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 This paper presents the results of a humidity and temperature prediction 

model in the environment for agriculture, using diffuse sets and optimizing 

their parameters by heuristic methods, such as genetic algorithms, and exact 

methods such as Quasi-Newton. It has been identified that non-specialized 

users could have difficulties in understanding the system dynamics and the 

behavior of variables over time. The aim of this research is obtain models 

with a high level of interpretability and accuracy that allows predicting the 

temperature and humidity values for the environment. The use of fuzzy logic 

to present a solution has great advantages as this system is highly rated for 

interpretability. Furthermore, by relating the obtained values for environment 

humidity and temperature to qualitative categories as high, medium or low, it 

allows non-specialized users to have a better understanding of the system 

dynamics. Two optimization techniques are applied to two different diffuse 

sets that allow the prediction of the humidity and temperature. It is found that 

the best implementation involves a Mamdani fuzzy inference system 

optimized with Quasi-Newton algorithm that uses a set of initial values 

attained through a previous optimization process with a genetic algorithm. 
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1. INTRODUCTION 

As humankind's part in agriculture evolves from survival and circumstantial crops to commercial 

ones, the system complexity evolves too, and the degree of knowledge required for successful cropping 

increases [1]. According to the changes on the climate, the best-suited areas for any crop can be modified and 

multiple variables like the temperature and humidity of the zone that can affect the crops' performance, and 

its impact on the soil use, the biodiversity, the region's socio-economics, the agricultural production, and 

other, must be carefully evaluated [2]. Bearing in mind the massive application of the information and 

communication technologies (ICT), its influence on agricultural production, and how it gathers the products 

of the internet and big data eras [3], management and environmental information during the cropping process 

play a key role in the prediction of fore-coming climate changes [4]. 

A web applied monitoring system that uses sensors located in strategic places along a plant field 

allows users to monitor the crop status anywhere, and anytime, from any device with remote access 

capabilities [5]; therefore, the prediction on variables as temperature and humidity can be made from 

different data attained from similar systems. Nevertheless, such forecasting requires efficient algorithms as 

the Stochastic gradient descent algorithm that would give it a greater accuracy, hence, it is necessary to apply 
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different optimization techniques, heuristic or exact, to improve alike models [6]. Ensuring a certain degree 

of interpretability is as important as accuracy so it could be understood by any person if needed, to 

accomplish that aim the use of an intuitive Mamdani fuzzy inference systems (configured by multiple 

conditional rule sets) could be a suitable solution [7, 8]. 

Neural networking, usually used in black box systems, is a technology that also contributes to the 

study of the dynamic behavior of climate; in the agricultural field, its application eases the water use balance 

in irrigation [9, 10]. Furthermore, computer models capable of predicting climate behavior and the impact of 

greenhouse gases on earth's temperature were developed some decades ago, however, these models only 

analyze the CO2 related variables [11], presence, and concentration, when research has shown there are many 

others involved [12]. The most recent models to predict temperature and humidity related variables are math-

based (using Navier-Stokes equations) or computer-based (simulations on the earth's physics for the 

atmosphere and oceans), both, commonly used to study climate change based on global predictions over 

atmospheric and oceanic phenomena [13-17]. As developed as the field appears to be, there are only a few 

models for both temperature and humidity prediction focused on local settings, some of these use just one 

model type (usually through mechanisms or experience) targeted for small mediums with equipment for 

heating and humidity control [18]. 

This research intends to combine a fuzzy inference system for both temperature and humidity 

prediction with an optimization technique to improve the interpretability of the fore-mentioned techniques 

and generate adequate data for the management of these variables. The use of Mamdani fuzzy inference 

systems allows a high degree of interpretability that is necessary for better understanding by non-specialized 

users [7, 8]. The remainder of the paper is organized as section 2 research method, section 3 results and 

discussions and section 4 conclusion. 

 

 

2. RESEARCH METHOD 

This research is carried out in two stages: the first stage comprehends a process of data recollection 

while the second stage involves a proposal development process within an iterative and increasing short life 

cycle as shown in Figure 1. The proposal development follows a prototyping paradigm due to the uncertainty 

of the performance of the algorithms used [19]. 

 

 

 
 

Figure 1. The employed research method (adapted from [19]) 

 

 

2.1.  Data recollection 

For this research, the input set is determined by the measure values for both temperature and 

humidity registered 48 hours before the prediction day, and for the output set, the values were obtained 

during the prediction day. All the values were taken from the periodic register for Bogotá, Colombia, made 

by “Instituto de Hidrología, Meteorología y Estudios Ambientales” (IDEAM) [20]. 

 

2.2.  Proposed methods 

Two proposals based on Mamdani fuzzy inference systems are used for this research, both will be 

optimized whether through a genetic algorithm or a Quasi-Newton algorithm [21-23]. The proposal 

development process follows a quick method for evolutive models based on software prototyping [19] 

comprised for five steps: Communication, quick planning, modeling and quick design, prototype construction 

and application, delivery and feedback. 

- Communication: The requirements set by the stakeholders are concealed. 

- Quick planning: The route book to follow is defined according to the proposed schedule. 
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- Modeling and quick design: The characteristics and parameters for the fuzzy inference systems are set to 

foster an adequate implementation and a correct optimization.  

- Prototype construction and application: If the design is feasible, the proposal is tested using the dataset 

and the predicted values for both temperature and humidity are verified using a MATLAB toolbox [24].  

If any requirement cannot be fulfilled or it is necessary to add any function to the system, another 

complete cycle for the previous stages will be required. 

At the end of the development process, mean squared error (MSE) defined as 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑗 −
𝑛
𝑗=1

𝑦�̂�) and the effectiveness rate for each proposal is calculated in every variable as 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(%) =

(1 − √𝑀𝑆𝐸) ∗ 100. This final step would determine the best prediction model in this work [25]. 

 

 

3. RESULTS AND DISCUSSION 

The Mamdani fuzzy inference system uses a centroid defuzzification. The model is made up of three 

fuzzy sets with three membership functions and a set of rules that relates them all and describes the system. 

The initial parameters of the fuzzy sets in the genetic algorithm were defined randomly from a range between 

minimum and maximum values determined by statistical analysis. The parameters in the Quasi-Newton 

algorithm were obtained by the best performance of the genetic algorithm. This excerpt presents the results 

for both model proposals and the comparison of their outcomes on the prediction of the values for both 

temperature and humidity. 

 

3.1.  Mamdani fuzzy inference system optimized with genetic algorithm 

The genetic algorithm is set to a 50 individuals population, 200 generations, and an initial 

population range between |0.6, 2| for temperature measured in Celsius degrees and |0.5, 1| for percent relative 

humidity. The fitness function, for both variables, is defined as the MSE for normalized data. The Mamdani 

system in which the algorithm is applied possesses two inputs divided into triangular type sets (trimf) and a 

triangular output for both variables. The optimization method was applied to a set of 27 parameters that 

represent the values of the points of the triangular membership functions. After 30 iterations, the minimum 

and maximum errors, as well as the MSE, are calculated for each iteration. The average MSE for humidity 

and temperature are 9.09 E-04 and 5.39 E-03. with standard deviations of 2.80 E-40 and 1.95 E-03, 

respectively. The series, E1..., E30, correspond to the genetic algorithm iterations with random configurations 

in every execution and �̅� relates to the mean value of each column as shown in Table 1. 

The comparison between the predicted and obtained humidity data is shown in Figure 2, where the 

x-axis represents the period analyzed (24 hours) and the y-axis the humidity values. As observed in the 

Figure 2, iteration E19 had the best performance values as presented in Table 1. E19 also reports an MSE of 

4.24 E-04 as shown in Figure 3, where the error through time relationship for the predicted and obtained 

humidity data oscillates between 0.06 and 0.03. The comparison between the predicted and obtained 

temperature data is shown in Figure 4, where the iteration E26 shows the best performance values see in 

Table 1 and an MSE of 2.84 E-03. Figure 5 shows the error through time relationship for the predicted and 

obtained temperature data oscillates between 0.1 and -0.2. 

 

3.2.  Mamdani fuzzy inference system optimized with Quasi-Newton algorithm  

The Quasi-Newton algorithm is set to an initial configuration based on the feedback from the 

aforementioned Mamdani fuzzy inference system optimized with a genetic algorithm. The optimization 

method was applied to a set of 27 parameters that represent the values of the points of the triangular 

membership functions. The fitness function for both variables is defined as the MSE for normalized data. The 

minimum, maximum, and average error values for this configuration are shown in Table 2. 

The comparison between the predicted and obtained humidity data for the period analyzed (24 

hours) is shown in Figure 6. Figure 7 presents the model MSE, 1.21 E-04, and the error through time 

relationship for the predicted and obtained humidity data that oscillates between 0.02 and -0.03. The 

comparison between the predicted and obtained temperature data for the period analyzed (24 hours) is shown 

in Figure 8. Figure 9 presents the model MSE, 2.03 E-03, and the error through time relationship for the 

predicted and obtained humidity data that oscillates between 0.01 and -0.15. 

 

3.3.  Results’ comparison 

Table 3 shows the results and effectiveness percentages (calculated from the RMSE) for both 

configurations; the best performance configuration is the proposal for Mamdani fuzzy inference system 

optimized with a Quasi-Newton algorithm: 1.21 E-04 MSE for humidity values and 2.03 E-03 MSE for 

temperature values. 
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Table 1. Genetic algorithm iterations in a Mamdani fuzzy inference system (C1) 
  HUMIDITY TEMPERATURE 
  MIN MAX MSE MIN MAX MSE 

E1 1.41 E-03 5.79 E-02 1.08 E-03 3.39 E-03 1.36 E-01 4.97 E-03 

E2 1.38 E-03 6.46 E-02 7.35 E-04 1.65 E-03 2.01 E-01 6.02 E-03 

E3 2.53 E-05 1.01 E-01 1.19 E-03 0.00 E+00 1.74 E-01 5.60 E-03 

E4 4.42 E-03 6.08 E-02 1.49 E-03 1.45 E-03 1.62 E-01 7.85 E-03 

E5 3.25 E-03 6.17 E-02 1.15 E-03 1.32 E-02 1.54 E-01 9.68 E-03 

E6 5.00 E-03 5.79 E-02 9.92 E-04 1.83 E-02 1.93 E-01 5.65 E-03 

E7 2.58 E-04 4.55 E-02 6.19 E-04 2.01 E-03 1.40 E-01 5.65 E-03 

E8 3.20 E-03 4.90 E-02 9.81 E-04 0.00 E+00 1.54 E-01 5.28 E-03 

E9 5.24 E-03 7.00 E-02 1.45 E-03 5.42 E-04 2.22 E-01 1.10 E-02 

E10 1.29 E-03 1.00 E-01 1.38 E-03 0.00 E+00 2.25 E-01 5.91 E-03 

E11 1.78 E-03 5.93 E-02 7.17 E-04 6.59 E-04 1.36 E-01 3.98 E-03 

E12 1.64 E-03 5.31 E-02 6.03 E-04 5.13 E-03 1.20 E-01 3.12 E-03 

E13 2.93 E-03 4.35 E-02 4.97 E-04 1.22 E-03 1.68 E-01 5.85 E-03 

E14 6.62 E-04 9.71 E-02 1.04 E-03 7.38 E-04 1.61 E-01 4.00 E-03 

E15 6.54 E-05 8.00 E-02 9.56 E-04 3.96 E-04 1.50 E-01 3.02 E-03 

E16 2.48 E-04 7.86 E-02 1.26 E-03 2.44 E-03 1.17 E-01 3.69 E-03 

E17 1.40 E-03 8.01 E-02 9.86 E-04 9.35 E-04 1.20 E-01 3.78 E-03 

E18 4.32 E-04 6.45 E-02 1.08 E-03 1.11 E-02 1.35 E-01 5.90 E-03 

E19 9.06 E-04 5.03 E-02 4.24 E-04 1.02 E-03 1.32 E-01 4.72 E-03 

E20 8.27 E-04 6.11 E-02 8.80 E-04 0.00 E+00 1.65 E-01 6.10 E-03 

E21 7.37 E-04 9.59 E-02 1.02 E-03 4.62 E-03 1.40 E-01 4.83 E-03 

E22 1.30 E-03 4.70 E-02 5.92 E-04 5.65 E-04 1.73 E-01 4.70 E-03 

E23 6.09 E-03 8.29 E-02 1.02 E-03 7.26 E-03 1.82 E-01 8.05 E-03 

E24 1.94 E-04 7.38 E-02 6.69 E-04 7.44 E-03 1.97 E-01 4.19 E-03 

E25 6.89 E-03 6.91 E-02 6.30 E-04 0.00 E+00 1.80 E-01 3.65 E-03 

E26 1.90 E-03 9.42 E-02 8.92 E-04 2.96 E-03 1.56 E-01 2.84 E-03 

E27 1.05 E-03 7.25 E-02 6.24 E-04 5.70 E-03 1.49 E-01 7.73 E-03 

E28 1.06 E-03 6.26 E-02 6.91 E-04 8.17 E-03 1.13 E-01 4.44 E-03 

E29 7.43 E-03 5.20 E-02 7.70 E-04 4.01 E-03 1.19 E-01 3.13 E-03 

E30 1.83 E-04 7.64 E-02 8.64 E-04 1.42 E-03 1.29 E-01 6.40 E-03 

�̅� 2.11 E-03 6.87 E-02 9.09 E-04 3.54 E-03 1.57 E-01 5.39 E-03 

  STANDARD DEVIATION 2.80 E-04 STANDARD DEVIATION 1.95 E-03 

 

 

  
 

Figure 2. Humidity data comparison  

(Mamdani GA) 

 

Figure 3. Error-values for humidity data  

(Mamdani GA) 

 

 

  
 

Figure 4. Temperature data comparison  

(Mamdani GA) 

 

Figure 5. Error-values for temperature data  

(Mamdani GA) 
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Table 2. Quasi-Newton optimization on the Mamdani fuzzy inference system 
Error Humidity Temperature 

MIN 4.58 E-04 1.07 E-03 

MAX 2.20 E-02 1.13 E-01 

MSE 1.21 E-04 2.03 E-03 

 

 

  
 

Figure 6. Humidity data comparison  

(Mamdani QN) 

 

Figure 7. Error-values for humidity data  

(Mamdani QN) 

 

 

  
 

Figure 8. Temperature data comparison  

(Mamdani QN) 

 

Figure 9. Error-values for temperature data 

(Mamdani QN) 

 

 

Table 3. Environment humidity and temperature analysis 

PROPOSAL HUMIDITY MSE 
TEMPERATURE 

MSE 

HUMIDITY 

EFFECTIVENESS (%) 

TEMPERATURE 

EFFECTIVENESS (%) 

Mamdani fuzzy inference 

system optimized with 
genetic algorithm 

4.24 E-04 2.84 E-03 97.94 94.67 

Mamdani fuzzy inference 

system optimized with 
Quasi-Newton algorithm 

1.21 E-04 2.03 E-03 98.9 95.49 

 

 

Figure 10 shows the humidity Mamdani fuzzy inference system optimized with a Quasi-Newton 

algorithm, where (a) is the first-day input sets; (b) is the second-day input sets; (c) is the output set that 

represents the third-day prediction. The mentioned sets are related through qualitative ranges for humidity 

(high, medium, low) and their membership degree between zero and one for each domain. Figure 11 shows 

the temperature Mamdani fuzzy inference system optimized with a Qasi-Newton algorithm, where (a) is the 

first-day input sets; (b) is the second-day input sets; (c) is the output set that represents the third-day 

prediction. The mentioned sets (defined using membership functions type trimf) are related through 

qualitative ranges for temperature (high, medium, low).  

The correspondence between humidity and temperature values obtained from the set of rules, as 

well as its interaction with the fuzzy sets generated by the algorithm, is graphically described in the  
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Figures 12 and 13. Figures 14 and 15 present surface figures that exemplify how the fuzzy set definition for 

humidity and temperature values, and the rule set for prediction on the third-day work based on the measures 

taken the two previous days. 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 10. Membership functions for environment humidity: (a) day 1; (b) day 2; (c) day 3 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 11. Membership functions for environment temperature: (a) day 1; (b) day 2; (c) day 3 
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Rules: 

If humidity value is low the previous 

two days, humidity value on the 

forecast day will be low. 

If humidity value oscillates between 

high and medium the previous two days 

respectively, humidity value on the 

forecast day will be medium. 

If humidity value is high the previous 

two days, humidity value on the 

forecast day will be high. 

 

 

Figure 12. Rules set for environment humidity 

 

 

 

Rules: 

If humidity value is low the previous 

two days, humidity value on the 

forecast day will be low. 

If humidity value oscillates between 

high and medium the previous two days 

respectively, humidity value on the 

forecast day will be medium. 

If humidity value is high the previous 

two days, humidity value on the 

forecast day will be high. 

 

Figure 13. Rules set for environment temperature 

 

 

  
 

Figure 14. Environment humidity output surface 

 

Figure 15. Environment humidity output surface 

 

 

4. CONCLUSION 

The use of fuzzy logic to present a solution has great advantages as this system is highly rated for 

interpretability, furthermore, by relating the obtained values for environment humidity and temperature to 

qualitative categories as high, medium or low, it allows non-specialized users to understand the system 

dynamics. Through this research, we have generated two models highly interpretable and accurate to predict 

the environment humidity and temperature values based on two fuzzy inference systems with three 

membership functions (low, medium, and high values) each. According to the results, the best prediction 

performance is obtained when using a Mamdani fuzzy inference system optimized with a Quasi-Newton 

algorithm: 1.21 E-04 MSE for humidity values and 2.03 E-03 for temperature values. It is important to note 

that the initial values for this model are attained through an optimization process with a genetic algorithm. 
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