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 Decision makers in the educational field always seek new technologies and 

tools, which provide solid, fast answers that can support decision-making 

process. They need a platform that utilize the students’ academic data and 

turn them into knowledge to make the right strategic decisions. In this paper, 

a roadmap for implementing a data driven decision support system (DSS) is 

presented based on an educational data mart. The independent data mart is 

implemented on the students’ degrees in 8 subjects in a private school (Al-

Iskandaria Primary School in Basrah province, Iraq). The DSS 

implementation roadmap is started from pre-processing paper-based data 

source and ended with providing three categories of online analytical 

processing (OLAP) queries (multidimensional OLAP, desktop OLAP and 

web OLAP). Key performance indicator (KPI) is implemented as an essential 

part of educational DSS to measure school performance. The static 

evaluation method shows that the proposed DSS follows the privacy, security 

and performance aspects with no errors after inspecting the DSS knowledge 

base. The evaluation shows that the data driven DSS based on independent 

data mart with KPI, OLAP is one of the best platforms to support short-to-

long term academic decisions. 
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1. INTRODUCTION  

The importance of data repositories has emerged with the existence of large institutions. 

Departments manage their own databases (marketing, financial, and administrative), which organise massive 

common data. Finding data related to a specific subject and organising such data into a single database called 

‘the data store’ are required; another requirement is maintaining the special rules for stores with no 

modification or changing the rules on the basis of topics by using special software, especially in each subject, 

via a process called schema integration. This process also specifies how to transfer the merged data [1]. Data 

warehouse (DW) can be defined as a subject-oriented, time-variant, integrated and non-volatile data used to 

support strategic decision making [2]. DW holds a collection of permanent historical data that assists in 

administrative decision making to help in accessing data for the purposes of time analysis, knowledge 

discovery and decision making [3]. It is specifically designed to extract, process and represent data in a 

suitable format for this purpose. The data extracted from different sources, rules, systems and places are 

defined as a kind of database that contains a huge amount of existing data to help in making decisions within 

an organization [4]. The interior intention of a user requires indicators, which are systems needed for 

https://creativecommons.org/licenses/by-sa/4.0/
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studying, analysing and presenting enterprise data in a manner that enables senior management to make 

decisions [5], [6]. The type of DW that an organization should adopt depends on the way that the 

organization works and the type of decision support system (DSS) it needs. One of the simplest types of data 

repositories is the operational data store (ODS), a production database that has been replicated after errors 

have been processed. ODS is primarily used to complete standard process reports and provide details of 

business transactions for summary analysis [7], [8]. Another type of DW is called data mart, which is a 

limited use or single-use system that can be used to analyse specific information in a specific area or for a 

specific production line. Data stores usually contain only summary data but can be linked to ODS for diving 

into transaction details if needed. Data stores are sometimes managed by information technology (IT) 

departments in companies but can also be managed by users in a particular department or group [9]. Many 

types and applications use DWs and data marts to support strategic decisions, such as clinical path [10]-[12], 

cancer DW [13], educational health DW [14], HR DW [15], compliant DW [16], human resource DW [16] 

and security DW [17]. 

Educational staff members always need new technologies that support their decisions; these 

members seek different tools and applications to support their decisions on the basis of different algorithms 

and techniques, such as machine learning and data mining algorithms [18]-[25], mobile learning [26], DSSs 

[27] and web-based tools [28]. The decisions made on the basis of previous studies and solid analytical 

results are more considerable and reasonable than before. Educational DW is the best solution that provides 

online analytical results on the basis of a multidimensional view of OLAP queries for all educational 

stakeholders (professors, lecturers, managers and decision makers). Educational DW provides a large view of 

the performance of all students and allows them to detect the obstacles in their progress [29]. Educational 

DW can also be used for the future applications of data mining to implement all techniques and algorithms 

that can be implemented on huge educational historical records instead of a small dataset. The use of 

educational DW can effectively reduce educational errors that affect academic decision making [30], [31]. 

DSS is an essential platform for making right strategic decisions. The DSS type can be determined 

on the basis of the purpose of the DSS, the type of knowledge and target users. DSS can be categorised into 

five types: knowledge-, model-, data-, document- and communication-driven DSS. Model-driven DSS allows 

decision makers to choose among options on the basis of limited data and options. Knowledge-driven DSS 

covers many kinds of systems within organisations; it provides an advice management process or service and 

product selection. Data-driven DSS concentrates on a decision and manipulates the data to fit the decision 

where the data can be in different formats. Target users are managers and stakeholders. Document-driven 

DSS targets a specific group of users on the basis of a document search on the web; a mechanism is required 

for retrieving related documents to support decisions. Communication-driven DSS provides a shared 

dashboard for making decisions for more than one person in a single shared task [32].  

Data mart is used in this model as the base of the data-driven educational DSS through the 

implementation of specific school data and analysis of executive information systems. This paper presents 

the stages of implementing an educational independent data mart, starting from selecting the proper approach 

of design to implementing OLAP queries and KPI. The implementation starts with converting the paper-

based educational data of student records into electronic educational records. The data mart staging area is 

prepared to extract electronic students’ records and implement all extraction, transformation and loading 

(ETL) processes. Star schema is chosen as an architecture of data mart for its ease of implementation, ease of 

load and fast OLAP query response. The educational cube is built to implement OLAP queries. Three types 

of result viewing are listed structured query language (SQL) server integration services (SSIS) cube view, 

online reports and offline excel pivot reports). SQL server management studio (SSMS) 2014 is used to store 

and implement educational data mart objects (data mart schema and staging area). ETL is implemented and 

designed by SSIS 2014, where SQL server analysis services (SSAS) 2014 is used to design and construct the 

educational cube. Likewise, SSRS 2014 is used for designing reports. All the implemented projects are 

deployed by SQL server data tools (SSDT), as this tool provides the ability to create and deploy (SSIS, SSAS 

and SQL server reporting services (SSRS)) projects. 

The rest of this paper is organised is being as: Section 2 analyses and discusses the related works 

and presents the strong points in these works. Section 3 explains the model implementation roadmap and 

details each step of the model implementation. Section 4 concludes the points derived from the model result 

and presents the future works that can be implemented on educational data mart. 

 

 

2. RELATED WORKS 

Smyrnaki [33] proposed a model based on DW to implement a DSS in order to support decisions. 

The proposed system integrated a heterogeneous sources used for different purposes such as education, 

financial and managerial decisions. The results conducted the integration of multiple heterogeneous sources 
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of data will be a useful platform for both of educational leadership and quality assurance unit. Next, Suman  

et al. [34] proposed a DW to solve many challenges in the higher eduction center. These challenges are 

facing the designer throughout the designing process such as the overall system design, the main processes of 

extraction, transformation, and loading, and performing the analysis processes using multidimensional 

queries based OLAP. The tool used for developing DW is Mondrian and Pentaho business intelligence tool. 

However, the proposed systems did not implement KPI as an essential component in the decision making 

process.  

Mihai et al. [35] proposed using enterprise data warehouse (EDW) to support academic decisions in 

educational institutions. The design and implementation process proceeded via two steps; the first one is 

implementing EDW to find the performance measurements of the management of the entire academic staff, 

whereas the second step is finding the result evaluation of the correlation between financial allocation and 

educational performance. The result obtained from implementing enterprise document management (EDM) is 

finding the indicator that measures the required financial efforts for education and helping decision makers 

estimate future efforts to enhance education. However, the paper presented a general overview of EDW 

implementation and neither went through design methodology nor explained how to select the proper 

approach of implementing EDM. Another model implemented by Abdullah and Obaid [36] combined 

educational records from two simulated databases of 10 years of data from the Department of Computer 

Science at Basrah University and four years of data from Al-Iraq University, Iraq. They unified the data 

under a single schema of EDW and then used OLAP to conduct a descriptive analysis and find student 

achievements through these years. The decision makers in the proposed model are lecturers and department 

heads. However, the approach of EDW design, the access method to EDW and the multidimensional cube 

were not clearly explained. 

Kurniawan and Erwin [37] showed the advantages of using DW and DM in the prediction of 

students’ performance. The model implementation also passed through two stages analysis and DW 

implementation; they used the Kimball approach to design DW with a star schema as a structure for the DW. 

However, the type of DW in the model was neither determined nor distinguished from the data mart. 

Mohammed et al. [38] designed an architectural approach on the basis of DW to combine databases from 

different Iraqi universities for increasing information sharing among all universities, colleges and 

departments. They used the beneficial characteristic of DW application to maximise information sharing 

among universities. However, the approach failed to show how to solve conflicts among databases from 

different universities. The difficulties in this approach are the huge data of a single university because many 

colleges exist with many departments and units in a single college. The paper also failed to explain how to 

deal with different standards and business rules among databases of a single college and how to handle this 

obstacle. 

 

 

3. DSS IMPLEMENTATION 

The data mart is the base of the proposed DSS. The flow chart of the implemented data mart is 

demonstrated in Figure 1. Six basic important steps are taken to implement the educational data mart; these 

steps are data pre-processing; data profiling; data mart area, which holds the staging area and the data mart 

schema; ETL; educational cube building; and OLAP, KPI and reports. The evaluation process is performed 

after completing the knowledge base of the DSS. 

 

 

 
 

Figure 1. Flow chart of educational data mart implementation approach 
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The DSS architecture consists of four major areas, which are data preparation area; data mart area; 

KPI, OLAP and reports area; and decision-making area, as shown in Figure 2. The data preparation area 

involves all data source transformation and selection processes performed on the paper-based data source and 

their conversion into an electronic data source. The data mart area involves a data staging area where all the 

extracted data are stored and transformed to be loaded into data mart schema tables (fact tables and 

dimensions). The OLAP and query area provides many access methods to data mart analysis results from 

online to offline and multidimensional OLAP (MOLAP). KPI is an essential tool in the DSS that helps 

stakeholders in measuring progress. The last area is the decision-making area where all stakeholders 

(analysts, school managers, teachers and senior decision makers) reach the reports and make their decisions. 

 

 

 
 

Figure 2. Model architecture 

 

 

3.1.  Data preprocessing 

The base element of the proposed DSS is the collected data. The data source of the educational data 

mart is sourced from the Al-Iscanderia Private Elementary School; this school is in the Bahadria District, 

Basrah Province, Iraq. The data are paper-based data sheets, which hold all the required documentations for 

all students’ degrees. The school follows the paper-based procedure to calculate averages and success rates 

on different subjects and in different stages; thus, storing them in an electronic base takes a long time. The 

main table of student records contain the following details after storing them in the electronic base Table 1. 

In this table, the main attributes in data sources are explained in detail, content types, data types, and details 

of each attribute are presented. 

 

 

Table 1. Details of students’ records 
Field Content Type Data Type Details 

Student_ID Continuous Long Represents the number of students currently attending the school. 

Student_Number Continuous Long The number of the paper record containing all the student's data that 

may be referred to in case of looking for more extensive data on the 
student (e.g: medical records). 

Full Name Discrete Text First three parts of the student's name as written in Arabic order 

(Student name + Father name + Grandfather name). 
Birth Continuous Date The student's birthdate presented in this format. 

Enrollment Discrete Text The year of which the data was taken presented in this format. 

Address  Discrete Text Name of the district in which the student currently resides in. 
Class  Continuous Long Number of the school year the student is in at the time of the recording 

of the data presented in an integer datatype. 

Groups  Discrete Text Due to the huge number of enrolled students, a reasonable number of 
students of the same year are divided into groups (e.g: 5-A, 5-B, 5-C). 

Subject  Discrete Text Name of the subject the class provides in each year, differing in number. 

Grade Discrete  Text The grades are registered for each month (October, November, 
December, Mid-term, March, April, Final. 
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The second table as shown in Table 2 of data profiling presents the subjects that have been learned 

from class to class. Eight subjects taught are for students from classes 1 to 6. The subjects differ for each 

class; some subjects are taught in the first class, and different subjects are taught from the fourth class to the 

sixth class. For example, Islamic studies, Arabic language, mathematics, science, arts and physical education 

are taught from Classes 1 to 6, whereas social studies are taught from classes 4 to 6. Finally, English 

language is taught in classes 5 and 6. 

 

 

Table 2. Subjects taken by classes 
Subject Number Subject Class 

1 Islamic Studies 1-6 

2 Arabic Language 1-6 
3 Mathematics 1-6 

4 Science 1-6 

5 Arts 1-6 
6 PE 1-6 

7 Social Studies 4-6 

8 English Language 5-6 

 

 

3.2.  Data profiling 

Data profiling, sometimes called data analysis, is the assessment and examination of data 

consistency, integrity and quality of data source. Using data profiling is a fundamental process to examine the 

data quality of DW data sources. Data profiling provides results that can be depended on when making a 

decision related to DW implementation. Data profiling concentrates on the individual attributes of the data 

source. It gives a complete summary that describes the length, data type, length, variance, uniqueness, null 

ratio, and domain range. It shows the full view of data quality related to all data source attributes [39], [40]. 

Data profiling is an important step in the building process of DW and data mart. Building data mart or DW 

does not actually succeed if this step is not performed. The results of data profiling can help in determining 

the dimensions and fact tables, the proposed primary keys, the null ratio in each column, mean and standard 

in each column, the maximum and minimum values in each column and the domain of each column. The 

result of the data profiling of student records is shown in Table 3. SSDT provides a data profiling tool that 

presents the results graphically for ease of understanding and use. Data profiling results are converted into 

table readings, as shown in Table 3. 

 

 

Table 3. Data profiling results 
Seq Field Name Minimum Value Maximum Value Number of Distinct Values Null Ratio 

1 Address - - 11 0 

2 Birth 9-7-2003 27-2-2012 528 104 

3 Class 1 6 6 0 
4 Groups   5 0 

5 Mark   613 0 

6 Month   613 0 

7 Number_of_Students 525 525 599 0 

8 School_Address - - 1 0 
9 School_Name - - 1 0 

10 Student_Name - - 599 0 

11 Student_Number 3 613 599 0 
12 Subject - - 12 0 

13 Year 2018 2018 1 0 

 

 

3.3.  Data mart area 

The data mart consists of two areas: Staging and data mart schema tables. The staging area consists 

primarily of a staging table where the data are first extracted from the data source and loaded into it. The 

staging table faces all transformation processes and holds the final version of the table before loading it into 

dimensions and fact tables. Data mart schema is a star schema where five-dimension tables are connected to 

the fact table whilst their data are taken from the staging table. The staging table is an intermediate area used 

for storage between source systems and the DW; a temporary storage area is where data are successfully 

deleted after being uploaded to the repository. This area is used in many major processes, such as archiving 

and preparing data source, data extraction, cleaning, unifying, mirror, conversion, loading and indexing, 

quality assurance and updating [41], [42]. These processes are usually referred to as ETL. The staging area 

should be prepared and performed whilst all the intended OLAP queries are asked. The staging area also 
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holds the table with all columns and dimension tables. The staging table becomes the place where all data are 

manipulated. Data manipulation involves all data integrity processes, such as cleaning, transformation, 

enrichment and deletion. The data values of all columns must be the same as the data values of all columns in 

the dimension tables. 

The data mart schema tables involve many approaches for designing DW, such as top-down, 

bottom-up, inside-out, and mixed approaches. Selecting an approach depending on the overall size and 

implementation duration period of DW can result in either enterprise DW or small data mart [43]. The top-

down approach is used for long-term designing models and takes further analysis and redesigning to fit all 

enterprise goals. The bottom-up approach is used for short-term designing models where the results can be 

observed [44]. Given that the intended DW is an independent educational data mart, the best approach to 

build the data mart is the bottom-up approach. Based on the previously listed reasons, using this approach in 

implementing a data mart provides many facilities to build a solid solution that can provide answers to 

educational stakeholders. 

Three famous schemas are used to implement the DW schema (i.e. star, snowflake and fact 

constellation). Each schema has its own advantages and disadvantages, which make designers prefer one 

schema over the other. Star schema is the famous one for its simplicity and wide usage; it consists of a 

central table called a fact table and many other tables called dimensions that surround the fact table. The fact 

table consists of many concatenated keys to the dimensions and many other keys called measurements, which 

represent the facts or functions that can be calculated along other dimension columns [45]. Figure 3 

represents the proposed star schema of an educational data mart. 

 

 

 
 

Figure 3. Star schema of educational data mart 

 

 

The data mart schema is built using SSMS 2014. The schema consists of five dimensions (address, 

information, enrolment, subject, and degree) and the fact table. The fact table holds five keys to concatenate 

the dimension tables and one key measurement (count), which is the count function for finding the number of 

students represented by all the OLAP query answers. Using dimensions is one of the key factors that hasten 
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the OLAP responses. Concept hierarchy is normally used with dimensions such as date and address 

dimensions to permit OLAP operations, such as roll-up, drill down, slice, dice and pivot. The star schema can 

provide fast response OLAP queries, handle changes with time, have multiple hierarchies in dimensions, can 

build a simple DW schema and can easily be loaded with data [46], [47]. 

The next stage is performing ETL tasks, which take approximately 70% of the DW development 

time and cost spent on implementing the overall DW model. ETL involves many tasks used to manipulate 

data for obtaining their final cleaned and integrated version. The tasks of ETL (not limited to) are:  

 Data extraction: The first step in the process of transferring data to the DW. It means reading the data and 

understanding them from different sources and then copying the necessary parts to the data submission 

area to continue the work later. The extraction step represents the greatest effort in the DW. 

 Data cleaning is a task of detecting errors in the data and correcting them if possible; it involves tasks 

such as dealing with missing elements and reducing noise by defining extreme values and correcting data 

conflicts [48]. 

 Data transformation: When data are extracted from the source system, a series of actions is applied to 

convert the data into valid and meaningful formulas [49]. 

 Load: Load services need support before and after loadings, such as the regeneration of indexes and 

physical sections of the table. The specificity and structure of each goal when loading is also  

considered [50]. 

 Refresh: The last step of ETL where updates over time are transferred from data sources to  

repositories [51]. 

 

3.4.  ETL 

ETL is the stage where designers unconsciously prepare for fast-answered OLAP queries. In ETL, 

three important factors are prepared to make OLAP fast, namely, measurements, loading dimensions, and 

concept hierarchies. The first two stages (extract and transform) are implemented on the previously created 

staging table. The extraction process not only involves selecting the required data but also testing if the data 

are fulfilling the intended goals. 

The two parts of extract and transform (ETL) are implemented on the staging table by using the 

SSIS package. The loading data mart strategy is divided into two stages, namely, loading dimensions and 

loading fact table. Figure 4 shows both stages of loading data mart schema tables. The first stage is loading 

the five-dimension tables with data. The multicast tool is used to make an image-like staging table to load 

dimensions by using a slowly changing dimension (SCD). Address and info dimensions are loaded using 

SCD with changing attributes. The next three dimensions (subject, enrolment and degree) are loaded with 

fixed attributes. The major difference between fixed and changing attributes is that fixed attributes do not 

detect changes in the staging table after loading data into dimensions, whereas changing attributes detect 

changes and reflect such changes in dimensions. Fixed attributes can be used for all dimensions’ attributes. 

 

 

 
 

Figure 4. Loading dimensions and fact tables strategy 
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The second stage is building a cube to provide an analytical platform to perform OLAP queries. The 

cube is constructed to provide analysts with a platform where they can ask questions and find their answers 

as charts or tables. The educational multidimensional cube is implemented using SSAS 2014, which consists 

of the required dimensions and hierarchies. The cube consists of dimensions that can be used to answer 

OLAP queries on the basis of the measurement (count). Multidimensional cube is selected due to its 

advantages, such as fast complex query response and excellent performance [52], [53].  

 

3.5.  OLAP and KPI 

The process of implementing OLAP and constructing reports is performed. OLAP is a technology 

used on DW architecture to obtain fast and accurate results as answers to complex queries [4]. The OLAP 

cube is primarily implemented to support complex queries on highly dimensional data structures. OLAP 

simultaneously processes dimensions and fact tables with the possibility to roll back if an error occurs. The 

OLAP cube is a popular important component of DW; the OLAP cube server stores security settings and 

complex calculations that can be integrated into data mining tools and algorithms [54]. The OLAP system is 

built on top of a relational database; OLAP has different categories, such as multidimensional OLAP 

(MOLAP), relational OLAP (ROLAP), hybrid OLAP (HOLAP), desktop OLAP (DOLAP), database OLAP 

and web OALP. MOLAP server is implemented by a multidimensional database, and all cube indexes are 

stored and retrieved. By contrast, ROLAP server sends query parameters and receives query answers to/from 

the relational database. HOLAP is a combination of the strengths of MOLAP and ROLAP features. DOLAP 

can be considered a variation of ROLAP. In DOLAP, users have the portability to perform OLAP complex 

queries by using existing DOLAP software on a pre-created multidimensional dataset on user desktop. In 

database OLAP, OLAP calculation can be performed on a relational database management system that 

supports the OLAP structure. Web OLAP allows OLAP calculations from web browsers. Three ways can be 

used to view OLAP results, namely, SSAS 2014 cube view, online reports using SSRS 2014 and offline 

reports using Microsoft Excel 2013 pivot table [16], [55]. 

The first access method is the SSAS cube view. After implementing a multidimensional educational 

cube by using SSAS 2014, the resulting cube is stored with separated locations, which can be accessed from 

the SSMS login screen locally or remotely. The SSMS login screen provides remote access to the database, 

ETL, cube and report. Cubes can be easily viewed by dragging and dropping dimension columns and the 

measurement. The educational cube is implemented on the basis of the multidimensional category because of 

its performance and flexibility in implementing complex queries. Figure 5 shows the grade counts in the mid-

term examinations of all the classes of students who reside in Bahadria City.  

The first class has the greatest number of failed students with 228, followed by Classes 2 and 4 each 

with 180 students. In Class 3, 150 students failed, whereas Classes 5 and 6 hold 30 and 20 failed students, 

respectively. The figure also illustrates the other grades with the number of students according to class and 

grade. The figure represents the slice OLAP operation, where a slice of data is selected on the basis of 

Bahadria City as a dimension with other dimensions (class and mid-grade). 

 

 

 
 

Figure 5. Grades of students of all classes in Bahadria district in mid-term 
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The second method used to view reports is SSRS 2014 for constructing web OLAP. The reports are 

designed using SSRS 2014 to provide pre-defined web OLAP answers and remote access for analysts to view 

statistical and complex multidimensional query answers. Reports are stored in reporting servers that can be 

accessed remotely or locally within the intranet network. Figure 6 presents the results as a report using SSRS 

where these results are conducted in the previous Figure 5.  

 

 

 
 

Figure 6. Grades of students in the mid-term exam 

 

 

The last method of viewing reports is using the offline Microsoft Excel 2013 pivot table to 

implement desktop OLAP. This method allows offline access for instant access to the cube. In this method, 

the final staging table is imported to an excel file after the transformation processes, and the pivot table report 

chart is used to view the results. The pivot table provides the flexibility to select the required chart to view 

the results on the basis of the selected columns and a measurement. Excel pivot provides fast calculation 

functions of a selected table. After importing the staging table from SSMS 2014 and selecting the imported 

table, a pivot table can easily provide a chart to view the selected columns with a count aggregate function.  

Figure 7 illustrates the examples of excel pivot tables. The figure lists the number of students 

according to their ages (10–15) as classified on the basis of the three selected grades (Excellent (E), good 

(G), and very good (V)). Two ages (11, 12) have the highest grades among the other ages. Students between 

the ages of 11 and 12 have the highest grade (E) among all students (with>300 cases), followed by those 

aged 12 (with >200 cases); these results can help analysts in finding the factors that improve student grades 

in these two age groups, including the factors that influence the grades in other ages. 

 

 

 
 

Figure 7. Number of students according to age and grade (E, G, and V) 

 

 

Key performance indicator (KPI) is one of the most powerful tools in any DSS. KPI helps in 

measuring performance according to specific criteria. SSAS provides a powerful environment to build and 

implement KPIs that help in constructing DSSs [10]. Figure 8 shows the KPI of the success rate that helps in 

measuring the performance according to the number of successful students. The value cursor represents the 

number of successful students in the current year, and the goal is to increase the success rate by 10%. The 
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status indicator can be represented by three types of cursors where the cursor in the figure represents the 

current status. The status indicator colour changes according to the status. The trend indicator represents the 

performance measure according to time. When the KPI value changes over time, the trend indicator changes. 

The figure represents the implemented report on the basis of the KPI of the success rate. SSAS also allows to 

drag and drop dimensions to measure KPI value according to the selected dimensions. 

 

 

 
 

Figure 8. KPI of success rate 

 

 

3.6.  Data-driven educational DSS evaluation 

In this stage, the proposed DSS is evaluated to find the framework feasibility. The proposed system 

is implemented on a platform with 8 GB of random-access memory (RAM), intel core i3, 2.4 GHz of 

processer, Intel (R) 82579 LM Gigabit network adapter, and 140 GB free sized hard. The access to platform 

is restricted and the online access throughout network is restricted to permitted users only. These restrictions 

to access DSS satisfy the security aspects of the system. The privacy of the DSS is ensured by hiding all the 

personal information of the students in the system. Educational DSS holds KPI and three kinds of OLAP 

reports (Web OLAP, MOLAP, and desktop OLAP). Each OLAP report holds many strength points and 

serves a specific kind of user. In the proposed educational DSS, the user (manager, analyst, decision maker) 

has the flexibility to use and navigate any type of reports according to needs. Analysts can use MOLAP 

reports. MOLAP permits to select more than one dimension to perform a multidimensional expression on the 

selected dimensions. Managers can use web OLAP reports to view the analyst results on the predefined 

OLAP reports through the network. Desktop OLAP reports can be used by decision makers and any other 

users to perform all OLAP operations instantly and show the analytical results according to the selected 

dimensions. OLAP reports allow users to navigate the educational cube on the basis of the OLAP operations. 

KPI is a powerful tool in any DSS that helps in giving status and trend indicators and presenting the current 

value and how near it is to the goal.  

The static evaluation method is performed to check the DSS errors by inspecting knowledge base 

without using DSS. The proposed DSS confirms the security aspects where the dashboards are accessed by 

permitted users only. These restrictions also confirm the privacy aspects where students’ personal 

information is hidden from analysts. The evaluation process of DSS is a static method where the knowledge 

base is reviewed to check the errors and mistakes in the knowledge base of the DSS without using DSS. The 

presentation is checked to confirm the static evaluation requirements. The DSS usability, cost effectiveness 

and effectiveness are checked on the basis of the system usage [56]-[61]. Subsequently, the dynamic 

evaluation is performed over test cases after applying the DSS in the school. In this step, the experts check 

the obtained results from the test cases. All the usability factors are examined, such as learnability, 

understandability, error prevention, accuracy, operability, efficiency, attractiveness, and effectiveness [62]-

[67]. 

 

 

4. CONCLUSION AND FUTURE WORKS 

In this study, a roadmap for implementing an independent educational data mart is explained. The 

independent educational data mart is the base of the resulting DSS. Many difficulties are dealt with in 

implementing an educational data mart, such as handling the paper-based data source, implementing the ETL 

package, applying OLAP, KPI, and finally designing and deploying reports. The data source pre-processing 

stage involves converting paper-based student information and degrees into electronic data sources by using 

SSMS. The ETL package is implemented using SSIS, which involves many ETL tasks, such as deriving 

columns, filling missing values, constructing surrogate keys and constructing concept hierarchies. Four 

approaches can be used to design and implement models (i.e. top-down, bottom-up, inside out and mixed). 

The best approach to design the data mart is a bottom-up approach because the result is required in a short 

period to support decisions for constructing enterprise DW. The educational data mart provides many 
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benefits, such as the provision of a fast-implemented platform to support educational decisions related to the 

academic performance of students; it also provides academic decision makers, teachers and school managers 

with solutions to the factors that improve students’ success on the basis of their age, class, address and 

subject. In addition, the educational data mart provides educational stakeholders with a comprehensive 

overview of all data to detect outliers.  

Three famous schemas exist for implementing DW, namely, star schema, snowflake schema and 

fact constellation. Implementing a schema is a complementary step with the OLAP cube implementation 

because the OLAP cube completely depends on the previously constructed fact tables and dimensions. The 

proposed schema for the educational data mart is the star schema, which is selected on the basis of many 

reasons, such as the fast responses to OLAP queries, easiness to apply hierarchies on dimensions and easiness 

to adapt changes in the schema. The educational data mart can be considered a solid platform for data mining 

applications that need the information collected from the entire school. The use of a data mart at the school 

level is preferred in this type of analysis and aggregation of large data. Given the complexity and breadth of 

its scope of work, the DW of this institution is usually managed by the central information technology (IT) 

departments. ETL tasks take approximately 70% of time and effort during data mart implementation. Given 

that the data source of student degrees and information is converted into an electronic data source, the 

extraction task is performed smoothly.  

The transformation task consists of many processes, such as deriving columns, converting data, 

filling missing values and constructing surrogate keys. The loading task primarily consists of two stages-

loading dimensions and loading fact tables. SCD has three types that are used for loading dimensions, 

namely, historical, fixed, and changing attributes. However, only two types (fixed and changing attributes) 

are used to load dimensions. A fixed attribute is also used to load dimensions for one time and cannot allow 

changes, whereas a changing attribute detects changes in staging tables and reflects such changes on the 

dimensions. Loading fact tables involves looking up for keys in the dimensions and calculating the count 

measurements to load these looked-up keys and calculated measurements into the fact tables. Many OLAP 

categories can be implemented throughout this model, such as MOLAP, desktop OLAP and web OLAP. 

OLAP queries; MOLAP is especially fast because of its use of dimensions, concept hierarchies, and 

measurements. These three factors, in addition to storing a cube as indexed, make OLAP responses fast. KPI 

is an essential tool in any DSS where the KPI of a proposed success rate is implemented to measure the 

progress of increasing the success rate in a school. Based on the proposed educational data mart, data marts 

can be considered reliable platforms for performing machine learning and data mining algorithms, such as 

decision tree, neural networks, clustering and association rules, to detect and find hidden patterns that affect 

student performance in the knowledge base of DSS.  

The static evaluation method is performed to check the DSS errors by inspecting the knowledge 

base without using DSS. The proposed DSS confirms the security aspects where the dashboards are accessed 

by permitted users only. These restrictions also confirm the privacy aspects where the personal information 

of students are hidden from analysts. The evaluation process of DSS is a static method where the knowledge 

base is reviewed to check the errors and mistakes in the knowledge base of DSS without using DSS. The 

presentation is checked to confirm the static evaluation requirements. The DSS usability, cost effectiveness 

and effectiveness are checked on the basis of the system usage. Subsequently, a dynamic evaluation is 

performed over test cases after applying the DSS in the school. In this step, experts check the obtained results 

from test cases. All the usability factors are tested, such as learnability, understandability, error prevention, 

accuracy, operability, efficiency, attractiveness and effectiveness. The proposed system can be depended as 

an analysis platform where it can be used to implement a mobile application to transmit online analytical 

results to all stakeholders. These results can be used to measure the progress to satisfy the school goals set 

earlier. This system can be used for implementing data mining algorithms in order to find the hidden patterns, 

relationship among attributes, and students failure causes. Using these algorithms can enhance students’ 

performance and though improve academic performance of the school. Besides, a knowledge mining will be 

implemented to conduct the data mining algorithms results to allow users to find the relationship among 

features in the data.  
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