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 The rapid growth of both mobile users and application numbers has caused a 

huge load on the core network (CN). This is attributed to the large numbers 

of control messages circulating between CN entities for each communication 

or service request, however, making it imperative to develop innovative 

designs to handle this load. Consequently, a variety of proposed 

architectures, including a software defined network (SDN) paradigm focused 

on the separation of control and data plans, have been implemented to make 

networks more flexible. Cloud radio access network (C-RAN) architecture 

has been suggested for this purpose, which is based on separating base band 

units (BBU) from several base stations and assembling these in one place. In 

this work, a novel approach to realize this process is based on SDN and C-

RAN, which also distributes the control elements of the CN and locates them 

alongside the BBU to obtain the lowest possible load. The performance of 

this proposed architecture was evaluated against traditional architecture using 

MATLAB simulation, and. the results of this assessment indicated a major 

reduction in signalling load as compared to that seen in the traditional 

architecture. Overall, the number of signalling messages exchanged between 

control entities was decreased by 53.19 percent as compared to that seen in 

the existing architecture. 
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1. INTRODUCTION  

Mobile subscriptions increased by about 4 percent, while cellular data usage increased by around 70 

percent between Q1 2016 and Q1 2017 [1]. These increases can be attributed to an increase load of signals 

from smart phones [2] as well as growth in machine to machine applications (automotive systems, robots, 

remote controls.) [3], [4]. Such growth leads to an increase in the number of signals exchanged between 

various long term evolution (LTE) entities, however, creating an urgent need for an efficient network to 

accommodate this load to be designed and implemented [5]. The standard LTE architecture consists of 

several evolved node Bs (eNBs) that provide wireless connectivity to user equipment and an evolved packet 

core (EPC) that consists of four main components: a mobility management entity (MME), a packet data 

network (PDN) gateway (PGW), a serving gateway (SGW), and a home subscriber server (HSS), as shown in 

Figure 1. Reshaping this network architecture into something more scalable that can be easily adapted to 

customer needs is, however, essential to reducing costs and solving the signalling load issues currently 

https://creativecommons.org/licenses/by-sa/4.0/
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experienced by the evolved packet core (EPC). These growing demands will be met by the implementation of 

fifth generation (5G) cellular networks [6], which support a wider range of technologies, such as machine to 

machine communications, internet of things, and device to device communications. Such applications are 

likely to have an effect on multiple industry, societal, and consumer interactions [7]-[15]. 

The cloud radio access network (C-RAN) is the most promising architecture for supporting the 

required next generation networks, being expected to accommodate significant growth in traffic while 

reducing latency and improving data rates [16]. However, mobile network operators (MNO) still require new 

ways to implement their 5G networks to better exploit the software-defined networks (SDN) and network 

function virtualization (NFV) offered. 

 

 

 
 

Figure 1. Traditional LTE architecture network 

 

 

By using virtualization technologies, MNO can utilise distributed data centres to virtualize and 

decentralize networks elastically and cost-effectively [17]. Deploying network architecture virtual networks 

should improve adaptable access, reducing effort and increasing efficiency for improved applications [18]. 

SDN [19] requires an unmistakable segregation between the control and user planes in the network; thus, by 

applying SDN, various network management tasks can be improved, with new innovations and technologies 

implemented more easily, allowing network operators to boost their revenue streams. This paper therefore 

introduces a new approach based on SDN and C-RAN that, as well as distributing and moving the control 

elements of the core network, aligns these with the BBU in order to achieve the lowest level of load possible 

on the core network.  

The current architecture used in LTE network lacks the flexibility to accommodate significant 

increases in data request rates. In addition, the control entities in the core networks suffer from excessive 

signalling load due increases in data demand rates. This paper thus presents fully distributed core network 

(FDCN) architecture capable of implementing all network activities and reducing the network signalling load 

to a minimum while ensuring balanced distribution of network loads among control entities. To achieve this, 

the first step is to separate the data plane from the control plane within the core network entities while 

allowing the control entities to move and aggregate alongside base band units. The behaviour of the proposed 

5G architecture network can then be studied, and various network parameters such as cell area, velocity, and 

user equipment numbers, analysed in order to evaluate the benefits of the proposed architecture in terms of 

reducing signalling load. The most important network events, such as initial attachment, active to idle and 

idle to active transitions, network-triggered services, handover, and tracking area updates were therefore 

studied in this work. 

 

 

2. RELATED WORKS 

In the last few years, heavy signalling loads on core networks have led several researchers to 

attempt to develop ways to minimise this load. Distributed networks are thus crucial to reducing the 

workload on relevant entities and improving the efficiency of such systems [20], [21]. Based on this, in 2012, 

Pianese et al. [22] adopted a distribution of a mobility management entity (MME) based on segregation 
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between the control and user planes, applying this to three scenarios, edge deployment, local deployment, 

and regional deployment. Their analysis showed an overall decrease in signalling latency, allowing 

estimation of signal transmission delay based primarily on the number of signals exchanged over the network 

links. In 2013 and 2014, Said et al. [23] and Sama et al. [24], respectively, suggested using partial 

segregation between the planes of control and users at the serving gateway (SGW), a creative method that 

offered an overall reduction in messaging burden. However, this design remained an incomplete solution due 

to the fact that the PDN gateway (PGW) still functionally adopted existing 3rd generation partnership project 

(3GPP) architecture. A method complementing that concept was thus proposed by Nguyen et al. [25], based 

on a complete separation of all core network (CN) entities, including PGW-C. These are separated and 

virtualized as applications operating over an openflow (OF) controller, and this approach is thus focused on 

complete segregation between the control and user planes. All of the works above utilise distributed radio 

access network (D-RAN) structures, however.  

In 2016, Al-Samman et al. [26] deployed MMEs in a single pool with the base band unit (BBU), 

[27] for an overall reduction in signalling load. Also in 2016, Pozza proposed segregation between the 

control and user planes in entities of the LTE architecture in conjunction with SDN and virtualization [28]. 

This approach similarly offered an improvement in signalling latency. In 2016, Qian et al. [29] developed 

super base station architecture for load balancing and resource sharing between baseband units. To facilitate 

efficient energy use, the logical and physical entity functions were separated from the base station and 

dynamically assigned to resources that activate or deactivate the baseband units. In 2017 and 2018, Qazi et 

al. [30] and Cho et al. [31] respectively rebuilt the control plane of a core network to reduce state transfer 

overhead across modules to maximise the control and scalability of the plane, while in 2019, Mahapatra et al. 

[32] proposed a new architecture to reduce energy consumption including an innovative technology for 

cooperative load sharing between base stations. In 2020, Shah et al. [33] suggested the refactoring of mobile 

cores in order to increase speeds by placing the control plane closer to the end user; their proposed 

architecture also improved control plane throughput and reduced latency. Finally, in 2020, Mahapatra et al. 

proposed a framework for resource allocation and load sharing among baseband units to overcome 

unbalanced load conditions [34]. This approach demonstrated improvements in the quality of service for C-

RAN architecture. 

In this paper, current architecture was reconfigured in a manner capable of accommodating 

excessive loads on the CN. To achieve this, MME, SGW-C, and PGW-C were distributed from the CN and 

functionally integrated into the BBU pool in the data centre. The signalling load was then evaluated and 

compared to the existing LTE architecture as an initial step for feasibility analysis, with the aim of 

determining whether this offers a better signalling load architecture. This rest of this paper is thus organised 

as shown in: section 3, the proposed system is described, while in section 4, the results of testing the 

proposed system are discussed. Finally, some initial conclusions are given in section 5. 

 

 

3. THE PROPOSED SYSTEM 

The proposed system is presented in this section, and it includes the integration of the base band unit 

controller (BBUC) components and the BBU. A new system architecture is thus proposed to merge the 

functionality of BBUC components with those of BBU in the data centre. Figure 2 depicts the proposed 

architecture of the C-RAN within the distributed core network. Each C-RAN is, in effect, a cell with its own 

BBU and BBUC pool, while the C-RAN actually consists of several remote radio heads (RRHs). In addition, 

as shown in Figure 2, the PGW-U and SGW-U are combined in the area known as the CN. The main tasks of 

the BBUC are to establish user sessions and deal with the forwarding elements. The LTE control functions 

(MME, PGW-C, and SGW-C) are achieved by an application running on top of the BBUC. In this work, all 

signalling messages being exchanged in all LTE network entities are thus considered. 

 

3.1.  Network events in the proposed architecture 

a. Initial attachment: The initial attachment is the first step towards network registration after user 

equipment (UE) is enabled. This is triggered after the attach request message is generated by the UE. As 

the initial attachment event does not depend on the type of applications used by the user's equipment, 

the signalling load is not affected by the session arrival rate. As is evident from Figure 3, with the 

exception of the authentication step, the total number of messages after a tracking area update and 

session creation procedures are complete thus equals four. No signalling load is caused by the control 

messages between the BBU and the BBUC, and therefore the total number of messages on the BBU 

controller remains equal four, with these resulting from user equipment tracking area updates, session 

creation, and bearer modification. The signalling load from the initial connection procedure is thus 

calculated as: 
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𝐿𝑃𝐼(𝑛)  =  4 𝑃𝑜 𝜌 𝐴 𝐶 (1) 

 

where, 

𝑃𝑜: Probability that the UE initiates an attachment procedure in the network.  

𝐴 : Area of a cell. 

𝜌 : Density of UEs (UEs/km2). 

𝐶 : Total number of RRH in the area of concern. 

 

 

 
 

Figure 2. Proposed fully distributed core network (FDCN) architecture  

 

 

 
 

Figure 3. Procedure for the initial attachment  

 

 

b. Active to idle and idle to active transitions: The call flow for an idle to active event is as follows: 

 Service request (UE BBU)  

 Initial UE message (BBU BBU controller)  

 Initial context setup requirement (BBU BBU controller)  
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 Initial context setup answer (BBU BBU controller)  

This information is then sent to the SGW-C by a BBUC that sends the SGW-D IP address, the SGW-

TEID values, and the QoS level to the BBU. The BBUC then sends an OF_Packet_Out to the selected 

SGW-U to establish the bearer. 

 OF_Packet_Out (BBU controller SGW-U)  

the call flow of the active to idle event is thus 

 Release request (UE BBU)  

 UE context release request (BBU BBU controller)  

 OF_Packet_Out (BBU Controller SGW-U)  

 UE context release command (BBU BBU controller)  
 UE context release complete (BBU BBU controller)  
Similarly, the signalling burden induced by the active to idle and idle to active transitions is given as (2): 

 

𝐿𝑃𝐴2𝐼(𝑛)  =  2 𝜆𝑛 𝑃 𝜌 𝐴 𝐶  (2) 

 

where, 

𝑃: Possibility of an n-type session being generated by the UE and  

𝜆𝑛: Average arrival rate of type-n sessions per UE. 

 

c. Network-triggered service request: A service request triggered by the network is executed when the 

network is required to send traffic to the UE. The paging case includes three messages from the BBUC 

in addition to the paging messages when UE is in the Inactive state. When paging is not required, as 

when the UE is connected, the message count is two. The signalling load caused by this event is thus 

given as (3): 

 

 𝐿𝑃𝑡𝑟𝑖(𝑛) =  ((3 + 𝐶𝐵𝐵𝑈) 𝑅𝑝 𝑃𝐼 + 2 (1 − 𝑃𝐼)) 𝜆𝑛 (1 − 𝑃) 𝜌 𝐶 𝐴  (3) 

 

where, 

𝑅𝑝: Average number of pages for each transmission; 

𝐶𝐵𝐵𝑈: C-RAN cell in the region considered; and 

𝑃𝐼: Possibility of a UE being in Inactive mode. 

The study outlined in [35] showed that the UE is most likely to be in a connected state is (1 − 𝑃𝑖). 
 

d. Handover: In the proposed architecture there are two types of handovers: the inner handover as 

represented in Figure 4, which is similar to the X2 handover in the traditional LTE architecture that 

occurs between the base stations inside the pool; and the outer handover as represented in Figure 5, 

which is similar to the S1 handover in the traditional LTE architecture that occurs between the BBU 

pools. Within the BBU (between base stations) and between the BBU and the BBUC, no signalling load 

is triggered by the control messages for either inner or outer handover. 

 

 

 
 

Figure 4. Procedure for the inner handover 
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Figure 5. Procedure for the outer handover 

 

 

The inner handover signalling load is given by (4): 

 

𝐿𝑃𝑖𝑛ℎ(𝑛)  =  𝑅𝑐 (1 −  𝑃𝐼) 𝐶  (4) 

 

where 

𝑅𝑐: Rate of crossing from a closed region of a set of UEs(𝑅𝑐 = (𝜌 𝐿 𝑉)/𝜋). 

The full number of messages for the outer handover on the BBUC is equal to 5; the signalling load 

caused by this event is thus given by (5): 

 

𝐿𝑃𝑜𝑢𝑡ℎ(𝑛)  = 5 𝑅𝐵𝐵𝑈 (1 −  𝑃𝐼) 𝐶𝐵𝐵𝑈 (5) 

 

e. Tracking area update (TAU): This occurs when a UE travels when it recognises that its tracking region 

is not in the region of tracking or the list of tracking regions reported by the network. In this situation, 

the UE must update its network tracking zone, whether it is in idle or in active state. The procedure for 

this event is as depicted in Figure 6. As noted previously, within the BBU (between base stations) and 

between the BBU and the BBUC, no signalling load is triggered by the control messages; thus, the total 

number of messages on the BBUC is equal to 7, and the signalling load caused by this event can be 

given by (6). The total signalling load over the five events is thus the sum of (1) to (6). 

 

𝐿𝑃𝑡𝑎𝑢(𝑛) = (7/√𝐶𝐵𝐵𝑈) 𝑅𝑐 𝐶  (6) 

 

 

 
 

Figure 6. Procedure for the tracking area update 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Signalling load reduction in 5G network based on cloud radio … (Mohammed Abbas Waheed) 

5133 

4. RESULTS AND DISCUSSION 

In this section, the numerical results for signalling load generated using the MATLAB 2018 

software package are presented. To assess the efficiency of the proposed design, the results for this 

architecture were compared with those for conventional LTE architecture which was explained in detail in 

[25, 35], and with the full openflow-enabled EPC (OEPC) architecture proposed by Nguyen et al. [25] in 

2015 and the C-RAN.DMME architecture proposed by Al-Samman et al. [26] in 2016. During the 

evaluation, the authentication step was not taken into account, however, as this is considered to be a fixed 

step in all architectures. The scenario default values were 𝜆𝑛 = 0.05, an average session duration of 0.2, 

𝑅𝑝=1.1, and the number of RRHs and BBUs equal to 500 and 5, respectively. The number of users was set 

equal to one million. The required cell radius, r, to cover the total area was calculated as: 

 

𝑟 =  𝛾 √
2 𝑆𝑇

3 √3 𝑐
 (7) 

 

Assuming a uniform hexagonal cell with an overlap of 𝛾 factor of 1.2. 

In terms of the number of messages exchanged between control entities for each event, as Table 1 

shows, assuming that there is no SGW relocation during X2 and S1 handovers, with the exception of TAU, 

there are far fewer control messages in the proposed architecture than in the conventional architecture. 

 

 

Table 1. Number of messages in proposed and traditional LTE architectures 
FDCN architecture No. of messages Traditional LTE architecture No. of messages 

Initial attachment 4 Initial attachment 10 

A2I & I2A transition 2 A2I &I2A transition 10 

Inner handover 
Outer handover 

Tracking area update 

1 
5 

7 

X2 handover 
S1 handover 

Tracking area update 

4 
9 

3 

 

 

The first analytical case examined involved increasing the region area and then determining the 

overall number of signal messages handled by the MME and the controller. The total signalling load 

differences among all considered architectures are shown in Figure 7, which makes it evident that the 

proposed architecture experiences the lowest load levels, followed by C-RAN.DMM. The full OEPC 

architecture demonstrates better efficiency than traditional architecture, however, as a result of the decrease 

in the number of messages exchanged between MME, eNB, PGW, and SGW seen in the conventional 

architecture. As shown in Table 2, up to 45.394 percent of the average signalling load, relative to 

conventional LTE architecture, can be reduced with the implementation of the proposed architecture, while 

compared with the traditional architecture, C-RAN.D-MME and Full OEPC reduce signalling load by 18.823 

percent and 5.007 percent, respectively on average. 

Changes in the velocity of the user is another metric that must be analysed, as it is logical that 

increasing velocity increases the overall signalling load by causing handover and tracking area updates to 

occur more frequently irrespective of the architecture implemented. As shown in Figure 8, where the velocity 

of the UE varies between 0 and 120 km/h, the proposed architecture results in the lowest signalling load, 

followed by C-RAN.D-MME and the Full OEPC. As shown in Table 2, the average signalling load was 

decreased by 38.303 percent in the proposed architecture relative to that seen in the existing LTE 

architecture. 

 

 

Table 2. Average signalling load reduction in each architecture as compared with that in traditional LTE 

architecture 
 C-RAN.DMME Architecture [26] Full OEPC Architecture [25]  Proposed Architecture 

Area (km2) 18.823percent 5.007percent  45.394percent 

Number of UEs 19.006percent 6.243percent  46.041percent 
Velocity of UEs (km/h) 5.859percent 5.256percent  38.303percent 

 

 

For the third case, the impact of the number of users on the overall signalling load in the proposed 

architecture, CRAN.DMME, Full OEPC and traditional architecture was examined. As shown in Figure 9, as 

the number of network users was increased from 0 to 1,000, the signalling load increased for all architectures. 

Nevertheless, the proposed architecture retained the lowest signal loads among these architectures at all user 

counts. 
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Figure 7. The impact of the area on the architectures 

 

 

 
 

Figure 8. The impact of UE velocity on the architectures 

 

 

 
 

Figure 9. The impact of the number of UEs. on the architectures 
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5. CONCLUSION 

In this paper, a new 5G architecture network was presented as a prospective candidate for growing 

mobile network systems. The proposed network architecture utilises the Cloud-RAN as a domain for its 

design. The signalling load was tested and evaluated by considering a range of different parameters, such as 

area size, velocity, and user density. Based on the results of these considerations, the proposed architecture 

improves the flexibility of the network configuration as well as simplifying it in comparison with the 

traditional architecture. Testing the proposed system suggests that it has the capability to reduce the total 

signalling load overall control entities of the core network. Based on two different cell size scenarios, it was 

also demonstrated that the signalling load was reduced to less than half that seen in the traditional 

architecture (44.84 percent) for small cell sizes, while in large cell size scenarios, the signalling load 

decreased by 46.83 percent over 2,000 km2. Based on these results, the proposed network architecture could 

provide good results in terms of reducing total signalling load on control entities and thus offers a new 

solution for the next generation of mobile networks. 
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