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 A pipelined framework is proposed for accurate, automated, simultaneous 

segmentation of the liver as well as the hepatic tumors from computed 

tomography (CT) images. The introduced framework composed of three 

pipelined levels. First, two different transfers deep convolutional neural 

networks (CNN) are applied to get high-level compact features of CT 

images. Second, a pixel-wise classifier is used to obtain two output-

classified maps for each CNN model. Finally, a fusion neural network 

(FNN) is used to integrate the two maps. Experimentations performed on the 

MICCAI’2017 database of the liver tumor segmentation (LITS) challenge, 

result in a dice similarity coefficient (DSC) of 93.5% for the segmentation of 

the liver and of 74.40% for the segmentation of the lesion, using a 5-fold 

cross-validation scheme. Comparative results with the state-of-the-art 

techniques on the same data show the competing performance of the 

proposed framework for simultaneous liver and tumor segmentation. 
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1. INTRODUCTION 

According to the World Health Organization (WHO), liver cancer is the main cause of cancer deaths 

among all types of cancers. Worldwide, around 800,000 cases of liver cancer are diagnosed each year, 

accounting for around 700,000 deaths [1]. In 2019, the American Cancer Society (ACS) estimated around 

42,030 new cases for primary liver cancer and intrahepatic bile duct cancer in the United States, with around 

31,780 deaths [1]. These metrics reflect the epidemic inflation of liver cancer.  

Computed tomography (CT) imaging is usually used for liver segmentation and/or liver cancer 

detection. However, manual segmentation of the liver and/or the liver tumors from CT images consumes a lot 

of time and suffers from observer variability. Therefore, the design of efficient computer aided diagnostic 

(CAD) systems, to assist the radiologists for liver segmentation and/or liver cancer segmentation, is a widely 

investigated open research problem. Throughout literature, different methodologies have been utilized for 

liver segmentation and/or for liver cancer segmentation. These methods can be categorized as traditional 

methods or deep learning methods.  

Traditional approaches usually extract features, e.g., intensity, texture, shape, from liver CT images 

and use a classifier based on these features to perform the segmentation process. On the other hand, deep 

learning methods usually use convolutional neural networks (CNN) that consist of a number of convolutional 

layers for extracting low-level and high-level features for the liver CT images and fully connected layers to 

encode a compact feature set for the segmentation process. 

https://creativecommons.org/licenses/by-sa/4.0/
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 For the task of liver segmentation, a preliminary step in many CAD systems for liver cancer [2] and 

liver fibrosis [3], different traditional and deep learning methods have been applied. For example, Barstugan et al. [4] 

used a super-pixel linear iterative clustering approach and AdaBoost algorithm to segment the liver, 

achieving a DSC of 92.13% on 16 abdomen CT test images. Muthuswamy and Kanmani [5] extracted the 

liver from CT images based on intensity thresholding, fuzzy c-means clustering, and connected component 

analysis. For example, Chang et al. [6] segmented the tumors using a region growing algorithm. A binary 

logistic regression analysis based on extracted texture, shape, and kinetic curve features were further 

performed to classify the segmented tumors (Benign or Malignant). In Chlebus et al. [7], a modified U-ne [8] 

architecture was used, consists of four resolution levels, for liver tumors segmentation. Yuan [9] used a 

hierarchical deep fully convolutional-deconvolutional neural networks (CDNN) for tumor segmentation. An 

initial liver segmentation was provided using a simple CDNN model. The segmented liver region was refined 

using another CDNN to find the final liver segmentation enhanced by histogram equalization. Then a third 

CDNN is applied for tumor segmentation. Bi et al. [10] used a deep residual networks (ResNet) for liver and 

lesions segmentation. Gruber et al. [11] applied, sequentially, two U-net [8] networks for liver and lesions 

segmentation. Wang et al. [12] a 3D atlas-based model for liver segmentation. Shi et al. [13] utilized a 

deformable shape liver segmentation method. Song et al. [14] implemented a modified U-Net model for liver 

segmentation. Although the methods presented in the literature achieved good results, the accuracy is still a 

need to be improved. The present study presents a deep learning system for simultaneous liver and tumor 

segmentation using CNN modeling. The main contributions of this work are as follows: 

− Investigating different deep learning architectures for liver and tumor segmentation (i.e., Densenet and 

FCN-AlexNet) 

− Applying a 3D narrow-band of the input images to enhance the deep training 

− Using a smart fusion of two CNN architectures to improve the segmentation quality 

− Performance evaluation on the MICCAI’2017 challenge liver tumor segmentation (LITS) database. 

 The structure of this paper is as following. Section 2 presents the suggested system for 

simultaneous liver and tumor segmentation. Section 3 summarizes the proposed system results as well as the 

comparative results to the current state-of-the-art techniques. Finally, section 4 concludes the paper.  

 

 

2. METHODS 

The proposed framework processes a raw image through three stages as shown in Figure 1. First, 

features are extracted from raw images, without preprocessing steps, by investigating two different CNN 

models. Second, a pixel-wise classification layer is applied. Finally, a smart fusion of the outputs of the two 

CNN models is performed using a neural network (NN) to provide the final simultaneous liver and tumor 

segmentation map, containing three output labels: background (BG), liver, and lesion.  

 

 

 
 

Figure 1. Proposed framework for the liver and lesions segmentation with three stages: feature extraction 

using deep learning, classification based on pixel-wise technique, and smart fusion 

 

 

2.1.  Feature extraction 

Herein, two pre-trained CNNs are used to get the features of the liver and its lesions; Densenet [15] 

and the fully connected network (FCN) using Alexnet (FCN-Alexnet [16]). The Densenet model consists of a 

down-sampling path and up-sampling path. The down-sampling path extracted the semantic features then the 
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up-sampling path is trained to recover the image resolution of the input at the output of the model. Figure 2 

shows the architecture of the Densenet model. 

 

 

 
 

Figure 2. Schematic diagrams for the structures of Densnet model [15]  

 

 

FCN-Alexnet consists of an encoder, a decoder, and a pixel-wise classifier as shown in Figure 3. 

The job of the encoder is to extract high-level compact deep learning features from the abdomen liver CT 

images. For the FCN-Alexnet model, the stage of the encoder consists of five Alexnet’s layers as shown in 

Table 1, with no fully connected layers as shown in Figure 3. The job of the decoder is to perform 

deconvolutional steps to get extracted features with the same dimensions as the input image. To perform the 

segmentation process, a classification layer based on pixel-wise technique is further used, to label each pixel 

in the CT input image into one of three labels: lesion, liver, or background. 

 

 

 
 

Figure 3. Schematic diagrams for the structures of FCN-Alexnet [16] 

 

 

The pre-trained Densenet and Alexnet are trained on the ImageNet large-scale visual recognition 

challenge 2012 (ILSVRC2012) dataset that is composed of 10 million training images of size 224x224 from 

more than 1000 subjects. The Densenet network composed of contiguous dense blocks. There are a transition 

layers (convolutional layers and average pooling) between the contiguous dense blocks with more than  

20 million parameters. The size of the feature map and the dense block is similar to be concatenated easily. 

There are a global average pooling and a SoftMax classifier at the end of the last dense block. Alexnet model 

is composed of five convolutional layers and three FC layers with more than 62.4 million parameters. More 

detailed of each model can be found in [15], [16], respectively. We applied the two models (Densenet and 

FCN-Alexnet) in the proposed system, since their decoders produce outputs that are of the same dimensions 

as the input image, which suits the task of segmentation. In addition, they have shown outstanding 

performance for several related medical applications, such as lung segmentation [17], [18], pulmonary 

cancerous detection [19], face recognition [20], brain cancer [21] and diabetic retinopathy [22]. 

 

2.2. Classification 

A pixel-wise classifier is applied after each model’s decoder to label the segmented output image. 

The pixel-wise classifier is composed of two layers: a SoftMax layer and a weighted layer to perform pixel-

wise classification. The SoftMax layer is composed of three SoftMax nodes per each image pixel, providing 

the probabilities of the three labels: lesion, liver, or background, as in (1). 

 

𝜎(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑖𝑖
 (1) 
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where 𝑥𝑖 denotes the input at the softmax node 𝑖 and 𝜎(.) denotes the output probability of the SoftMax node. 

The weights of the pixel classification layer are trained using the LITS database. Based on the largest 

SoftMax probability, the pixel-wise classification layer provides the final output label for each pixel to be 

either lesion, liver, or background. 

 

2.3.  Fusion neural network (FNN)  

To investigate the potential of fusing the extracted deep learning features from the two utilized deep 

learning models (Densenet and FCN-Alexnet), an FNN is designed to integrate the strength of each model. 

The proposed FNN consists of an input layer, one fully connected hidden layer, and an output layer as shown 

in Figure 4. The input layer of the FNN consists of the two input labeled images (from the outputs of the 

Densenet and the FCN-Alexnet models). The hidden layer is composed of a number of 𝐻1 nodes, 𝐻1=100, 

selected during experimentations, all with tanh activation functions. The output layer is composed of the 

finally fused output labeled image with the same dimensions as the input images. Figure 4 shows a typical 

example of fusion, where the proposed FNN was able to enhance the performance of the given example. 

 

 

 
 

Figure 4. Architecture of the proposed FNN 

 

 

2.4.  Performance metrics 

In order to accurately evaluate the performance of the proposed system for the liver and tumor 

segmentation, two parameters are used to assess the quality of segmentation: one area-based metric; the dice 

similarity coefficient (DSC), and a distance-based metric; the average symmetric surface distance (ASSD). 

The DSC [23] represents the area overlap between the segmented image (S) and the ground truth (GT) 

image: 

 

𝐷𝑆𝐶 (𝑆, 𝐺𝑇) = |𝑆 ∩ 𝐺𝑇|/ 0.5(|𝑆| + |𝐺𝑇|) × 100 % (2) 

 

where the |. | operator denotes the object area. 

On the other hand, the ASSD [24] measures the distance between the segmented object surface and 

its corresponding GT segmentation surface, known as the average of the Euclidian distances, 𝑑, from (i) all 

points, 𝑥, on the surface of the segmented object (𝑆𝑠) to the surface of the GT (𝐺𝑇𝑠) and (ii) all points on the 

𝐺𝑇𝑠 to 𝑆𝑠: 

 

𝐴𝑆𝑆𝐷 (𝑆, 𝐺𝑇) =1/ (|𝑆𝑠| + |𝐺𝑇𝑠|) × (∑ (x, GTs) 𝑥∈𝑆𝑠 + ∑ (x, Ss)x∈GTs ) × 100 % (3) 

 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION  

In this section, the LITS challenging database, the experimental setup, and the comparative results 

to other methods are detailed. 

 

3.1.  LITS database 

The LITS challenging database [25], [26] consists of 130 contrast-enhanced abdominal CT training 

scans collected from seven different clinical institutions. The training CT scans were given with manual 

segmentations of the liver and liver lesions done by trained radiologists. All volumes contained a different 
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number of axial slices (42 to 1026 cross-section per volume), with an overall number of 16,917 images. The 

size of each CT image is 512×512 pixels. Data description is detailed in [25] and [26].  

 

3.2.  Experimental setting 

 Model 1 (Densenet) and Model 2 (FCN-Alexnet) are trained using the database of LITS 

competition as follows: initially, all the encoder’s weights are initialized by transferring the Densenet 

network in [15] and Alexnet in [16] pertained weights, respectively. In the training phase, all encoder layers 

and decoder layers are fine-tuned using the LITS data. The training epochs are repeated until the cross-

entropy loss is very small or the number of epochs exceeds 30. Inputs are shuffled in each epoch using a 

mini-patch size of 500. Learning rates are set to 10-3 for model 1 and for model 2 to afford higher parameter 

tuning. FNN training applied the same training setting. All training phases are implemented using 

MATLAB© 2018a. Over-fitting is avoided by reducing the network's capacity by removing layers (fully 

connected layer in the pre-trained network Alexnet in model 2) and reducing the number of elements in the 

hidden layers in the fusion network. 

A Five-fold cross-validation is used to evaluate the proposed system. Two modes are used for the 

input data: “duplicate” and “3D narrow-band” as shown in Figure 5. In the “Duplicate” mode, the input data 

is composed of three duplicated grey level images at each of the three standard channels of the utilized deep 

learning model. In the “3D narrow-band” mode, input data is composed of three consequent anatomical grey 

level images to the proposed system (i.e., the target image to the centralized CNN model’s input channel and 

the previous and next cross-sections to each side channel).  

 

 

  
(a) (b) 

 

Figure 5. The data are input to the proposed system using two modes: (a) “Duplicate” and (b) “3D Narrow-

band”. Original image (top row) and GT image (bottom row) 

 

 

A five-fold cross-validation is applied to evaluate the proposed system with two different settings: 

“global” and “per case”. The “global” setting applies the 5-fold cross validation on the whole 16,917 images 

of all the 130 scans (i.e., 383 test images (20% of images) and 13,534 training images (80% of the images)). 

On the other side, the “per case” setting divide the data based on case (subject or scan) and applies the 5-fold 

cross-validation on the total number of 130 separate scans (i.e., 26 test subjects’ images (20% of the scans) 

and 104 training subjects (80% of the scans)). Cross-entropy is used as the objective function to train the 

network using ADAM optimizer [27]. The median frequency balancing is used, where the weight assigned to 

a class in the loss function.  

 

3.3.  Experimental results 

In order to assess quantitatively the system performance, Table 1 provides detailed liver and tumor 

segmentation results for each utilized CNN model (Densenet and FCN- Alexnet) as well as the proposed 

fused system. Consistent with the visual results in Figure 6, the performance of FCN-Alexnet model is better 

than the Densenet network. This is due to the efficient simpler structure of the FCN-Alexnet (its encoder 

contains only five convolutional layers plus 2 fully connected layers, which is easy to be trained efficiently) 

compared to the Densenet (contains 201 layers [15], making its training rather complex and causes 

overfitting). In addition, Tables 1, 2, and Figure 6 show that the proposed FNN fusion further improves the 

performance. As expected, the “3D Narrow-band” mode achieves better results than the “Duplicate” mode, 

since it takes into account an extended 3D narrow-band anatomical information of the object. However, 

Table 1 shows that while the “3D Narrow-band” mode achieves better results for tumor segmentation for all 

the three compared systems (Densenet, FCN-Alexnet, and the proposed system), it fails to enhance the liver 
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segmentation results. This is due to the almost no significant change between the liver anatomies for the 

consequent images, while tumor anatomy shows significant changes due to its relatively small size compared 

with the liver.  

 

 

Table 1. Liver and tumor segmentation results for each utilized deep learning model (Densenet, FCN-

Alexnet, and FNN). For each model, results are compared for two modes  

(“Duplicate” and “3D Narrow-band”) 
Model Object Liver Tumor 

Mode “Global” “Per case” “Global” “Per case” 

Metric DSC ASSD DSC ASSD DSC ASSD DSC ASSD 

Model 1 

Densenet 

Duplicate 82.8% 3.89 76.5% 4.95 69.7% 3.87 62.6% 4.12 

Narrow-band 3D 82.8% 3.89 76.5% 4.95 73.0% 2.76 64.8% 3.07 
Model 2 

FCN Alexnet 

Duplicate 96.9% 0.89 91.4% 1.32 76.3% 3.21 66.1% 3.87 

Narrow-band 3D 96.9% 0.85 91.4% 1.35 78.2% 2.43 68.9% 3.18 

Proposed: 

FNN fusion 

Duplicate 97.2% 0.74 93.5% 0.99 78.8% 2.36 70.0% 3.11 

Narrow-band 3D 97.2% 0.72 93.5% 0.77 79.9% 0.92 74.4% 0.99 

 

 

 
 

Figure 6. A “3D Narrow-band” sample segmentation results. First column contains the input and GT 

segmentation. Second, third, Forth and last columns provides the results of Model 1, Model 2, proposed FFN, 

and GT segmentation, respectively; liver (first row) and the tumor (second row) 

 

 

3.4.  Comparative results 

Results are compared to the related state-of-the-art methods on the LITS competition database to 

quantify the proposed system strength as shown in Table 2. The proposed FNN fusion system achieves 

superior performance for tumor segmentation, evidenced by the highest “per case” DSC and the smallest “per 

case” ASSD among all the compared methods. However, the liver segmentation results are less than the 

related models. The clinical importance of the accurate liver segmentation is less important than the accurate 

tumor segmentation, e.g., when considering the case of assisting the radiologists in liver cancer cases. Later, 

an investigation of how to increase the performance will be introduced, especially for the liver segmentation. 

 

 

Table 2. Comparative results between the proposed system and the related state-of-the-art methods using the 

same database, consisting of 130 scans 
Paper Experimental setup Method “Per case” DSC 

Liver Tumor 
Bi et al. [10] Train size=118 

Test size=13 
Cascaded ResNet 

(Multi-scale Fusion) 
95.1% 50.1% 

Elmenabawy et al. [28] 4-fold validation Train 
size=97 Test size=33 

FCN-Alexnet with 
preprocessing 

90.4% 62.4% 

Proposed framework 5-fold validation 

Train size=26 

Test size=104 

Fusing Densenet and 

FCN-Alexnet 
93.5% 74.40% 
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4. CONCLUSION  

In this paper, a CAD system for simultaneous liver and tumor segmentation is presented, based on 

the efficient fusion of two deep learning CNN models, trained using 3D narrow-band data. The system 

performance is evaluated on the challenging LITS database, achieving superior performance over competing 

methods for liver tumor segmentation. In the future, different CNN architectures as well as different fusion 

models will be investigated to improve the segmentation accuracy. 
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