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 The trend in satellite remote sensing assignments has continuously been 

concerning using hardware devices with more flexibility, smaller size, and 

higher computational power. Therefore, field programmable gate arrays 

(FPGA) technology is often used by the developers of the scientific 

community and equipment for carrying out different satellite remote sensing 

algorithms. This article explains hardware implementation of land surface 

temperature split window (LST-SW) algorithm based on the FPGA. To get a 

high-speed process and real-time application, VHSIC hardware description 

language (VHDL) was employed to design the LST-SW algorithm. The 

paper presents the benefits of the used Virtex-4QV of radiation tolerant series 

FPGA. The experimental results revealed that the suggested implementation 

of the algorithm using Virtex4QV achieved higher throughput of  

435.392 Mbps, and faster processing time with value of 2.95 ms. 

Furthermore, a comparison between the proposed implementation and 

existing work demonstrated that the proposed implementation has better 

performance in terms of area utilization; 1.17% reduction in number of Slice 

used and 1.06% reduction in of LUTs. Moreover, the significant advantage 

of area utilization would be the none use of block RAMs comparing to 

existing work using three blocks RAMs. Finally, comparison results show 

improvements using the proposed implementation with rates of 2.28% higher 

frequency, 3.66 x higher throughput, and 1.19% faster processing time. 
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1. INTRODUCTION  

Rapid prototyping of high-complexity digital circuits is now possible thanks to the density of current 

programmable circuits, such as field programmable gate arrays (FPGAs) [1]. It is possible to quickly test the 

validity of new architectural concepts: the complete implementation of a processor on FPGAs circuits is 

today within our range, resulting in more evaluation possibilities than those offered by software simulators. 

Moreover, the re-programmability of some FPGA chips has opened new research avenues: design 

methodologies for reconfigurable systems, able to evolve or adapt to varying environments or constraints. 

These developments are proposing novel opportunities, particularly in satellite remote sensing. Digital 

sensors mounted onboard remote sensing satellites examine massive regions of the Earth's surface day and 

https://creativecommons.org/licenses/by-sa/4.0/
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night and transmit these information to the ground aimed for processing and use in a variety of applications: 

control systems engineering, bioinformatics, land use [2], land cover [3] aerospace and defense systems.  

Remote sensing satellites are increasingly being used and use the latest available technical 

components as a result of their continuous development and improvement [4]. The appearance of FPGAs [5], 

can facilitate on-board and real-time remote sensing data analysis. Fortunately, related studies have released 

various algorithms in the area of remote sensing implementing using FPGAs such as; i) real-time marker-

based visual sensor based on an FPGA and soft-core processor [6], ii) FPGA implementation of an algorithm 

for automatically detecting targets [7], iii) FPGA implementation of the N-FINDR algorithm [8], iv) novel 

FPGA-based architecture for fast automatic target detection in hyperspectral images [9]. These research 

works are altogether based on implementations using different types of FPGAs, nevertheless these last are 

not specific neither for remote sensing satellite missions nor are designed for space radiation environment. 

Moreover, satellite remote sensing new missions require potent FPGAs with significant resources and 

consuming low amounts of energy. Besides, FPGAs are absolutely required to reach higher throughput with 

maximum frequency. FPGAs provide many advantages to space applications [10] reaching excellent 

productivity and integration without incurring costs, risk, and long development times of application-specific 

integrated circuits (ASICs), introducing hardware improvements late in the design cycle and ensuring stable 

operation in high radiation environments.  

Small satellite missions that characterized by capable low-cost platforms with budget implemented 

and flexibility schedules, have been the focus of spatial innovation in recent years. In reality, Earth 

observation satellites face significant challenges because the land surface is literally heterogeneous, 

consisting of a variety of materials with varying geometrical properties [11]. Land surface temperature (LST) 

is valuable parameter associated with surface energy and water balance in local and international scales. 

Actually, one of the most significant biophysical parameter measured by means of remote sensing satellites is 

surface temperature [12]. 

Hardware devices with small size and cost, as well as flexibility and high computing capacity, have 

been widely used in the design of hardware modules for remote sensing missions. For instance, as a solution, 

on-board processing allows a great reuse of expensive hardware resources. Consequently, FPGAs have many 

advantages that make them attractive for various applications. FPGAs are fully reprogrammable [13], 

meaning that even after the circuit has been designed and implemented, they can be modified, updated, and 

their functionality can be completely altered to perform different tasks. Furthermore, an FPGA performs 

better than a formal central processing unit (CPU) since this reprogrammable circuit integrates a significant 

number of arithmetic blocks that can be low-complexity blocks (e.g., simple multipliers), or can be relatively 

complex (e.g., digital signal processor (DSP) units) consisting of combinations of different components (e.g., 

multipliers, adders, accumulators and shift registers). These DSPs have the advantage of accelerating the 

FPGA's computing performance and enables them to achieve greater efficiency and flexibility, while 

reducing costs and power consumption [14]. Moreover, the reconfigurable hardware was accredited by 

international remote sensing organizations and was widely employed in missions of remote sensing [15] and 

space-borne Earth observations [16]. Integrating high processing power into an embedded system typically 

involves heterogeneous, parallel architectures to find the best tradeoffs in performance, size, and 

consumption. Since the FPGAs are capable of implementing a variety of algorithms, they are useful for 

several missions and enable the algorithm for space computers to be modified after implementation to satisfy 

novel mission needs or to eliminate design flaws. 

Being radiation hardened, Xilinx’s static random-access memory (SRAM)-based FPGAs and 

microsemi’s flash-based FPGAs are those mainly commonly employed in space. The optimization of the 

algorithms to the architecture of the component (i.e., parallelism and look up tables) in some cases increases 

the performance to exceed those of implementation on DSP and ASICs. Besides, the description of an 

architecture optimized in very-high-speed integrated circuit hardware description language (VHDL) 

synthesizable code with a hierarchical and modular approach provides good flexibility to the system [17]. 

The proposed implementation presents a noteworthy improvements on the results shown in the 

research paper of Raissouni et al. [18] by means of integrating a radiation-tolerant FPGAs. Besides, when 

compared with recent state-of-the-art results, our optimal method provides an improvement in throughput 

while consuming less FPGA resources. Further, the advantage of using radiation-tolerant FPGA in the 

proposed implementation for satellite remote sensing missions, is leading to promising performance that is 

suitable for future satellite remote sensing missions and CubeSats on board land surface temperature (LST) 

computations purposes. 

The foremost objective of the current research is to develop an FPGA-based hardware version of 

Sobrino and Raissouni [12] land surface temperature split-window (LST-SW) algorithm, operating in high 

radiation environments. The space-grade Virtex-4QV FPGA was designated for this purpose, since it is 

suitable for a space environment with radiation. Thus, through this implementation, a high throughput was 
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achieved with higher frequency and a less resource was consumed. Moreover, the proposed implementation 

has the benefit to be used for satellites systems to be designed using similar thermal infrared channels.  

Section 2, of this research paper presents the purpose of using radiation-tolerant FPGA in satellite 

remote sensing applications. Section 3, describes an overview of the LST-SW algorithm. Section 4, is 

illustrating the proposed hardware FPGA architecture for the LST-SW algorithm. Finally, section 5 analyses 

the implementation results including the resources used, throughput and timing. 

 

 

2. PURPOSE OF USING RADIATION-TOLERANT FPGA IN SATELLITE REMOTE SENSING 

The use of reconfigurable hardware in space-based applications for remote sensing is increasingly of 

interest [19], [20]. Integrating FPGAs in a spacecraft enables application-specific hardware to be used among 

smaller size, lower cost, increased flexibility and higher computational capacity. As the downlink bandwidth 

does not keep pace, higher rises in sensor resolution in remote sensing space payloads produce a bottleneck 

in processing [21]. Operators need on-board processing to send the processed information to the satellites, 

not just raw data. This is a producing challenge for the approximately 100 remote sensing satellites launched 

each year. Nowadays, FPGA technology is being projected as a vital alternative: Prior to downlink, remote 

sensing data can be processed and interpreted in orbit-instead of storing and transmitting entirely the captured 

data/images-resulting in a significant bandwidth reduction. Subsequently, calculations to be carried out at 

ground stations come to be easier and faster [22]. 

Electronic devices external the Earth's atmosphere are usually subjected to a different radiation 

environment than the one on Earth. The activity of a traditional semiconductor system may be affected or 

interrupted by high levels of radiation. Electronic circuits can be built with specialized manufacturing 

techniques tolerating high radiation rates. With an increased focus on the exploitation of programmable logic 

in spatial uses, numerous researchers have examined the appropriateness of commercially available FPGAs 

in radiation environments [23]. The FPGAs based on the Xilinx SRAM and Microsemi's flash FPGAs are 

currently being used to address the problem by incorporating high-speed signal processing and built-in 

radiation reduction methods in order to keep the devices in difficult radiation environments operational. 

Furthermore, the FPGAs maintain low static power and reduce dynamic energy requirements significantly. 

Over 150,000 logical elements and a device efficiency of up to 300 MHz are available in this latest class of 

FPGAs for radiation-tolerant in a substantially higher proportion than other radiation-resistant FPGA 

technologies, including combinatory logic, DSP math blocks and transceivers.  

SRAM-based FPGAs offer high performance, high logic density, and low non-recurring engineering 

(NRE) costs when compared to other FPGA technologies. At the same time, FPGAs can be statically 

reconfigured an almost infinite number of times after the initial power-on setup. In many applications, the 

advantages of SRAM-based FPGAs are considered to be dominant. In terms of flash technology, its total 

ionizing dose (TID) limitations and potential charge leakage is undergoing scrutiny by the industry. 

Furthermore, it does not currently support dynamic partial reconfiguration. Finally, the Xilinx Virtex-QV is 

found to have the greatest logic density, performance, and radiation-tolerance of all SRAM options, 

combining high-speed signal processing with special built-in radiation mitigation techniques to keep systems 

operational in harsh radiation environments. Radiation-hardened FPGAs are, in fact, in high demand for 

military and space applications [24]. Another reason is that Xilinx has introduced many radiation-tolerant 

FPGAs, including the space-grade Virtex-QV line of high-reliability FPGA chips with million gate densities 

to support remote sensing applications' high throughput requirements [25]. 

The space-grade Virtex-QV uses hardware and package hardening techniques, these particular 

reliability-enhancing techniques are: i) SRAM transistor cells for memory and latches configuration,  

ii) Triple modular redundancy (TMR) for configuration control, iii) Single event transient (SET) filter option 

for the configuration logic blocks (CLBs), and iv) epitaxial layer and protection layers. On the other hand, 

radiation hardness of the Virtex-QV comes at a higher energy consumption price [26]. 

In this work, we make use of the Xilinx space-grade Virtex-4QV XQR4VSX55 FPGA [27] for the 

proposed implementation of the LST-SW algorithm. The Virtex-4QV is the industry's high-performance 

radiation-hardened reconfigurable FPGA for processing-intensive space systems. The device offers one of 

the highest densities, performance and integration capabilities enabling more complex and capable systems 

over radiation-hardened ASIC devices with their high development costs and long lead-time. The Virtex-

4QV is thoroughly tested for radiation-tolerance and is demonstrated to tolerate a total dose in the range of 

300 krads, which is more than acceptable for many space applications. 
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3. LST-SW ALGORITHM 

Land surface temperature (LST) occupy an important role in the land surface features at the local 

and global scale and is one of the most key variable in the biophysics of land surface procedures [28]. LST is 

determined from the use of either empirical or physical algorithms of satellite measurements in the thermal 

infrared (TIR) spectral bands. Numerous LST algorithms have been expounded and described over time in 

literature [29]-[34]. An amount of Earth observation satellites (e.g., NOAA/AVHRR, TERRA/MODIS, 

LANDSAT/TM and ENVISAT/AATSR) have TIR channels on thermal sensors to derive LST. 

The estimation of LST from satellite information is mostly affected by the atmosphere and surface 

emissivity [35]. We apply the operational LST-SW algorithm proposed by Sobrino and Raissouni [12] to 

make accurate estimations of this parameter: 

 

Ts=T4+1.40(T4–T5)+0.32(T4–T5)2+0.83+(57–5 W) (1–ε)–(161–30 W)∆ε (1) 

 

where Ts is the LST , T4 is the brightness temperatures measured in AVHRR channels 4, and T5 is the 

brightness temperatures measured in AVHRR channels 5, ε=0.5(ε4+ε5) and ∆ε=(ε4–ε5) are, respectively, the 

average effective emissivity in channels (4,5) and the spectral variation of emissivity [36]. To calculate the 

total amount of atmospheric water vapor, W (g cm-2), we used the approach named the split-window 

covariance–variance ratio (SWCVR) [37]. This approach allows the estimation of W from only satellite  

data [38]. 

 

 

4. THE PROPOSED HARDWARE FPGA ARCHITECTURE FOR THE LST-SW ALGORITHM 

The parallel processing of an FPGA is key research guidance of the fast calculation community with 

high efficiency. Different factors such as the logical resource level in the chosen FPGA, and the optimized 

nature of algorithms affect its calculation speed [39]. Figure 1 displays the corresponding block diagram of 

the proposed Xilinx Virtex-4QV FPGA LST-SW implementation: i) the input data are set as T4, T5, W and 

Epsilon corresponding to the T4, T5, W and ε satellite data, and ii) the output result of the LST-SW algorithm 

is set as LST. Thus, considering both the FPGA hardware architecture (i.e., four FIFOs instead of five 

FIFOs), and the study area characteristics (see § 5.1), we consider in our case Δε=0.005. 

 

 

 
 

Figure 1. Xilinx virtex-4QV FPGA LST-SW block diagram controlled by clock_1, reset_1, read_en_1, and 

write_en_1 

 

 

Accordingly, the proposed architecture is involving two parts: 

a. LST1 (Part 1), as shown in (2), computing the main part of the LST algorithm (1) and  

b. LST2 (Part 2), as shown in (3), computing the correction part of the LST algorithm (1). 

LST is then computed as the sum of LST1 and LST2, as shown in (4). 

 

LST1 (Part 1)=T4+1.40(T4–T5)+0.32(T4–T5)2+0.83 (2) 

 

LST2 (Part 2)=(57–5W) (1–ε)–(161–30W)∆ε (3) 

 

LST=LST1+LST2 (4) 
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Figure 2 shows the corresponding general hardware architecture. Satellite data/raw images [i.e., T4 

(in K, x10), T5 (in K, x10), W (in g cm-2, x1000), and ε (x1000), see § 5.1 for more details on data format] 

are saved on the hard disk and transferred to each considered part [i.e., LST1 (Part 1), and LST2 (Part 2)] via 

the corresponding FIFOs and variables. FIFO1 and FIFO2 transmit T4, T5 respectively to LST1 (Part 1), 

FIFO3 and FIFO4 transmit W and ε respectively to LST2 (Part2). Finally, LST1 and LST2 are re-transmitted 

via FIFO1 and FIFO2 respectively to be added. Figure 3 provides the equivalent structural description of the 

proposed FPGA LST-SW hardware in VHDL language. In fact, we only included the instantiations required 

for the main components and left out some components, signal definitions, and interconnection details. 

 

 

 
 

Figure 2. Hardware architecture proposed for the implementation of the FPGA LST-SW algorithm 

 

 

 
 

Figure 3. VHDL description language for the LST-SW hardware module, this structural description contains 

three main component (LST1 (Part1), LST2 (Part2) and LST_FIFOs) 

 

 

Consequently, for computational reasons (i.e., to preserve both the integer format and size and the 

decimal precision for temperature data in Kelvin, T4 and T5), we proceed by: (i) dividing LST1 coefficients 

by 10 as shown in (5) and; (ii) dividing LST2 coefficients by 1000 as shown in (6). 

 

LST1 (Part 1) = 0.1 T4 + 0.14 (T4 – T5) + 0.0032 (T4 – T5)2 + 0.83 (5) 
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LST2 (Part 2) = [ (57000 – 5 W) (1000 – ε) – (161000 – 30 W) × 5] × 0.001 (6) 

 

We can see from Figure 4 the architecture used in the proposed design to implement LST1 and 

LST2 modules. In the entire procedure, image data are saved in memory separately and released into the 

system pixel by pixel. The processing to compute the first pixel result of the LST is: FIFO1 and FIFO2 read 

the first pixel of T4 and T5 respectively, then transmitted to the first part to be calculated as show in (a) and is 

similar to the first part of the (2), and with the same time FIFO3 and FIFO4 read the first pixel of W and 

Epsilon respectively, then transmitted data to the second part to be calculated as show in (b) and is similar to 

the first part of the (3). Finally, as in Figure 2 we add the two part: LST1 and LST2. We replicate this 

operation in the whole procedure line by line until the pixels finish. 

 

 

 
(a) 

 
(b) 

 

Figure 4. Hardware architecture used to implement the two module LST1 and LST2, (a) Hardware 

architecture adopted to implement LST1 module, (b) Hardware architecture adopted to implement LST2 

module 

 

 

The fixed-point package was choosing in the arithmetic logic units to reduce area utilization and get 

a better precision. In fact, even though the type REAL specified in the package standard has limited synthesis 

support, newer options for dealing with fixed point was used in the proposed implementation and represented 

by using the library fixed_pkg in the VHDL code for the two modules LST1 and LST2. In arithmetic logic 

units we chose to use a fixed-point package for decimal numbers in the proposed algorithm ((18) and (19)) 

instead of floating point. In fact, fixed point arithmetic is valuable as it results in faster and smaller functional 

units. However, if not carefully constructed, it can produce less accurate results. On the other hand, floating 

point arithmetic is consuming in terms for hardware and leads to inefficient designs, especially for FPGA 

implementation.  

The addition, subtraction, multiplication, and division operations are required by the FPGA LST-

SW implementation algorithm as shown in Figure 4. The number of calculations increases as the resources 

increase. Several of these computations are straightforward, such as addition, subtraction and multiplication; 

however, a division operation is complex and can affect the precision significantly. Therefore, in the 

proposed implementation we handled this carefully to prevent overflow, which leads to incorrect results 

using the functions existed in the library fixed_pkg. For the division operation, instead of dividing by 10, we 

have multiplied the result of the LST1(Part1) by 0.1. Similarly, we have multiplied the result by 0.001 in the 
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LST2(Part2). This has a positive effect, as the multiplication does not consume many resources and does not 

affect precision. 

Figure 5 shows the register transfer level of the FPGA LST-SW implementation algorithm and the 

connection between different blocks, with 16 bits range of data that sent it into the system as the output LST 

result. Furthermore, Figure 5 shows the input signals T4, T5, W and Epsilon. Additionally, the output of each 

part of LST1 and LST2 are connecting to FIFO1 and FIFO2 respectively. In addition, each component 

(LST1(part1), LST2(Part2) and FIFOs) of the proposed implementation. is controlled by clock, reset, read, 

and write. 

 

 

 
 

Figure 5. Internal register transfer logic for the system proposed 

 

 

5. RESULTS 

5.1.  Study area 

The pathfinder AVHRR land (PAL) satellite dataset has been exploited for examine the 

Mediterranean basin. The calibration of the imageries is attained by the recommendations advocated by the 

NOAA [40], [41]. Table 1 illustrates the characteristics of the cloud-free images used in this application and 

corresponds to the period of July 1982.  

 

 

Table 1. Characteristics of the cloud-free images used in this application, corresponding to the input data: T4, 

T5, W and epsilon of the FPGA LST-SW implementation 
AVHRR 

Data 
Description Format Pixels Type Projection Unit 

T4 Radiance temperature for channel 4 695×316 219,620 Integer Homolosine K (x10) 
T5 Radiance temperature for channel 5 695×316 219,620 Integer Homolosine K (x10) 

W Total amount of atmospheric water vapor 695×316 219,620 Integer Homolosine g cm-2 (x1000) 

ε Effective emissivity in both channels 4 and 5 695×316 219,620 Integer Homolosine x1000 

 

 

5.2.  FPGA LST-SW simulation results 

In this part, we present an experimental result of the proposed FPGA LST-SW implementation 

algorithm's computational efficiency. For the specification of the LST module, the hardware architecture 

defined in Section 3 was implemented using the VHDL language. Furthermore, we specified the entire 

system using the Xilinx ISE 14.7 environment. Table 2 shows the resources consumed by the proposed LST-

SW algorithm design, using  the space-grade Virtex-4QV XQR4VSX55. This FPGA has a total of 24,576 

slices, 49,152 slice flip-flops, and 49,152 four-input LUT available. Moreover, the FPGA includes some 

heterogeneous resources, such as DSP48s, and has a total of 512 of them. Moreover, the reason for working 

with this type of device (XQR4VSX55) in the algorithm LST is because the latter contains too many 

arithmetic operations. For this reason, we need several DSP plus this type, especially for the optimization of 

the ultra-efficient signal processing. We used these resources to optimize the design in the proposed 

implementation. 
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Table 2. Summary of resource utilization for the proposed FPGA-based implementation of the LST algorithm 
Target FPGA Virtex-4QV SX55 

Device utilization Used Total % 
Number of Slice 1124 24,576 4 

Number of Slice Register 2120 49,152 4 
Number of Slice LUTs 2438 49,152 4 

Number of DSPs 16 512 5 

Number of bonded IOBs 84 640 13 
Maximum Frequency 190.484 MHz 

 

 

The block slice registers were employed to implement the FIFOs without using block RAMs. With 

other slices are used for the implementation of the LST-SW algorithm. Moreover, the number of DSP is 

higher because of the existence of the calculation in each part (LST1 and LST2), which consumes much of 

the resources of the FPGA. The time used in the implementation allowed us to achieve a maximum frequency 

of 190.484 MHz. Figure 6 displays the LST-SW images computed in the period July using the proposed 

implementation. In complete coherence with the biodiversity of the same, a large LST variability is seen for 

the area and period. 

 

 

 
 

Figure 6. LST-SW images computed using the proposed FPGA based hardware version during July 1982 

 

 

5.3.  Comparison of performance between the proposed LST-SW existing implementation 

We evaluate the performance of the proposed implementation by performing a comparison with 

LST-SW implementation that has already been implemented in [18] as describing in Table 3. The metric for 

evaluating the performance of the proposed LST implementation comparing to the existing work was based 

on the resources used, the frequency, the throughput, Throughput per slice (TPS), and the processing time. 

Other features such as power consumption are not describing in this implementation. Table 3 presents the 

comparison of performance between the proposed architecture and the existing architecture [18]. 

 

 

Table 3. Performance comparison between the proposed implementation and existing design 

Design Device 
Number of 
slices used 

Number of Slice 
LUTs used 

Block 
RAMs 

Number of 
DSPs used 

Fmax 
(MHz) 

Throughput 
(MBps) 

Throughput 
per Slice 

Ref. [18] 
Virtex-5 

LX50 
1169 2590 3 16 

83.330 

MHz 
118.700 0.101 

Proposed 
Virtex-4 
QVSX55 

1124 2438 - 16 
190.484 

MHz 
435.392 0.387 
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As we can see, the proposed implementation in terms of hardware consuming is much better than 

the existing implementation. In fact, the proposed design uses 1124 slices from a total of 24,576 slices and 

2438 slice LUTs from a total of 49,152 compared with 1169 slices from a total of 7200 slices and 2590 slice 

LUTs from a total of 28,800 in [18]. Moreover, the way in which FIFOs were implemented in the proposed 

implementation and in [18] is different. The FIFOs used in the proposed architecture were implemented with 

the slices,  but in [18] they implemented FIFOs based on the Blocks RAMs, so there is a benefit of the 

proposed architecture here in terms of resource optimization. In addition, we notice from Table 3 that the 

frequency of the proposed architecture is higher than the frequency obtained in [18], which leads to faster 

response times and high-speed calculation of the LST algorithm. Another important metric is the throughput, 

and signifies the number of bits processed per unit time and is specified in Gbps or Mbps. The throughput is 

calculated using (7). 

 

Throughput=
Number of bits processed ×  Fmax

Latency
  (7) 

 

In the proposed architecture, the number of bits processed is 16, Fmax is the tool's maximum 

frequency, and Latency is the number of clock cycles after which output is generated, which is equal to seven 

clock cycles. Therefore, the proposed design achieves the highest throughput of 435.392 Mbps on Virtex-

4QV with a maximum clock frequency of 190.484 MHz compared with reference [18]. In order to measure 

the hardware resource cost associated with implementations resultant throughput, TPS metric was applied by 

using (8):  

 

TPS=
Throughput

CLB Slices Used
  (8) 

 

The  CLB is an acronym for Configurable Logic Block. As shown in Table 3, the number of slices 

used is 1124, so the TPS of the proposed architecture is about 0.387 Mbps/Slices, which is higher than the 

current implementation in [18]. Finally, Table 4 shows the processing times obtained using the considered 

FPGA implementation [18], as well as an analogous software version developing in LabVIEW and run on an 

embedded real-time controller with a 533 MHz PowerPC, 256 MB of DDR2 RAM, and 2 GB of non-volatile 

storage [18].  

 

 

Table 4. Processing times estimated for the proposed hardware implementation and for an equivalant 

software version and for the current implementation in [18] 
 Processing Time (ms) 

Ref. [18] 3.53 

Proposed (Virtex-4QV SX55) 2.95 
Ref. [18] 11.14 

 

 

As can be observed from Table 4, the processing time in the proposed architecture is faster 

compared to the software version and from [18]. Another important aspect in the hardware implementation is 

the issue of arithmetical precision. As we said in Section 3, we have paid special attention to this problem in 

our design. The fixed-point structure helps us reduce processing time and use less logical resources in the 

proposed implementation of the LST-SW algorithm using the fixed_pkg library in VHDL. As a result, the 

proposed implementation is a major step forward in ensuring that the LST-SW algorithm is properly used in 

scenarios requiring real-time processing. 

 

 

6. CONCLUSION  

From the perspective of remote sensing systems, the reconfigurability of FPGA systems opens up a 

lot of innovative possibilities. This ranges from the appealing possibility of choosing the data processing 

algorithm to be used aboard, out of a set of algorithms that are available, from the Earth control station 

immediately following the data collection from the sensor to the potential one. Radiation-hardened FPGAs 

can be easily mounted or embedded in the sensor due to their compact size and low weight, will greatly 

benefit current sensor design practices. The role of FPGAs in remote sensing missions was discussed in this 

paper, as well as the benefits of using FPGAs, such as being radiation-hardened, the experimental results of 

the FPGA implementation of the LST-SW algorithm, and the performance of the proposed architecture in 

comparison to previous work.The results showed that the suggested implementation of the LST-SW using 
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Xilinx Virtex4QV XQR4VSX55 FPGA attained a higher throughput (435.392 Mbps) with frequency of 

190.484 MHz and faster processing times, with values of 2.95 ms. In addition, the proposed implementation 

shows better performance in terms of area utilization compared to the existing work: 1.17% reduction in 

number of Slice used, a 1.06% reduction in number of Slice LUTs, and total elimination of block RAMs. 

Furthermore, the proposed implementation has 2.28% higher frequency and achieved higher throughput 3.66 

× compared to the existing work, and faster processing times with decrease of 1.19 %, which can allow us to 

implement other algorithms with the same device. Furthermore, this implementation offers significant and 

promising performance, making it suitable for future CubeSats on board LST-SW computation. In addition, 

since the FPGA we used is especially radiation-hardened, the proposed implementation can be used, 

proposed, and even programmable for all CubeSats. 
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