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 In this paper, load frequency regulator based on linear quadratic Gaussian 

(LQG) is designed for the multi-area power system (MAPS) with 

communication delays. The communication delay is considered to denote 

the small time delay in a local control area of a wide-area power system. The 

system is modeled in the state space with inclusion of the delay state matrix 
parameters. Since some state variables are difficult to measure in a real 

modern multi-area power system, Kalman filter is used to estimate the 

unmeasured variables. In addition, the controller with the optimal feedback 

gain reduces the frequency spikes to zero and keeps the system stable. 
Lyapunov function based on the linear matrix inequality (LMI) technique is 

used to re-assure the asymptotically stability and the convergence of the 

estimator error. The designed LQG is simulated in a two area connected 

power network with considerable time delay. The result from the simulations 
indicates that the controller performed with expectation in terms of damping 

the frequency fluctuations and area control errors. It also solved the 

limitation of other controllers which need to measure all the system state 

variables. 
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1. INTRODUCTION 

Automatic generation control (AGC) [i.e., automatic voltage regulator (AVR) and load frequency 

control (LFC)] for the multi-area power system (MAPS) has made the system highly economical and reliable 

to generate and transmit active power to load at safety frequency level and nearly nominal voltage in the 

modern MAPS under deregulated environment. From studies, the dependability of the active power to the 

load depends on the power regulation frequency. Therefore, frequency regulator is very important to keep 

frequency at the safe range in the MAPS. The job of frequency regulator otherwise known as the LFC is to 

retain the regulation frequency over randomly active power load changes sometimes known as disturbances. 

Another duty of the LFC is to control the tie-line power exchange error [1] that might exist in the MAPS. For 

simplicity, multi-area generating units are connected through tie-line communication link in other to ease the 

LFC. The use of this link introduces a new error called area control error (ACE) into the LFC. For example, 

if active power loads change affects one area, because the wide area power systems are interconnected 

through communication link. Therefore, this will not only affect the traditional governor speed control of the 

https://creativecommons.org/licenses/by-sa/4.0/
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generating area but also create control problems in the other areas. However, it is necessary for the area 

subjected to load change control and balance the fault within its area without other areas being affected. 

Otherwise, there is going to be an economic and reliability conflicts between different power generating 

companies tie together for example, GENCOS 1 and GENCOS 2 generating areas interconnected. 

Hypothetically, separated load frequency regulators are needed in each area to act swiftly during faults and 

able to set their setting parameters. Moreover, ACE signal receive by each controller is through the 

communication link, respectively. Therefore, the goal of control engineers is to develop the LFC to damping 

frequency error and ACE to the safe point after the disturbance has acted upon on any areas. The old 

proportional integral (PI), proportional integral derivative (PID) tuning based the LFC scheme [1] were 

applied to regulate frequency in the MAPS in the early days. However, with the complexity in modern power 

system, these controllers were seen degraded [1]. Recently, the development was made to use some 

algorithms combined with PID for the complex power system which were discussed in [2]-[9]. As power 

system becomes more complex, tuning parameters for the LFC becoming more complication. Therefore, the 

controller design needs to be robust enough to MAPS disturbances. Guo [10] the author applied sliding mode 

control (SMC) to control frequency in complex power system. However, SMCs were having chattering effect 

as a result of some neglected tuning parameters in the system model. The uses of SMC combined with some 

techniques to decrease chattering and minimize frequency error/ACE were discussed in [11]-[20]. Linear 

quadratic Gaussian technique was also designed and discussed in [21]-[25] for the complex wide area power 

system.  

H-infinity scheme was also discussed in [26]-[27]. These controllers provided good performance 

and robust LFC in the wide area power system. Both SMC, linear quadratic Gaussian (LQG), H-infinity 

schemes worked well under power system with more tuning variables. However, the consideration of 

communication delay has brought a new era for the LFC of MAPS. These delays exist in power systems and 

vary from ten to several hundred on milliseconds. Communication links are used to connect ancillary 

components that are link connecting load frequency sensor point to the remote control unit (RCU) down to 

the generating unit. In reality, the RCU sometimes might experience delay in the receiving ACE signal. In 

practice, time-delay for the controller to receive input ACE signal should not be neglected and this signifies 

the optimal control. Therefore, communication delay should be taking into account in the dynamic modelling 

of complex power system. Newly published paper [28] addressed the LFC for the MAPS with time delay but 

with all system variables are assumed to be measured. In general, not all system parameters can be measured. 

The author work in [29] serves as a motivation to design a real conceptualization controller for the complex 

interconnected power plants with signal delay. In this paper, the LQR combined with Kalman filter technique 

are proposed as LQG method for frequency regulator of the MAPS with communication signal delay. The 

MAPS model is represented in state space with the time-delay to extend the model. This state space model is 

applied to obtain a better gain for the LQG. Since not all values of the LFC model's parameters are 

measurable. Therefore, Kalman filter is utilized for variables estimation. The estimations as well as time-

delay are input signals. The contribution of the paper is stated below: 

− Communication time delay is considered in the network state space model  

− The proposed controller is designed based on state estimation with feedback gain and time delay 

− Lyapunov theory and linear matrix inequality (LMI) techniques is used to prove the MAPS stability 

− Comparison results are shown between the proposed controller and [29]. 

 

 

2. SYSTEM LFC MODEL IN TIME DELAY 

In this section, a conceptualized LFC model taking into details with the time delay is discussed. A 

diagram describing two area power systems is display in Figure 1 [29]. Each area is represented with 

communication delay e-sτ. The value τ represents the small time delay which might varies from 0.1 to 1 s with 

consideration of two control areas for 𝑖, 𝑗 = 1,2(𝑖 ≠ 𝑗). Therefore, the modeled system with the information 

of the communication time delays is as (1). 

 

𝛥�̇�𝑡𝑖𝑒,𝑖𝑗(𝑡) = 2𝜋𝑇𝑖𝑗(𝛥𝑓𝑖(𝑡) − 𝛥𝑓𝑗(𝑡))  (1) 

 

Other variables deviations are illustrated: 

 

𝛥𝑓�̇�(𝑡) = −
1

𝑇𝑝𝑖
𝛥𝑓𝑖(𝑡) +

𝐾𝑃𝑖

𝑇𝑝𝑖
𝛥𝑃𝑚𝑖(𝑡) −

𝐾𝑃𝑖

𝑇𝑝𝑖
𝛥𝑃𝑡𝑖𝑒,𝑖𝑗(𝑡) −

𝐾𝑃𝑖

𝑇𝑝𝑖
𝛥𝑃𝑑𝑖 (2) 

 

𝛥�̇�𝑚𝑖(𝑡) = −
1

𝑇𝑡𝑖
𝛥𝑃𝑚𝑖(𝑡) +

1

𝑇𝑡𝑖
𝛥𝑃𝑣𝑖(𝑡)  (3) 
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𝛥�̇�𝑣𝑖(𝑡) = −
1

𝑇𝑔𝑖𝑅𝑖
𝛥𝑓𝑖(𝑡) −

1

𝑇𝑔𝑖
𝛥𝑃𝑣𝑖(𝑡) −

1

𝑇𝑔𝑖
𝛥𝐸𝑖(𝑡 − 𝜀𝑖) +

1

𝑇𝑔𝑖
𝑢𝑖(𝑡) (4) 

 

where 𝛥𝑓𝑖(𝑡) is the frequency deviation that is needed to be controlled, 𝛥𝑃𝑚𝑖(𝑡) is the mechanical power 

change that requires generation-load balance during operation, 𝛥𝑃𝑑𝑖  is the disturbance affecting the system, 

𝛥𝑃𝑡𝑖𝑒,𝑖𝑗(𝑡) is the deviation in the net sum of the power exchange in the communication link connecting both 

area i and j. 𝛥𝐸𝑖(𝑡 − 𝜏𝑖) which can be denoted as the ACE with communication delays and 𝑢𝑖(𝑡) is the 

control input to the system model. 

 

𝛥�̇�𝑖(𝑡) = 𝐾𝐵𝑖𝐾𝑒𝑖𝛥𝑓𝑖(𝑡) + 𝐾𝑒𝑖𝛥𝑃𝑡𝑖𝑒,𝑖𝑗(𝑡) (5) 

 

 

 
 

Figure 1. The structure of the two-area LFC model in a power system with time-delay 

 

 

To represent the MAPS, the system state variables 𝛥𝑓𝑖(𝑡), 𝛥𝑃𝑚𝑖(𝑡), 𝛥𝑃𝑣𝑖(𝑡), 𝛥𝐸𝑖(𝑡), 𝛥𝑃𝑡𝑖𝑒,𝑖𝑗(𝑡) are 

denoted as vector 𝑥(𝑡) = [𝛥𝐴𝑟1 𝛥𝑃𝑡𝑖𝑒,12 𝛥𝐴𝑟2]
𝑇 in which 𝛥𝐴𝑟1 = [𝛥𝑓1(𝑡) 𝛥𝑃𝑚1(𝑡) 𝛥𝑃𝑣1(𝑡) 𝛥𝐸1(𝑡)] 

and 𝛥𝐴𝑟2 = [𝛥𝑓2(𝑡) 𝛥𝑃𝑚2(𝑡) 𝛥𝑃𝑣2(𝑡) 𝛥𝐸2(𝑡)]. The MAPS dynamic equations are derived above and it 

is suggested in the matrix form representation: 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐴𝑑1𝑥(𝑡 − 𝜀1) + 𝐴𝑑2𝑥(𝑡 − 𝜀2) + 𝐵𝑢(𝑡) + 𝛤𝛺(𝑡)𝑦(𝑡) = 𝐶𝑥(𝑡) (6) 

 

where 𝑢(𝑡) = [𝑢1 𝑢2]𝑇 is the control signal vector and 𝛺(𝑡) = [𝛥𝑃𝑑1 𝛥𝑃𝑑2]𝑇 is the disturbance vector of 

the demands. For 𝑙 = 1, 2 and 𝑏 = 3, 4, the following matrices are defined as: 

 

𝐴 = [
𝐴1 𝐴3 04×4

𝐴5 01×1 −𝐴5

04×4 𝑎12𝐴4 𝐴2

]; 𝐴𝑑𝑙 = [0 0 −
1

𝑇𝑔𝑙
0]

𝑇

; 𝐵 = [
𝐵𝑙 01×5

01×5 𝐵𝑙
]
𝑇

; 𝛤 = [
𝛤𝑙 01×5

01×5 𝛤𝑙
]
𝑇

 

 

where 𝐴𝑙 =

[
 
 
 
 
 
 −

1

𝑇𝑝𝑙

𝐾𝑝1

𝑇𝑝1
0 0

0 −
1

𝑇𝑡𝑙

1

𝑇𝑡𝑙
0

−
1

𝑅𝑙𝑇𝑔𝑙
0 −

1

𝑇𝑔𝑙
0

𝐾𝐵𝑙 0 0 0]
 
 
 
 
 
 

; 𝐴𝑏 = [−
𝐾𝑃𝑙

𝑇𝑝𝑙
0 0 1]

𝑇

; 𝐴5 = [2𝜋𝑇12 0 0 0] 

 

𝐴𝑡𝑑1 = [
04×4 𝐴𝑑𝑙 04×5

05×4 05×1 05×5
]; 𝐴𝑡𝑑2 = [

05×8 05×1

04×8 𝐴𝑑𝑙
]; 𝐵𝑙 = [0 0

1

𝑇𝑔𝑙
0]; 𝛤𝑙 = [−

𝐾𝑃𝑙

𝑇𝑝𝑙
0 0 0] 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 1, February 2022: 157-165 

160 

In the real system, exact measurement of the parameter values is impossible. Therefore, most 

parameters are approximated or estimated. Also, by considering time delay factor, so the dynamic model in 

(6) is further re-written as in (7): 

 

�̇�(𝑡) = [𝐴 + 𝛥𝐴(𝑥, 𝑡)]𝑥(𝑡) + [𝐴𝑑1 + 𝛥𝐴𝑑1]𝑥(𝑡 − 𝜀1) + [𝐴𝑑2 + 𝛥𝐴𝑑2]𝑥(𝑡 − 𝜀2) + 
[𝐵 + 𝛥𝐵(𝑥, 𝑡)]𝑢(𝑡) + 𝛤𝛺(𝑡) = 𝐴𝑥(𝑡) + 𝐴𝑑1𝑥(𝑡 − 𝜀1) + 𝐴𝑑2𝑥(𝑡 − 𝜀2) + 𝐵𝑢(𝑡) + 
𝑤(𝑥, 𝑡)𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑣(𝑡)      (7) 

 

where the unknown matrices 𝛥𝐴(𝑥, 𝑡) and 𝛥𝐵(𝑥, 𝑡) denote by system variations, the matrices 𝐴 and 𝐵 are the 

nominal values; 𝑤(𝑥, 𝑡) is called the total variations which can be estimated and we can define it in (8): 

 

𝑤(𝑥, 𝑡) = 𝛥𝐴(𝑥, 𝑡)𝑥(𝑡) + 𝛥𝐴𝑑1𝑥(𝑡 − 𝜀1) + 𝛥𝐴𝑑2𝑥(𝑡 − 𝜀2) + 𝛥𝐵(𝑥, 𝑡)𝑢(𝑡) + 𝛤𝛺(𝑡) (8) 

 

and 𝑣(𝑡) is a measurable disturbance. Ideally, some assumptions are stated to describe reality and the 

feasibility of the power system and as well the parameters based load frequency control strategies under 

certain conditions. These assumptions and some lemmas are stated below: 

Assumption 1: If the matrix 𝐴, 𝐵 is controllability, then, 𝛥𝐴(𝑥, 𝑡), 𝛥𝐵(𝑥, 𝑡) can be estimated. 

Assumption 2: The lumped 𝑤(𝑥, 𝑡), which includes delay state matrix and the differential of 𝑤(𝑥, 𝑡) is 

bounded. i.e., there exist the known scalars 𝛾 and �̄� such that‖𝑤(𝑥, 𝑡)‖ ≤ 𝛾 and‖�̇�(𝑥, 𝑡)‖ ≤ �̄�, where‖. ‖ is 

matrix norm.  

Lemma 1: [13] Let X, Y and F are actual matrices of appropriate dimension with 𝐹𝑇𝐹 ≤ 1 then, for any 

scalar 𝜓 > 0, the sequent matrix inequality holds. 

 

𝑋𝐹𝑌 + 𝑌𝑇𝐹𝑇𝑋𝑇 ≤ 𝜓−1𝑋𝑇𝑋 + 𝜓𝑌𝑇𝑌 

 

 

3. CONTROLLER DESIGN WITH TIME-DELAY 

3.1.  Linear quadratic regulator (LQR) 

To design the LQG based LFC scheme for the described power system in Figure 1. The derived state 

space model is considered as shown in (7). In practice, the measurement of state variables is difficult and 

expensive because of lack of sensors. Therefore, the Kalman filter technique is realistic to estimate value of 

state variables. In addition, The Kalman filter can reject disturbances in form of white noise 𝑣(𝑡) which 

affect the system state. The greater problem is to get a better optimal gain K so that the eigenvalues  

(𝐴 − 𝐵𝐾) in (9) is places in their desired position and minimized a performance index below. 

 

𝐽 =
1

2
∫[𝑥𝑇(𝑡)𝑄 𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)]𝑑𝑡  (9) 

 

Where 𝑄 = 𝐸[𝑤(𝑥, 𝑡)] having dimension (𝑛 × 𝑛) and 𝑅 = 𝐸[𝑣(𝑥, 𝑡)] having dimension (𝑚 × 𝑚) both are a 

posited-definite Hermitian or real symmetric matrix. The LQG based controller can be designed in the time 

delay as in (10). 

 

�̇̂�(𝑡) = 𝐴�̂�(𝑡) + 𝐴𝑑1�̂�(𝑡 − 𝜀1) + 𝐴𝑑2�̂�(𝑡 − 𝜀2) + 

𝐵𝑢(𝑡) + 𝐾𝑒(𝑦(𝑡) − �̂�(𝑡))�̂�(𝑡) = 𝐶𝑥(𝑡) (10) 

 

�̂�(𝑡) is the state variable estimation of the 𝑥(𝑡) of the observer and 𝑦(𝑡), �̂�(𝑡) are output of the power 

network and observer, respectively. 𝐾𝑒 is the gain, that is obtained from Riccati equation solution. 

 

3.2.  Proposed controller 

The minimize J in (9) is designed with below controller: 

 

𝑢 = −𝐾𝑥(𝑡)  (11) 
 

where 𝐾 is the optimal feedback gain for the LQR, 𝐾 = 𝑅−1𝐵𝑇ℜ and ℜ is derived also from Riccati 

equation. 
 

𝐴𝑇ℜ + ℜ𝐴 − ℜ𝐵𝑅−1𝐵𝑇ℜ + 𝑄 = 0 (12) 
 

Substituting 𝑢 into (6). 
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�̇�(𝑡) = (𝐴 − 𝐵𝐾)𝑥(𝑡) + 𝐵𝐾�̃�(𝑡) + 𝐴𝑑1𝑥(𝑡 − 𝜀1) + 𝐴𝑑2𝑥(𝑡 − 𝜀2) + 𝛤𝛺(𝑡)    (13) 

 

Taking the error to be �̃�(𝑡) = 𝑥(𝑡) − �̂�(𝑡) and �̇̃�(𝑡) is calculated as in (14): 

 

�̇̃�(𝑡) = �̇�(𝑡) − �̇̂�(𝑡) = (𝐴 − 𝐾𝑒𝐶)�̃�(𝑡) + 𝐴𝑑1�̃�(𝑡 − 𝜀1) + 𝐴𝑑2�̃�(𝑡 − 𝜀2) + 𝛤𝛺(𝑡)   (14) 

 

where 𝑖 = 1, 2 are area number and from (1), (2) and (3), we obtained: 

 

[
�̇�(𝑡)

�̇̃�(𝑡)
] = [

(𝐴 − 𝐵𝐾) 𝐵𝐾
0 (𝐴 − 𝐾𝑒𝐶)

] [
𝑥(𝑡)

�̃�(𝑡)
] + [

𝐴𝑑1 0
0 𝐴𝑑1

] [
𝑥(𝑡 − 𝜀1)

�̃�(𝑡 − 𝜀1)
] + 

 

[
𝐴𝑑2 0
0 𝐴𝑑2

] [
𝑥(𝑡 − 𝜀2)
�̃�(𝑡 − 𝜀2)

] + [
𝛤𝛺(𝑡)
𝛤𝛺(𝑡)

] (15) 

 

Theorem 1: The system in (1) is asymptotic stable, if there exist matrices𝑅 > 0,𝑃 > 0 and positive scalars 𝜇 

and 𝛾 such that the following LMIs hold: 

 

[
 
 
 
 
 
 
 
 
(𝐴 − 𝐵𝐾)𝑇𝑅 + 𝑅(𝐴 − 𝐵𝐾) 𝑅𝐵𝐾 𝑅𝐴𝑑1 𝑅𝐴𝑑2 𝑅𝛤 0 0 0

𝐾𝑇𝐵𝑇𝑅 (𝐴 − 𝐾𝑒𝐶)𝑇𝑃 + 𝑃(𝐴 − 𝐾𝑒𝐶) 0 0 0 𝑃𝐴𝑑1 𝑃𝐴𝑑2 𝑅𝛤

𝐴𝑇
𝑑1𝑅 0 −𝜇1

−1 0 0 0 0 0

𝐴𝑇
𝑑2𝑅 0 0 −𝜇2

−1 0 0 0 0

𝛤𝑇𝑅 0 0 0 −𝜇3
−1 0 0 0

0 𝐴𝑇
𝑑1𝑃 0 0 0 −𝜇1

−1 0 0

0 𝐴𝑇
𝑑2𝑃 0 0 0 0 −𝜇2

−1 0

0 𝛤𝑇𝑅 0 0 0 0 0 −𝜇4
−1]

 
 
 
 
 
 
 
 

< 0  (16) 

 

Proof: We choose Lyapunov function candidate as shadows 

 

𝑉(𝑥(𝑡), 𝑒(𝑡)) = [
𝑥(𝑡)
�̃�(𝑡)

]
𝑇

[
𝑅    0
0     𝑃

] [
𝑥(𝑡)
�̃�(𝑡)

] + ∫ [
𝑥(𝑡 − 𝜀1)

�̃�(𝑡 − 𝜀1)
]

𝑡

𝑠1

𝑇

[
𝑃1 0
0 𝑃2

] [
𝑥(𝑡 − 𝜀1)

�̃�(𝑡 − 𝜀1)
] 𝑑(𝑡 − 𝜀1) 

+∫ [
𝑥(𝑡 − 𝜀2)
�̃�(𝑡 − 𝜀2)

]
𝑡

𝑠2

𝑇

[
𝑄1 0
0 𝑄2

] [
𝑥(𝑡 − 𝜀2)
�̃�(𝑡 − 𝜀2)

] 𝑑(𝑡 − 𝜀2) (17) 

 

Then, the time derivative of 𝑉(𝑥(𝑡), 𝑒(𝑡)) is indicated by (18). 

 

�̇�(𝑥(𝑡), �̃�(𝑡)) = [
𝑥(𝑡)
�̃�(𝑡)

]
𝑇

[
(𝐴 − 𝐵𝐾)𝑇𝑅 + 𝑅(𝐴 − 𝐵𝐾) 𝑅𝐵𝐾

𝐾𝑇𝐵𝑇𝑅 (𝐴 − 𝐾𝑒𝐶)𝑇𝑃 + 𝑃(𝐴 − 𝐾𝑒𝐶)
] [

𝑥(𝑡)
�̃�(𝑡)

] 

+ [
𝑥(𝑡 − 𝜀1)
�̃�(𝑡 − 𝜀1)

]
𝑇

[
𝐴𝑇

𝑑1𝑅 0

0 𝐴𝑇
𝑑1𝑃

] [
𝑥(𝑡)
�̃�(𝑡)

] + [
𝑥(𝑡)
�̃�(𝑡)

]
𝑇

[
𝑅𝐴𝑑1 0

0 𝑃𝐴𝑑1
] [

𝑥(𝑡 − 𝜀1)
�̃�(𝑡 − 𝜀1)

] 

+ [
𝑥(𝑡 − 𝜀2)
�̃�(𝑡 − 𝜀2)

]
𝑇

[
𝐴𝑇

𝑑2𝑅 0

0 𝐴𝑇
𝑑2𝑅

] [
𝑥(𝑡)
�̃�(𝑡)

] + [
𝑥(𝑡)
�̃�(𝑡)

]
𝑇

[
𝑅𝐴𝑑2 0

0 𝑃𝐴𝑑2
] [

𝑥(𝑡 − 𝜀2)
�̃�(𝑡 − 𝜀2)

] 

+ [
𝑥(𝑡)
�̃�(𝑡)

]
𝑇

[
𝑃1 0
0 𝑃2

] [
𝑥(𝑡)
�̃�(𝑡)

] 𝑑(𝑡) − [
𝑥(𝑡 − 𝜀1)
�̃�(𝑡 − 𝜀1)

]
𝑇

[
𝑃1 0
0 𝑃2

] [
𝑥(𝑡 − 𝜀1)
�̃�(𝑡 − 𝜀1)

] 

+ [
𝑥(𝑡)
�̃�(𝑡)

]
𝑇

[
𝑄1 0
0 𝑄2

] [
𝑥(𝑡)
�̃�(𝑡)

] 𝑑(𝑡) − [
𝑥(𝑡 − 𝜀2)
�̃�(𝑡 − 𝜀2)

]
𝑇

[
𝑄1 0
0 𝑄2

] [
𝑥(𝑡 − 𝜀2)
�̃�(𝑡 − 𝜀2)

] 

+𝛺𝑇(𝑡)𝛤𝑇𝑅𝑥(𝑡) + 𝛺𝑇(𝑡)𝛤𝑇𝑃�̃�(𝑡) + 𝑥𝑇(𝑡)𝑅𝛤𝛺(𝑡) + �̃�𝑇(𝑡)𝑃𝛤𝛺(𝑡) (18) 

 

Applying Lemma 1 to (18), 

 

�̇�(𝑥(𝑡), �̃�(𝑡)) ≤ [
𝑥(𝑡)

𝑒(𝑡)
]
𝑇

[
𝛩1 𝑅𝐵𝐾

𝐾𝑇𝐵𝑇𝑅 𝛩2
] [

𝑥(𝑡)

𝑒(𝑡)
] + 𝜇5𝛾1

2 + 𝜇1𝛾2
2 + 𝜇2𝛾3

2 (19) 

 

where  

𝛩1 = (𝐴 − 𝐵𝐾)𝑇𝑅 + 𝑅(𝐴 − 𝐵𝐾) + 𝜇1
−1𝑅𝐴𝑑1𝐴

𝑇
𝑑1𝑅 + 𝜇2

−1𝑅𝐴𝑑2𝐴
𝑇

𝑑2𝑅 + 𝜇3
−1𝑅𝛤𝛤𝑇𝑅 ;  

𝛩2 = (𝐴 − 𝐾𝑒𝐶)𝑇𝑃 + 𝑃(𝐴 − 𝐾𝑒𝐶) + 𝜇1
−1𝑃𝐴𝑑1𝐴

𝑇
𝑑1𝑃 + 𝜇2

−1𝑃𝐴𝑑2𝐴
𝑇

𝑑2𝑃 + 𝜇4
−1𝑅𝛤𝛤𝑇𝑅; 𝜇5 = 𝜇3 + 𝜇4; 

𝛾2 = ‖[
𝑥(𝑡 − 𝜀1)
�̃�(𝑡 − 𝜀1)

]‖ and 𝛾2 = ‖[
𝑥(𝑡 − 𝜀2)
�̃�(𝑡 − 𝜀2)

]‖. 
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In addition, the LMIs (16) is equivalent to this inequality: 

 

[
𝛩1 𝑅𝐵𝐾

𝐾𝑇𝐵𝑇𝑅 𝛩2
] = −𝛺  (20) 

 

and −𝛺 < 0. Combining (16) and (19), we have: 

 

�̇� ≤ ∑ (−𝜆‖𝑥(𝑡)‖2
𝑚𝑖𝑛

𝑁∑
𝑖=1   (21) 

 

where 𝜕 = 𝜇5𝛾1
2 + 𝜇1𝛾2

2 + 𝜇2𝛾3
2, the constant value 𝜕 and the eigenvalue 𝜆𝑚𝑖𝑛. Hence, �̇�<0 is succeeded 

with ‖𝑥(𝑡)‖ > √
𝜕

𝜆𝑚𝑖𝑛
. The system (15) is asymptotically stable.  

 

 

4. RESULTS AND DISCUSSION 

In this section, the MAPS with time delay are recommended to test the feasibility of the proposed 

LQG controller. The delays in the area control error signals of 𝜀1 and 𝜀2
 are set to be fixed. The parameters of 

the area 1 and 2 generating unit are obtained from paper [29]. 

 

4.1. Simulation result based on nominal values 

The parameters with their nominal values of the MAPS are used. All state variables are used in 

proposed controller is get from the Kalman filter. At this point, we assume step load disturbances occurring 

on the given system, 𝛥𝑃𝑑1 = 0.01 pu at 0 s and 𝛥𝑃𝑑2 = 0.015 pu at 0 s. The results of feedback signals are 

show in Figures 2, and 3 where Figure 2 is frequency deviation of area 1 and area 2, respectively. Figure 3 is 

tie-line power variation between two areas. 

From these figures which show the time variation of the output signal, we can easily observed that 

frequency deviation in both areas converge to zero in 5 s with under shoot are −5 × 10−4 (pu MW) and 

−2.5 × 10−4 (pu MW) in the area 1 and area 2. From these results, it is obvious that proposed controller has 

good performance with soft settling times and small over/under shoots. These results of this controller are 

compared with other method in [29] in next case with the same conditions of disturbance and parameters of 

power system. 

 

 

 
 

Figure 2. Frequency deviations (Hz) of the first-area and the second-area 

 

 

4.2. Simulation result with random step change load disturbances 

In Figures 4, the signals represent the random step change load turbulences for both area 1 and  

area 2. The random step load turbulences for the two areas network are generated in 200 s for this simulation. 

These load variations are applied to test proposed controller in difference conditions with reference to [29]. 

The simulation results for 𝛥𝑓1, 𝛥𝑓2 as in [29] are presented in Figure 5 and 𝛥𝑃𝑡𝑖𝑒,12 at maximum tolerable 

delay margin in Figure 6, respectively. These results validates that the designed controller gain K is able to 
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achieve stabilization by minimizing the performance index better than [29] at same tolerable delay margin for 

random step load disturbances.  

 

 

 
 

Figure 3. Tie line power deviation for power system 

 

 

 
 

Figure 4. Load variations 

 

 

 
 

Figure 5. Frequency variations (Hz) of the two-area 
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Figure 6. Tie-line variations 

 

 

5. CONCLUSION 

As expressed, the LFC based LQR is achieved for the wide area power network with communication 

delays. With regards to lack of sensors, the power system state variables are estimated by the Kalman filter. 

The optimal gain for the proposed controller is selected by solving the Riccati equation so that the control 

parameters are not over tuned. The stability of the system with time delay is again ascertained via Lyapunov 

theory. Results showed better performance to damp transient frequency and ACE than the controller 

compared with it. Also, some of the highlighted limitations from other controllers in literature are solved. 

However, the continuous difficulty in obtaining optimal control feedback gain using some schemes opens a 

new chapter to research area to develop and continuously improving the gain to avoid excessive tuning 

during linearization.  
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