performance of this algorithm deteriorates for low SNR region. In 

[5, 6], the performance of all these subspace based standard DOA estimation algorithms are analyzed and 
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found that these techniques offer good speed and less complexity but suffer from low resolution, high 

sensitivity towards correlated signal sources and high MSE. 

In recent years, after the emerge of sparse signal representation several algorithms were derived as 

solutions to the DOA estimation problem by considering and representing the problem as sparse signal 

recovery problem by utilizing the sparse nature of to be estimated signal [7]. The sparse based algorithm 

proposed in [8, 9] is based on the orthogonal matching pursuit (OMP) technique, which suffers from low 

performance and requires the knowledge of source number. In [10], a convex relaxation with l1 norm penalty 

is applied to mitigate the perturbation effects. In [11, 12], an l1-svd based algorithm along with re-weighted 

l1 minimization is proposed to minimize the complexity of DOA estimation algorithm but suffers with low 

performance for coherent and closely spaced signal sources. The compressive sensing based DOA estimation 

algorithms proposed in [13-16] are based on the simple least squares minimization method which offers good 

MSE, resolution but suffers from high complexity, the performance of BP and OMP depends on the array-

steering matrix [9], and it degrades for highly correlated array-steering matrix in the case of DOA problem. 

The scaling/shrinkage operations in convex relaxation may reduce variance for increase in sparsity or vice 

versa. 

In the most recent years, Bayesian methods like maximum a posteriori (MAP) [17, 18], maximum 

likelihood (ML estimation) [18], iterative reweighted l1 and l2 algorithms were applied to solve the DOA 

estimation problem. These Bayesian algorithms suffer from high MSE, even though true priors are used. In 

[17], MAP only guarantees maximization of product of likelihood and the prior of the unknown sparse signal. 

ML estimate in [18], also maximizes only the likelihood function by assuming prior of unknown to be 

equally likely to occur. 

Sparse Bayesian learning (SBL) with relevance vector machine proposed by Tipping in [19] and re-

represented by Wipf in [20] for linear regression/sparse signal recovery problem led a broader way with 

higher performance results in the research of sparse signal recovery. In this paper, we present the detail 

inference of Sparse Bayesian learning and its applicability to DOA problem using on-grid approach. We also 

derive the updating equations for hyperparameters by maximizing the posterior of hyperparameters for 

nonzero hyperprior scalars.  

Further, the paper is organized as: Section 2 describes the signal model used for DOA estimation for 

a uniform linear array. Section 3 describes the basics and inference of the Sparse Bayesian Learning 

technique. Section 4 describes about updating of the hyperparameters of SBL estimate by proposing a 

method of maximum-a-posterior of the hyperparameters. Section 5 summarizes the proposed algorithm. In 

section 6, the results and performance analysis of the proposed algorithm are presented. Finally, section 7 

concludes the paper. 

 

 

2. SIGNAL MODEL FOR SPARSE DOA ESTIMATION 

Consider ‘D’ number of arriving signal sources s(n)=[s1(n), s2(n)…. sD(n)]T impinging on the 

uniform linear array of ‘M’ sensors with a uniform spacing of d ≤ λ/2, where λ is the wavelength of the 

arriving signals. Let y(n)=[y1(n), y2(n)…. yM(n)]T be Mx1 observed signal samples received by ‘M’ antenna 

array sensors. For simplicity, assuming a single snapshot (single measurement vector) i.e, n=1, the problem 

of direction of arrival estimation can be modeled as in (1). 

 

y(n) = A(θ)x(n) + w(n)    (1) 

 

where A is MxN array steering matrix given by (2) and a(θi) represents the atom for a particular direction 

angle θi. For searching the entire angle space for DOA a particular grid of ‘N’ values of angles are 

considered. Each atom is a vector of Mx1 antenna array steering vector given in (3). 

 

A(θ) = [a(θ1), a(θ2)… . . a(θN)]  (2) 

 

a(θi) = [1 e−jβdsin(θi) e−j2βdsin(θi) e−j3βdsin(θi) … … …e−j(M−1)βdsin(θi)]T   (3) 

 

where, β=2π/λ, x(n)=[x1(n), x2(n)…. xN(n)]T is Nx1 signal vector that needs to be estimated to find the source 

signal directions in presence of antenna array noise vector w(n)=[w1(n), w2(n)…. wM(n)]T of Mx1 size. The 

estimated x(n) values are the estimation of signal power s(n) and is related by (4). 

 

xi(n) = {
sj(n)      θi = DOA; ∀ i = 1,2… N

0 else
 (4) 
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The model in (1) turns out to be the problem of sparse signal recovery from the under-sampled 

measurements y [13]. 

 

 

3. SPARSE BAYESIAN LEARNING INFERENCE 

Consider a single snapshot case, DOA estimation problem as in (1). The w(n) are independent noise 

samples which is assumed to be zero–mean Gaussian random process with noise variance σ2. By Bayes’s 

theorem [19], the posterior of unknown x by knowing the observed antenna array received signal y can be 

expresses as in (5). 

 

P(x/y)=
P(y/x)P(x)

P(y)
        (5) 

 

where, P(y/x) is the likelihood of observed data for the estimated unknown parameter ‘x’ which is assumed 

as P(y/x) = 𝒩(y/Ax, σ2), where the notation 𝒩(. ) specifies a guassian distribution over y with mean Ax  

and variance σ2. This assumption is due to another assumption of independence of samples y. Thus the 

likelihood function of y is given in (6). 

 

P(y x⁄ , σ2) =
1

(2πσ2)M/2
exp {

−‖y−Ax‖2

2σ2 } (6) 

 

The prior of unknown ‘x’ is also assumed to be as zero mean Gaussian prior distribution over x with 

variance 𝛾 [19, 20]. The Gaussian prior of a single sample of x (i.e, xi) is given in (7). 

 

P(xi γi⁄ ) =
1

(2πγi)
1/2

exp {
−xi

2

2γi
} (7) 

 

The overall Gaussian prior for all i = 1 to N is given in (8). 

 

P(x γ⁄ ) = ∏ {
1

(2πγi)
1/2

exp {
−xi

2

2γi
}}                             N

i=1          (8) 

 

To define prior of unknown x, we require another parameter γ which is variance of unknown x. 

Thus the γ can be called as a vector of hyperparameters of unknown ‘x’ [21, 22]. Hence, to completely define 

all the distributions, the hyperparameters γ and noise variance σ2 needs to be estimated which can be done by 

defining the hyperpriors of γ and σ2 as in (9) and (10). 

 

P(γ) = ∏ gamma{γi a⁄ , b}                             N
i=1                         (9) 

 

P(σ2) = ∏ gamma{σ2 c⁄ , d}                             N
i=1                                   (10) 

 

We have chosen gamma distribution because the hyperparameters γ and σ2 are scale parameters 

[23, 24] where: 

 

gamma(γ/a,b) = G(a)-1ba γa-1e−bγ    (11) 

 

with G(a)=∫ ta−1e−tdt
∞

0
 is the gamma function and a, b, c, d are all hyperprior parameters. After defining the 

likelihood and priors (5) can be re-written as [19]. 

 

P(x/y, γ, σ2)=
P(y/x ,σ2)P(x/γ)

P(y/ γ,σ2)
                                                               (12) 

 

P(x/y, γ, σ2)P(y/ γ, σ2) = P(y/x ,σ2)P(x/γ)                                           (13) 
 

By plugging in (6) and (8) on right hand side of (13) and simplifying gives another Gaussian 

distribution for P(x/y, γ, σ2) and P(y/ γ, σ2) as in (15) and (18) respectively. 
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P(x/y, γ, σ2)P(y/ γ, σ2) =
1

(2πσ2)M/2
exp {

−‖y−Ax‖2

2σ2
}∏ {

1

(2πγi)
1/2

exp {
−xi

2

2γi
}}          N

i=1   

P(x/y, γ, σ2)P(y/ γ, σ2) = 𝒩(x μ⁄ , Σx)𝒩(y 0⁄ , Σy)                                          (14) 

 

Equating on both sides we get: 
 

P(x y, γ,⁄  σ2) =
1

(2π)N/2|Σx|
1/2

exp {
−(x−μ)T(x−μ)

2Σx
}                                  (15) 

 

where the posterior mean and covariance of unknown x are given in (16) and (17) respectively. 
 

μ = σ−2ΣxA
Ty                                                                  (16) 

 

Σx = (σ−2ATA + Γ)−1                                                        (17) 
 

with Γ = diag(γ1
−1, γ2

−1 … . . γN
−1). In (14) we get one more result for prior of the observed array received signal 

vector. 
 

P(y γ⁄ , σ2) =
1

(2π)M/2|Σy|
1/2 exp {

−(y)T(y)

2Σy
}                                        (18) 

 

with Σy = (σ2I + AΓ−1AT) as the prior covariance of observed array received signal vector. Solving (16) 

and (17) for the known values of hyperparameters γ and σ2 results in mean and covariance of posterior of 

unknown x respectively. The posterior mean of unknown x is itself the estimation of the unknown x i.e, �̂� =
𝜇, plotting this �̂� estimate with respect to the on-grid search angle points gives the DOA peaks and hence the 

arriving signal source’s direction can be estimated [25]. In practical situations, the hyperparameters γ and σ2 

will be unknown and there cannot be any closed form expressions obtained for them [26]. Hence, an iterative 

estimation of hyperparameters γ and σ2 has to be done.   

 

 

4. MAXIMUM A POSTERIOR OF HYPERPARAMETERS 

To iteratively estimate the hyperparameters like variance of prior of unknown 𝛄 and variance of 

noise σ2, we maximize the probability function P(γ,σ2/𝐲) given by (19). 
 

P(γ,σ2/y)=
P(y/γ,σ2)P(γ,σ2)

P(y)
                                                         (19) 

 

The hyperparameters γ, σ2 is mutually independent with each other and also the probability of 

known measured array received signal vector is a constant. Thus, maximizing (19) is equivalent to maximize 

(20) with respect to γ,σ2. 
 

P(γ,σ2/y)∝P(y/γ,σ2)P(γ)P(σ2)                                                        (20) 
 

As in practice, we assume uniform hyperpriors over a logarithmic scale with the derivatives of the 

hyperpriors terms goes to zero, we choose to maximize the logarithmic quantity of (20) with respect to log γ 

and logσ2. The logarithm of (20) is given by (21). 
 

L=log P(γ,σ2/y)≅logP(y/logγ,logσ2) + logP(logγ)+logP(logσ2)                        (21) 

 
L=logP(y/logγ,logσ2) + ∑ logP(log𝜸𝐢)

N
i=1 +logP(logσ2)                          (22) 

 

Hence maximizing L the objective function in (22) with respect to logγ and logσ2 gives the iterative 

estimate of γ,σ2. The objective function in (22) can also be written as in (23). 
 

L=-
1

2
{−log|Σx| + Nlogσ2 − log|Γ| + σ−2‖y − Aμ‖2 + μTΓμ}

+ ∑(−alogγi − bγi
−1) − clogσ2 − dσ−2

N

i=1

 

(23) 
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4.1.  The variance of unknown ‘x’ 

The differentiation of (23) with respect to logγi gives: 

 

 
𝜕𝐿

𝜕logγi
=

1

2
[1 − γi

−1(μi
2 + Σxii)] + 𝑎 − 𝑏γi

−1                                              (24) 

 

Setting this (24) to zero and Mackay [27], leads to the update in (25). 

 

𝛾𝑖
𝑛𝑒𝑤 =

(μi
2+2b)γi

𝛾𝑖−Σxii+2a𝛾𝑖
                                                                     (25) 

 

4.2.  The noise variance 

The differentiation of (23) with respect to logσ2 we get: 

 
∂L

∂logσ2 =
1

2
[Nσ2 − ‖y − Aμ‖2 − tr(ΣxA

TA)] + c − dσ−2                     (26) 

 

where: tr(ΣxA
TA) = σ2 ∑ (1 −N

i=1 γi
−1Σxii) and setting derivative in (26) to zero and re-arranging the terms 

we get σ2 update as in (27). 

 

σ2(new) =
‖y−Aμ‖2+2d

N−∑ (1−N
i=1 γi

−1Σxii)+2c
                                                         (27) 

 

 

5. THE PROPOSED ALGORITHM 
For a single snapshot case, in DOA estimation, initialize the noise variance σ2 and the prior variance 

γ of unknown x to a value (i.e, usually taken as 1). Using (17) will give the covariance estimate and later 

using (16) will give the first iterative estimate of μ. Before performing the 2nd iterative estimation of Σx and 

μ, let us update the hyperparameters γ and σ2 using (26) and (27), where the parameters/variables in those 

equations represent the values of 1st iteration. Now using these new updated values of γ and σ2, estimate the 

2nd iteration values of Σx and μ. Repeat these steps until a particular stopping criterion is achieved. In this 

iterative process, some elements of μ vector tend to become very minimum value (i.e, less than a preset 

threshold), equating these elements to zero, results in sparsity of the solution.  

For ‘L’ number of multiple snapshot/multiple measurement vector (MMV) case also, same 

procedure can be utilized except that the prior mean of unknown ‘x’ (i.e, μ) is a matrix, in which each row 

corresponds to a particular on-grid search point of angle of arrival. Each of these rows of μ for MMV case 

should be taken as absolute mean square values of all the elements of that particular row. This μ estimate 

obtained at the final iteration of the proposed algorithm is plotted versus the search grid of angle of arrival. 

The plot showing peaks corresponding to the particular value of angle of arrival on x-axis, indicates the 

estimate of direction of arrival. The proposed DOA estimation algorithm based on sparse Bayesian learning-

maximum a posterior of hyperparameters (SBL-MAP-H) for MMV case is summarized in Table 1. 

 

 

Table 1. The proposed SBL-MAP-H DOA estimation algorithm 
Input Parameters: Y (MxL), A (MxN) 

Output Parameters: μx(Nx1) 

1. Initialize σ2 = 1, γ = [1,1,1…1], a, b, c, d parameters, μmin & DOA search grid. 

2. Γ = diag(γ1
−1, γ2

−1 … . . γN
−1)   

3. Estimate  Σx = (σ−2ATA + Γ)−1  

4. Estimate  μ = σ−2ΣxA
TY = [

μ1(1) μ1(2) ⋯ μ1(L)
⋮ ⋱ ⋮

μN(1) μN(2) ⋯ μN(L)
] 

5. Update  γi
new =

(μi
2+2b)γi

γi−Σxii+2aγi
   & σ2(new) =

‖y−Aμ‖2+2d

N−∑ (1−N
i=1 γi

−1Σxii)+2c
 

6. Determine μx =

[
 
 
 
|μ1(1)|2 + |μ1(2)|2 …+ |μ1(L)|

2

|μ2(1)|2 + |μ2(2)|2 …+ |μ2(L)|2

⋮
|μN(1)|2 + |μN(2)|2 …+ |μN(L)|2]

 
 
 
 

7. If any row of μx is less than a threshold μmin, then equate the row of μx to zero and delete the particular 
corresponding column in A matrix for the next iteration. 

8. Repeat from step 2 to step 7 until a stopping criterion is achieved. 

9. Plot μx v/s the DOA search grid points and locate the peaks to estimate the direction of arrival. 
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6. RESULTS AND DISCUSSION 

In this section, the experimental results of the proposed algorithm is presented for different 

conditions of various algorithmic parameters. For the simulation of the algorithm, MATLAB R2013a 

platform has been utilized. The simulation results of the proposed algorithm are compared with standard 

DOA estimation algorithms like MUSIC [2, 3, 28], MVDR [29, 30] and the recent standard algorithm l1-SVD  

[11, 12]. Considering a uniform linear array (ULA) of M=100 number of array elements with an inter-

element spacing of λ/2, where λ stands for wavelength of the received signal assumed to be as 1m. Let us 

assume a single signal source transmitted from a far-field with a direction of 00 with respect to the vertical 

normal axis having an angular frequency of 20π r/s is impinging on the ULA. The proposed algorithm 

considers a set of on-grid points for searching the direction of the arriving signal with a 0.50 step-size. The 

proposed algorithm is simulated for L=500 number of snapshots in a noisy environment with SNR of 30dB. 

The hyperparameter updating depends on the hyperprior parameters (a,b,c,d). These parameters highly 

influence the DOA estimation results as shown in Figure 1. For abcd-parameter values equal to zero, the 

DOA estimation peak is less steep when compared to the estimation peak obtained for abcd-parameters equal 

to 0.4. It is also tested with various other values of a,b,c,d and found that for all 0<a,b,c,d<0.5 gives steepest 

estimation peaks containing maximum peak only at the actual angle of arrival of the received signal and 

completely flat response for any other grid points. The very high value set for a,b,c,d increases the sparsity in 

the estimated results and in some cases with weak signal strength, the actual true DOAs also may not contain 

the estimation peaks. Hence the range of 0<a,b,c,d<0.5 is the optimized option for DOA estimation 

application. 

 

 

 
 

Figure 1. DOA estimation for various hyperprior parameters 

 

 

All the next analysis considers abcd-parameters as 0.4. Considering M=10, number of search grid 

points as N=361, L=100, number of signal sources D=3 with actual true DOAs as -100, 100, 640 with 

corresponding angular frequencies of 20 π, 40 π, 60 π r/s respectively and a noisy environment with SNR 

0dB. Figure 2 shows the DOA estimation peaks for the proposed algorithm as well as various standard DOA 

estimation algorithms. It can be observed that though the value of SNR is very less (i.e, the worst noisy 

environment), the proposed algorithm shows sharp DOA estimation peaks at the actual true DOAs. 

For the same parametric conditions, considering a single snapshot case with L=1 also gives sharp 

DOA estimation peaks indicating the actual true DOAs with 100% success rate as shown in Figure 3.  

Figure 4 indicates the estimation case for the number of array elements M=100, which shows that the 

proposed algorithm performance is almost similar to that for M=10 with respect to mean square error. In the 

case of very closely spaced source signals with actual true DOA of 100 and 110, the proposed algorithm still 

produces steeper peaks with clear distinguished DOA peaks as compared to other standard algorithms as 

shown in Figure 5. 

Figure 6 indicate the case of very closely spaced two coherent signal sources with an angular 

frequency of 20 π r/s and located at 00 and 10. The result in Figure 6 exhibits the high-resolution performance 

of the proposed algorithm compared to the other algorithms. As the proposed algorithm employs the 

probability of the measured antenna array signal by knowing the prior of unknowns, good resolution, even 

for coherent signal sources are obtained. The effect of array sensor noise added up with the received signal 
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for hyperprior parameters a,b,c,d=0 is as shown in Figure 7. Considering L=50, M=100 and a single source 

signal with actual true DOA of 00, the DOA peak becomes more steeper along with decrease in mean square 

error for the improvement in SNR value. 

 

 

  
 

Figure 2. DOA estimation for L=100 

 

Figure 3. DOA estimation for L=1 

 

 

  
 

Figure 4. DOA estimation for M=100 

 

Figure 5. DOA estimation for very closely spaced 

source signals 

 

 

  
 

Figure 6. DOA estimation for very closely spaced 

coherent source signals 

 

Figure 7. Effect of SNR on DOA estimation peaks 
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Figure 8 shows the effect of number of snapshots ‘L’ on the DOA estimation peaks for SNR=10 dB, 

M=100 and actual true DOA of 00. As the number of snapshots increases, the DOA peaks become more 

steeper with better performance. For the case of increase in number of array elements in the ULA, the DOA 

estimation performance increases along with the increase in estimation success rate as shown in Figure 9. 

 

 

  
 

Figure 8. Effect of snapshots on DOA estimation 

peaks 

 

Figure 9. Effect of array size M 

 

 

 

For a single source arriving at actual true DOA of 00 with L=50 and M=100, the performance 

analysis of various standard algorithms compared with the proposed algorithm with respect to mean square 

error v/s signal to noise ratio. As seen in Figure 10, the proposed algorithm shows less MSE for all the range 

of SNR, when compared with other standard DOA estimation algorithms. It is true that the proposed 

algorithm also exhibits very least failure rate with respect to the SNR as shown in Figure 11. 

The execution time consumed by the proposed algorithm is quiet more when compared to MUSIC 

and other subspace-based algorithms. However, the proposed algorithm’s execution time is comparatively 

less with respect to l1-SVD algorithm and almost becomes equal as the number of snapshots increases as 

shown in Figure 12. The probability of success rate for measuring the resolution performance of the proposed 

algorithm is as shown in Figure 13. By maintaining constant antenna array elements in the case of closely 

angular spaced coherent signal sources, as the SNR of the received antenna array signal increases, the 

resolution/probability of success rate of estimation of the proposed algorithm also increases and produces 

almost 100% resolution from SNR range of 0 dB onwards. 

 

 

  
 

Figure 10. MSE v/s SNR performance analysis 

 

Figure 11. Failure rate v/s SNR performance analysis 
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Figure 12. Execution time v/s L performance 

analysis 

 

Figure 13. Resolution v/s SNR performance analysis 

 

 

7. CONCLUSION  

In this paper, a sparse Bayesian learning approach based on maximum a posterior of 

hyperparameters for DOA estimation is designed and tested for various DOA estimation conditions and 

parameters. The proposed algorithm exhibits good mean square error and success rate for all the parametric 

conditions like low SNR range, less array size and a smaller number of snapshots. It also results in good 

resolution for very closely spaced signal sources. From the result section, it is observed that the proposed 

algorithm achieves better MSE v/s SNR performance when compared with other standard DOA estimation 

algorithms in low to medium SNR range. The only exception of the proposed algorithm is that more 

computation time with increased complexity for larger number of snapshots. As the proposed algorithm 

shows good performance for single or a very few snapshot cases with manageable computation time, it can 

be comparatively of more important solution for the problem of DOA estimation in array signal processing 

field. 
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