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 The population of elderly is growing and is projected to outnumber the youth 

in the future. Many researches on elderly assisted living technology were 

carried out. One of the focus areas is activity monitoring of the elderly. 

AReM dataset is a time series activity recognition dataset for seven different 

types of activities, which are bending 1, bending 2, cycling, lying, sitting, 

standing and walking. In the original paper, the author used a many-to-many 

recurrent neural network for activity recognition. Here, we introduced a time 

series classification method where Gated Recurrent Units with many-to-one 

architecture were used for activity classification. The experimental results 

obtained showed an excellent accuracy of 97.14%. 
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1. INTRODUCTION 

The elderly population is on the rise globally. According to a report by the United Nations, it was 

projected that the elderly population will skyrocket and reach 2.1 billion by 2050 [1]. The population of 

elderly in Malaysia is expected to be about 20% of its total population by 2040 [2]. Due to these projections, 

many researches have focused on improving elderly assisted living to ensure the health and well-being of the 

elderly. One of the concerns is that there is no one to take care of elderly living in solitude. Hiring caregivers 

to take care of elderly is one of the solutions but it might be not affordable for some family. One of the 

research areas is on remote monitoring of elderly such as vital signs and activities using sensors which 

include activity recognition. There are currently two main types of activity recognition namely vision-based 

activity recognition and non-vision-based activity recognition.  

For vision-based activity recognition, the data is video feed of people carrying out certain activity 

captured by camera [3-7]. The deep learning model that is commonly used in vision-based activity classification is 

a combination of convolutional neural network (CNN) and recurrent neural network (RNN) [5, 6]. CNN is a 

type of neural network that is used for image-related tasks such as image classification [8-11] and object 

detection [12-13]. CNN is also used to extract features from the speech signals. Alternatively, RNN is a type 

of neural network used for sequence-related tasks [14-18]. In a typical video, each of the frame is basically a 

sequence of fixed-size images. CNN encodes each frame of the video into a vector, which results in a sequence 

of vectors for the video. RNN consumes this sequence of vector and outputs a prediction. The computational cost 

and accuracy of this method increases with the increases of the frame rate of the video and the size of the 

frame. Vision-based method may raise privacy concerns as the elderly will be recorded at all times. 

As for non-vision-based method, it involves using sensor data as input. There are different types of 

sensors that may be used here such as accelerometer [19], an accelerometer is a sensor which measures the 

acceleration of a moving object. It is miniscule and can fit into a smart phone. Anguita and colleagues used 
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smart phone which has a triaxial accelerometer for data collection [19]. Triaxial accelerometer measures 

acceleration in three axes. When a person carries out an activity, the accelerometer measures acceleration in 

all three axes. Different activities can result in different patterns of acceleration. A machine learning 

algorithm called support vector machine (SVM) is used here for activity classification. 

One-dimensional CNN can be used to extract important feature from time series sequences such as 

sound signals [20-22]. Lee and researchers [23] used one-dimensional CNN for time series to perform 

activity recognition on accelerometer data achieving a high accuracy of 92.71%. In [24], Xu and colleagues 

compared CNN with SVM on accelerometer data and found that accuracy achieved by CNN is higher than 

SVM. The proposed approach achieved high accuracy and has low computational cost. 

Palumbo et al. [25] proposed a novel non-vision-based activity recognition method which involves 

using wireless beacons that implementing IEEE 802.15.4. In their research, three of the wireless beacons 

were attached to human subject’s chest and both ankles. Wireless beacons are passive like RFID cards, 

without the need to use battery to power the beacons. The received signal strength (RSS) of these beacons 

were read by a scanner for data collection. The collected data is then stored and named as “activity 

recognition system based on multisensor data fusion,” (AReM) dataset. The author’s idea was to observe the 

alteration of RSS of three beacons when a person is carrying different activities. These RSS may provide 

sufficient distinction such that the activities can be classified using machine learning algorithm, namely 

many-to-many RNN method. Many-to-many RNN model takes in time series sequences of the RSS values 

and classify the values into categories of activities at each time step. This method managed to achieve an 

overall accuracy of 92.30%. 

In this paper, we proposed gated recurrent units (GRUs) with a many-to-one architecture to classify 

the activities using the AReM dataset. The remaining parts of this paper is organized as follows: Section 2 

describes the method, section 3 contains the experimental results and discussions. Finally, a concluding 

remark is presented in section 4. 

 

 

2. RESEARCH METHOD 

Figure 1 depicts the process of method which includes data collection, data processing, data 

partitioning, modelling and model selection. The following subsections describes each of the steps: data 

collection, data processing, data partitioning, modelling and model selection. 

 

 

 
 

Figure 1. Flow of method 

 

 

2.1.  Data collection 
The dataset used in this work is a publicly available activity recognition dataset called AReM 

dataset [25]. During data collection, three wireless beacons which implements IEEE 802.15.4 standard are 

attached to human subject’s chest and both ankles. The human subjects were requested to carry out seven 

different activities which include cycling, lying down, sitting, standing and walking as well as two types of 

bending labelled as bending 1 and bending 2. The percentage of each activity type in the dataset is listed in 

Table 1. Bending 1 and Bending 2 has smaller percentages of 7.865% each, compared to the other activities 

of 16.85% each from the dataset. 

 

 

Table 1. Percentage of each activity type 
Activity Type Percentage (%) 

Bending 1 7.865 

Bending 2 7.865 

Cycling 16.85 

Lying 16.85 
Sitting 16.85 

Standing 16.85 

Walking 16.85 
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Wireless beacons emit electromagnetic wave which will attenuate over distance. The signal strength 

of the wireless beacon uses a measurement unit called received signal strength (RSS) indicator. Wireless 

scanners can scan the RSS of the wireless beacons. The wireless beacons’ RSS values were sampled at a 

frequency of 20 Hz. For every 50 milliseconds, the scanner will obtain an RSS value for each of the three 

sensors. The author of the dataset computed the mean and variance for RSS value accumulated every 250 

milliseconds for each beacon. Therefore, each data point is a vector which has six dimensions. It consists of 

six features which include the mean and variance for each of the three beacons calculated over five 

consecutive RSS values. The features are labelled as given in Table 2. The data were recorded sequentially in 

time. Table 3 shows a snippet of dataset for Bending 1. Every 250 milliseconds, there is a data point which 

consists of six values. 

 

 

Table 2. Features of dataset 
 Mean Variance 

Beacon 1 avg_rss12 var_rss12 

Beacon 2 avg_rss13 var_rss13 

Beacon 3 avg_rss23 var_rss23 

 

 

Table 3. Snippet of bending 1 dataset 
Time interval (ms) avg_rss12 var_rss12 avg_rss13 var_rss13 avg_rss23 var_rss23 

0- 250 43.67 0.47 24.75 0.43 30 0 

250-500 43.33 0.47 25.33 0.47 30 0 
500-750 42.75 0.83 25.25 0.83 30.5 0.5 

 

 

For machine learning algorithm to classify data points of different activities, the patterns of each 

type of activity has to be distinct. Means and variances of RSS values are valid features for activity 

classification. Figure 2 shows a plot of the means and variances of RSS of Bending 1 activity. Figure 3 shows 

a plot of means and variances of RSS of sitting activity. Each feature behaves differently over time for 

Bending 1 and sitting. This enables the machine learning algorithm to learn to classify different types of activities. 

 

 

 
 

Figure 2. Plot of means and variances of RSS of 

bending 1 activity 

 
 

Figure 3. Plot of means and variances of RSS of 

sitting activity 

 

 

2.2.  Data processing 

We proposed segmenting the sequence into smaller segments before passing them to RNN. We have 

shown that segmenting sequences before passing them to RNN resulted in excellent results in terms of 

accuracy on anomaly detection task [26]. In the data processing step, we segment the sequence of each 

activity type by using sliding window. The size of the sliding window is denoted by winsize. Sliding window 

with different window sizes which include 4, 8, 16 and step size of one is used to segment the sequence in 

dataset. Segmenting the longer sequence into multiple shorter sequences has two advantages. Firstly, it 

simplifies the complexity of the architecture of the model to be used because the problem becomes less 

complex. Instead having to take long and variable length sequence as input, the model takes in fixed size 

segment with shorter lengths. Secondly, segmenting increases number of data points. Because sliding 
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window is used, the segmented data overlaps which means more features may be captured by the model. The 

window sizes 4, 8 and 16 correspond to 1 seconds, 2 seconds and 4 seconds time interval as given in Table 4. 

 

 

Table 4. Window size and time interval 
Window size Time Interval (Second) 

4 1 

8 2 

16 4 

 

 

Figure 4 illustrates an example of segmenting a sequence of 5 data points into two segments using 

sliding window with window size of 4 and step size of one. In the segmentation process, the Segment 1 

consists of data point 1 to data point 4 as window size is 4. Since the step size is set to one, the window slides 

one unit to the right and group four data points which include data point 2 to data point 5 as Segment 2. Since 

each data point is a six-dimensional vector, each segment is a matrix with the size of (winsize , 6). 

 

 

 
 

Figure 4. An illustration of data processing step with window size of 4 and step size of 1 

 

 

2.3.  Data partitioning 

During data partitioning step, the dataset is partitioned into training and test set. The training set is 

dataset used to train the activity classifier. Whereas, the test set is an unseen pool of data used to evaluate the 

performance of the trained classifier. For this work, we divided the dataset into training set and test set with 

the ratio of 80% to 20%. 

 

2.4.  Modelling 

Recurrent neural network (RNN) is one of the techniques that suitable to classify the time series and 

sequential data. There are four main architectures of RNN as illustrated in Figure 5 [27]. In Figure 5, blue 

blocks are outputs, red blocks are input and green blocks are the RNN units. RNN is suitable for classifying 

sequential data because of it uses information from previous time step in computation of current time step. In [25], 

the authors used a many-to-many RNN architecture illustrated in the rightmost of Figure 5 for activity 

classification. For many-to-many architecture, there is classification at every time step of the input sequence. 

 

 

 
 

Figure 5. Different RNN architecture 
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In this paper, a variant of RNN called gated recurrent units (GRU) is used for activity classification [28]. 

The RNN architecture used is many-to-one architecture. For this architecture, the model predicts at the final 

time step. In this paper, many-to-one architecture was selected over many-to-many architecture. Firstly, 

many-to-one architecture consists of less computation when compared to many-to-many architecture because 

it only predicts or classifies at the final time step. Hence, the model is faster when predicting. The time step is 

denoted by t. As shown in Figure 6 [29], a GRU takes in the input vector for current time step denoted by 𝑥𝑡 

and the output vector from previous time step 𝑡 − 1 denoted by ℎ𝑡 − 1, and outputs an output vector for 

current time step t denoted by ℎ𝑡. Using information from previous computation is a common feature of RNN 

as GRU uses ℎ𝑡 − 1 in computation for current time step. The transition functions in GRU are given as: 
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Figure 6. A gated recurrent unit 

 

 

GRU consists of two gates namely update gate and reset gate. The update gate vector is denoted by 

t
z  and the reset gate vector is denoted by 

t
r . 

t
z  acts as a “gate” which decides how much of 1

t
h  is used in 

computation of output at current time step, 
t

h  as given in the equations above. The 𝑊𝑍, 𝑊𝑌 𝑎𝑛𝑑 𝑊, are the 

parameters of the GRU. Whereas,   is a non-linear function such as sigmoid function. In [30], Chung et al. 

compared the two popular variants of RNN, LSTM and GRU, it was found that GRU produces highly 

comparable or sometimes even better results as LSTM. Furthermore, GRU uses less training parameters, 

leads to less memory used and faster training and execution. 

In this paper, we proposed using many-to-one architecture for GRU as shown in Figure 5. The 

model architecture used is many-to-one which means multiple inputs at multiple time steps and a single 

output at the last time step. The GRU model for data segmented using winsize = 4 is illustrated in Figure 7. 

At each time step, a six-dimensional data point of a data segment is consumed as an input. The number of 

time steps depends on the window size used to segment the sequence of data points. At the final time step, 

the model spits out a vector consists of seven dimensions, each dimension is for each of the seven class labels. 

The vector is then passed through the softmax layer which generates a seven-dimensional output vector. Each 

component of this vector is the conditional probability of the input being a type of activity given the input. 

The loss function used to train this model is categorical cross entropy.  

In this work, the algorithm was implemented using Python programming language and Keras 

library. The optimization algorithm used for gradient descent is the Adam optimization algorithm [31]. The 

default parameters for Keras Adam optimizer was used. The models for varying window size were trained for 

50 epochs. The number of hidden units of GRU is a hyperparameter. It’s a convention to use n2  (where n is a 

positive integer) as choices of hyperparameters for neural networks. In this work, we tried several choices of 

number of hidden units which include 16, 32 and 64.  
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Figure 7. Many-to-one GRUs with window size of 4 for activity classification 

 

 

2.5.  Model selection 

In this work, there are two hyperparameters namely window size and number of units of GRU. But 

the most suitable value for these hyperparameters are unknown. The standard way to decide these values is to 

sample a few choices, train a model for each of these choices and select the choice which lead to the best 

performing model. The list of choices of hyperparameters is provided by Table 5. 

 

 

Table 5. Hyperparameters 
Hyperparameters Choices 

Window size 4, 8, 16 

Number of units of GRU 16, 32, 64 

 

 

To evaluate the model, an evaluation metric is needed. In this case, we used accuracy on the test set 

as the evaluation metric. Accuracy is the percentage of correct classification over all samples to be classified. 

We select the model with the highest accuracy as the best model.  

 

 

3. RESULTS AND DISCUSSION 

Table 6 listed the train and test accuracies for different models trained using varying number of units 

of GRU and data segmented by different window sizes. It can be observed that the accuracy improves as the 

numbers of units of GRU increase. This trend is consistent for different choice of window size. One 

explanation is due to increasing complexity. This is because the weights of the model increase as number of 

units increase. With more weights, GRU can approximate a more complex function. A more complex 

function can model the pattern of the means and variances of RSS of different activities with better accuracy. 

 

 

Table 6. Hyperparameters 
Number of units of GRU 

 

winsize =4 winsize = 8 winsize = 16 

Train accuracy Test accuracy Train accuracy Test accuracy Train accuracy Test accuracy 

8 81.79 80.80 85.43 84.90 89.05 89.05 

16 85.71 85.00 90.18 88.70 93.98 94.71 

32 88.53 86.37 93.14 91.44 96.49 97.14 

 

 

It was also found that the larger the window size, the higher the accuracy. Based on observation, this 

trend occurs for all choices of number of units of GRU. This is due to window size corresponds to the time 

interval. As the window size increases, each data segment will consist of more data points. Thus, this enables 

the model to easily distinguish the sequence pattern of RSS for different activity type. 

Overall, the best model used 32 hidden units of GRU and winsize=32 and has a test accuracy of 

97.14% as shown in Table 6. In addition, the difference in train and test accuracies of the best model is only 

0.65%. Small difference between test accuracy and train accuracy means that the model have not been 

overfitted to the data in the training set. This assures consistent performance on unseen pool of data in the test 

set. In [25], the authors reported an accuracy of 92.30% using a many-to-many architecture. This is not a fair 

comparison since they were trained and evaluated on different splits of dataset. However, it can be concluded 
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that the many-to-one method has an accuracy which is at least comparable to that of many-to-many 

architecture. The advantage of many-to-one architecture and using segmentation is that there is less 

computation task compared to many-to-many architecture. Since the computation task is less, it can be 

trained and make prediction more quickly. 

 

 

4. CONCLUSION  

In this paper, an activity classification algorithm using many-to-one GRU network is introduced. An 

experiment was carried out using AReM dataset and the results demonstrated that the proposed many-to-one 

GRU model performs excellently in terms of test accuracy. The accuracy of the best model has an accuracy 

of 97.14%, which is at least comparable than the accuracy achieved in the original paper. The advantage that 

it has over many-to-many architecture described in the literature is that it has shorter inference time. 

Currently, the model is applied on a publicly available dataset. For future work, we would like to apply the 

model on other datasets and also create our own device and full system for activity recognition. 
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