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 Misbehavior detection in vehicular ad hoc networks (VANETs) is performed 

to improve the traffic safety and driving accuracy. All the nodes in the 

VANETs communicate to each other through message logs. Malicious nodes 

in the VANETs can cause inevitable situation by sending message logs with 

tampered values. In this work, various machine learning algorithms are used 

to detect the primarily five types of attacks namely, constant attack, constant 

offset attack, random attack, random offset attack, and eventual attack. 

Firstly, each attack is detected by different machine learning algorithms 

using binary classification. Then, the new procedure is created to do the 

multi classification of the attacks on best chosen algorithm from different 

machine learning techniques. The highest accuracy in case of binary 

classification is obtained with Naïve Bayes (100%), decision tree (100%), 

and random forest (100%) in type1 attack, decision tree (100%) in type2 

attack, and random forest (98.03%, 95.56%, and 95.55%) in Type4, Type8 

and Type16 attack respectively. In case of new procedure for multi-

classification, the highest accuracy is obtained with random forest (97.62%) 

technique. For this work, VeReMi dataset (a public repository for the 

malicious node detection in VANETs) is used. 

Keywords: 

Binary classification 

Machine learning 

Misbehavior detection 

Multiple classifications 

VANETs 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Abhilash Sonker 

Department of Computer Science and Engineering and Information Technology 

Madhav Institute of Technology and Science 

GolekaMandir, Gwalior (474005), MP, India 

Email: abhilashsonkerit@mitsgwalior.in 

 

 

1. INTRODUCTION 

Vehicular ad hoc networks (VANETs) are similar to mobile ad hoc networks (MANETs) [1]. 

VANETs are produced by applying the principles of MANETs. VANETs have nodes which communicate to 

each other through message logs and are short lived [2]. All nodes share same radio channel and exchange 

data with other nodes [3]. Message logs consist of several features like sending time, sending Id, message Id, 

position, noise in the position, speed, noise in the speed, etc. Small packets are repeatedly exchanged with the 

other nodes in neighborhood to maximize safety in automobile driving [4]. Traditional wired network gives 

protection by different methods like gateways, firewalls, etc. However, wireless networks are liable to 

security attacks aiming the whole network from different directions. Because of different misbehaviors like 

spamming, bluffing, faking of identities will generate malignant nodes which can lead to transfer incorrect or 

inaccurate messages to the neighborhood nodes this will decrease the performance of VANET as well as road 

safety and increased road accidents can be seen. Looking forward safety of a passenger can be enhanced by 

means of inter-vehicle communication [5]. For example, if any road accident occurs, with the help of 
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VANET communication safety alert packets are transferred when a node notices a censorious event, this will 

make other vehicles alert moving towards that site; with this road accidents can be minimized [6]. In this 

way, duty of honest nodes is to forward each accepted risk-free packets to the nodes in its transmission range. 

An application of VANET support actual time communication and mainly deals with critical 

information related to life [7]. So as to achieve correctness and effectiveness, it should stick to security 

demand that is honesty, non-repudiation, privacy, confidentiality and authentication to shield against the 

attacker and malicious nodes [8]. To come up with preventive measures, observation of such malicious nodes 

and unusual activities in the network is very much important. At the end of the day stunning growth of road 

traffic in worldwide; it becomes very crucial to use current technologies to make safer and easier driving for 

the driver. 

In this paper, there are five types of attacks such as constant attack (type1), constant offset attack 

(type2), random attack (type4), random offset attack (type8) and eventual attack (type16). the constant 

attacker transfers fixed, pre-configured position; the constant offset attacker transfers fixed, pre-configured 

offset added to their actual position; the random attacker sends a random position; the random offset attacker 

transfers a random position in a pre-configured triangle in a vehicle, the eventual attacker behaves  normal 

for the sometime repeatedly. 

The current work is to present a new procedure for misbehavior detection in VANETs using 

machine learning techniques. In this paper machine learning is going to help in classification of message logs 

send from a node to be honest or malicious. For the classification various features are extracted from the 

nodes. With the help of nearby nodes these features are calculated. After calculation observations are inter-

changed by the observer nodes to the other nodes in its neighborhood. In this paper two types of machine 

learning classification techniques are used that is binary classification and multi-classification. The accuracy 

of machine learning model firstly depends on the algorithm that is used to generate the classifier and 

secondly the features that are used to represent the instances. Different inducers and features give different 

performance for each classifier [3]. To overcome this new system is created so that best algorithm is 

automatically chosen according to the dataset and when new message log is sent from the node it is detected 

that message log has any type of attack or not. If it is founded that message log is malicious then the node 

from which this message log is transferred is also malicious and hence detected. 

The approaches which are done to detect the misbehavior in VANETs are mostly simulation based. 

In recent years the use of ad-hoc network rises tremendously [9]. The automating the systems to detect the 

misbehavior in VANETs will give an aid to detect them on live environment. Here we are discussing some of 

the works which have been done to enhance the node detection system in VANETs. 
Grover et al. used Naive Bayes, IBK, AdaBoost1, J-48 RF to predict misbehavior in VANETs. But 

random forest and J-48 gave the best results. Dataset was consisting of 3101 legitimate and 1427 

malicioussamples. Results were based on metrics with high values of TPR (0.93), TNR (0.99) and small 

values of FPR (0.005) and FNR (0.06) [1]. Khana et al. (2014) presented network simulation based study a 

topic on detection of malicious nodes (DMN) in vehicular ad-hoc networks. They proposed a novel algorithm 

called DMN (detection of malicious nodes in VANETs) to detect malicious nodes [2]. 

Again, in 2012, Grover et al. presented a concept of misbehavior detection based on ensemble 

learning in VANET. Algorithms used were Naive Bayes, IBK, AdaBoost1, J-48, RF and ensemble based 

learning. Ensemble based learning gave the highest accuracy TPR (0.95), FPR (0.01) and TNR (0.99), FNR 

(0.03) [10]. Muthukumar and Karthick presented a topic on identifying the misbehavior nodes using trust 

management in VANETs. In this article they have introduce some misbehavior prevention researches in 

location privacy-enhanced VANETs. In the future, they have intended to improve the detection rate of the 

proposed system and to evaluate the performance of the proposed scheme with different vehicle densities and 

average velocities [11]. Barnwal and Ghosh present a survey on detection of misbehaving nodes in vehicular 

ad-hoc network and conclude to adopt hybrid based techniques for misbehavior detection [12]. 

Sedjelmaci et al. presented a topic on predict and prevent from misbehaving intruders in 

heterogeneous vehicular networks to prevent the occurrence of the most dangerous attacks that target 

HetVNet. They have analyzed the performances and demonstrated the efficiency of the proposed scheme 

using NS-3, which showed that it exhibits a high accuracy prediction rate, low detection time and a low 

communication overhead [13]. Mohammadi et al. conducted a survey on misbehavior node detection in 

vehicular ad-hoc networks. Compared to SVM-based, dempster shafer-based, and averaging-based detection 

techniques. SVM classifier gives the highest accuracy [14]. Tiwari and Gupta conducted a survey on security 

enhancement of misbehavior nodes in vehicular ad-hoc networks using hash function; algorithms used were 

J-48, RF, IBK, Naïve Bayes and AdaBoost1. But J-48 and RF gave thebest results [15]. 

It is found that only few works has been done regarding the malicious node detection in VANETs 

using machine learning. This study is going to give a research support as well for the future aspirants who 
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want to study in this field. This paper is written with the aim of providing a procedure for the selection of 

best algorithm from different algorithms for misbehavior detection in VANETs. 

 

 

2. RESEARCH METHOD 

Vehicular reference misbehavior (VeReMi) dataset is a dataset for evaluation of the misbehavior 

detection in the VANETs. This dataset is composed of two types of files ground truth file and the message 

logs generated from the simulation environment. It is a part of recently published paper [16]. It is simulated 

generated using LuST and VEINS. It primarily discussed five attacks namely, constant attack (type1 attack), 

constant offset attack (type2 attack), random attack (type4 attack), random offset attack (type8 attack), and 

eventual attack (type16 attack). Its primary purpose is to serve as a baseline to assess how misbehavior 

detection mechanisms operate on a city scale. The dataset contains the five different files of the different 

types of attacks having 960, 1056, 4438, 21638, 20483 with initial instances in type1, type2, type4, type8 and 

type16 attack respectively. The combined dataset have 48,575 instances for the multi classification. The 

memory size of total dataset is approx 5.3 MB. 

The research is carried out in two different phases; the first phase is for the analysis of the 

algorithms on different attacks and second phase is to design a new procedure for the detection of attacks 

using the different machine learning classification algorithms like Naïve Bayes, K-nearest neighbor (KNN), 

stochastic gradient descent (SGD) classifier, decision tree (DT) and random forest. Each algorithm is applied 

and accuracy is evaluated in the first phase for the individual attack. Let us understand the each algorithm 

one by one. 

 

2.1.  Naïve Bayes 

 The advancement in the Bayesian theory gets the evolution of Naïve Bayes algorithm. The Naïve 

Bayes is a supervised machine learning algorithm based on the Bayes Theorem [17]. The Bayes theorem for 

the likelihood is given as (1): 

 

𝑃(𝑌
𝑋⁄ ) =

𝑃(𝑋
𝑌⁄ )∗𝑃(𝑌)

𝑃(𝑋)
 (1) 

 

Since in (1) the 𝑃(𝑋) is constant and add extra calculation in the computation, hence it is being removed 

from the formula, and given as (2): 

 

𝑃 (𝑌
𝑋𝑖

⁄ ) = ∑ 𝑃 (
𝑋𝑖

𝑌⁄ ) ∗ 𝑃(𝑌)𝑖  (2) 

 

In (2) gives the result of the Naïve Bayes classifier. 

 

2.2.  K-nearest neighbor 

K-nearest neighbor is called the instance based learner as it stores the instances for classification. 

The K-Nearest Neighbor classifier works on the principle of majority voting. In this algorithm K is the 

number of nearest neighbors to be considered. The distance of each element is calculated from the query 

point and identifies the class of each neighbor. Then based on the majority voting the query point is 

classified. This algorithm is also known as lazy learning algorithm because after training the model it waits 

for the query point [18]. The formula used in the calculation of the distance of the nearest neighbors is 

Euclidean distance: 

 

√∑(𝑥𝑚 − 𝑦𝑚)2 (3) 

 

In this work, (3) that is Euclidean distance is used for the calculation of the distance. 

 

2.3.  Stochastic gradient descent 

 Stochastic gradient descent is not the actual algorithm of the supervised machine learning. It is an 

optimization technique. This technique is efficient for the solving linear problems with support vector 

machines and logistic regression. The work presented is convex optimization of support vector machine. It is 

widely used because of efficiency and ease [19]. The stochastic gradient descent in contrast a perform a 

parameter update for each (x, y) is given by (4): 

 

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝛼∇𝜃𝐽(𝜃; 𝑥; 𝑦) (4) 
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SGD removes the recomputation of gradients for similar examples and hence it is faster and can be used to 

learn online [20]. 

 

2.4.  Decision tree 

 The decision trees are ways to find the conclusion based on the set of rules drawn from the tree. A 

decision tree is consists of the two nodes: i) Decision node and ii) Leaf node. A decision node tells about 

which attribute have to be selected and leaf node tells about the class. Decision trees use the up down 

approach to give the results [21]. The first node of the decision trees, a decision node, called as root node 

[22]. Each node of the decision tree is selected on the basis of information gain methods: 

 

2.4.1. Information gain method 

The two important formulas that are used in this method are: i) Entropy calculation and ii) 

Information gain, for calculating the entropy of the sample data 
 

𝐸(𝑠) = ∑ −𝑝𝑖 log2 𝑝𝑖  

 

After calculating the entropy, the information gain is calculated for each attribute to get decide the 

decision node.  
 

𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑ |𝑆𝑣|/|𝑆|𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)

𝑣∈𝑣𝑎𝑙𝑢𝑒𝑠(𝐴)

 

 

2.5. Random forest classifier 

Random forest is an ensemble technique. It is called as bootstrapping and aggregation is the result 

based on majority vote of base models on the test data [23]. Random forest is a bagging technique which feed 

the data to the base models by row sampling with replacement and predicting the classes. Usually, decision 

tree is used as its base model. Random forest applies both feature sampling and row sampling with 

replacement. The Figure 1 given is an example showing the random forest classification. 
 

 

 
 

Figure 1. Random forest classification 
 

 

Suppose training dataset which is being classified into 0 or 1 that is binary classification is given to 

different decision tree models with the feature sampling and row sampling with replacement then the results 

by the decision trees are given as shown in the Figure 1. Now when a test dataset is passed then the results of 

the decision trees aggregates using majority voting method to predict the final class [24]. A decision tree 

alone when classify a dataset it has low bias and high variance when the tree is grown to the maximum depth. 

To reduce the variance feature sampling and row sampling is used with different decision tree models. 

 

2.6. New procedure design 

After completing the first phase, a new procedure is designed for the detection of attacks on message 

logs send from any node as shown in Figure 2. This new procedure is including the following steps: 
 Selecting the ground truth data from VeReMi dataset 

 Loading the dataset to the environment 
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 Pre-processing of the ground truth data 

 Selection of the best features fitting the model 

 Fitting the models 

 Calculation of accuracy 

 Saving accuracies 

 Model with highest accuracy 

 Passing new message log to the model 

 Prediction of attacks 

In the pre-processing of the ground truth data, the unnecessary columns are removed and data is 

balanced. After balancing the data the feature selection is performed to select the important features. After 

selecting the important features the data is split into training and testing set and model is trained and accuracy 

is calculated. The accuracy is saved for all the models and best model is selected based on the highest 

accuracy. After getting the best accuracy model, whenever a new message log comes with suitable features it 

is going to be detected that which type of attack it has. Finding the attack in the message log it is also 

detected that node from which new message log is had been sent is also malicious. Hence malicious node is 

detected. 
 

 

 
 

Figure 2. New procedure for misbehavior detection in VANETs 

 

 

3. RESULTS AND DISCUSSION  

The VeReMi dataset contains several folders of different versions and in this work single file is 

selected from the individual attacks and is analyzed on the different five algorithms namely, Naïve Bayes, 

KNN, stochastic gradient descent, decision tree and random forest. Using the confusion matrix the accuracies 

are calculated. The procedure for the checking the individual attacks is same for every algorithm. The 

accuracy is calculated using the (5) from the confusion matrix [25]. 

 

Accuracy =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑁)+(𝐹𝑃+𝑇𝑁)
  (5) 

 

Where  TP  = True Positive 

  TN = True Negative 

  FP  = False Positive 

  FN = False Negative 

The classification report is also given for every algorithm containing the precision, recall, F1 score 

and support. The precision gives the ratio of correctly predicted positive operations to the total predicted 

positive observations. The recall is also called as sensitivity and gives us idea of the true positive 

observations to the total actual positive observations. F1 score gives the weighted average of precision and 

recall. 
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Precision =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

 

Recall =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

 

F1 score =
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 )

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

 

Let’s discuss the result of each attack one by one. 

 

3.1.  Type1 attack (constant attack) 

The dataset of constant attack or type 1 attack was taken and preprocessing and feature selection is 

done to create the model. Then models are evaluated and their accuracies are calculated: 

 

3.1.1. Naïve Bayes 

 The confusion matrix and ROC-curve drawn corresponding to the Naïve Bayes algorithm is shown 

in the Figure 3. 
 

 

  
 

Figure 3. Confusion matrix and ROC-curve of Naïve Bayes for constant attack 
 

 

The accuracy is calculated using (5) as 

 

Accuracy =  
280 + 279

(280 + 0) + (279 + 0)
 

 

Accuracy =   
559

559
=  0.100 

 

Hence the accuracy is 100.00%. The classification report is shown in Figure 4. Similarly, other algorithms 

KNN, SGD, decision tree and random forest are evaluated with accuracies of 99.10% and 97.60%, 100%, 

and 100% respectively. 
 

 

 
 

Figure 4. Classification reports of Naïve Bayes for constant attack 
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3.2.  Type2 attack (constant offset attack) 

 The constant offset attack is a type 2 attack and its data during the evaluation is divided into the 

70% for training and 30% for testing. The algorithms used for the calculation of results discussed. 

 

3.2.1. Decision tree 

 The confusion matrix and ROC-curve drawn corresponding to the DT algorithm is shown in the 

Figure 5. 

 

 

  
 

Figure 5. Confusion matrix and ROC-curve of DT for constant offset attack 

 

 

The accuracy is calculated using (5) as 

 

Accuracy =
260 + 268

(260 + 0) + (0 + 268)
 

 

𝐴ccuracy =
528

528
=  0.10000 

 

Hence the accuracy is 100.00%. The classification report is shown in Figure 6. Similarly, other algorithms 

such as Naïve Bayes, KNN, SGD and random forest are evaluated with 77.84%, 95.64%, 76.32% and 

99.24% respectively. 
 

 

 
 

Figure 6. Classification report of DT for constant offset attack 
 

 

3.3.  Type4 attack (random attack) 

 The random attack is classified with splitting the data into train and test sets. The attack is identified 

with the help of following algorithms: 

 

3.3.1. Random forest 

 The confusion matrix and ROC-curve drawn corresponding to the random forest algorithm is shown 

in the Figure 7. 
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Figure 7. Confusion matrix and ROC-curve of random forest for random attack 

 

 

The accuracy is calculated using (5) as 

 

Accuracy =
935 + 911

(939 + 23) + (14 + 822)
 

 

𝐴ccuracy =
1846

1883
=  0.9803 

 

Hence the accuracy is 98.03%.The classification report is shown in Figure 8. Similarly, other algorithms such 

as Naïve Bayes, KNN, SGD and DT are evaluated with 62.08%, 86.61%, 52.20%, and 96.70% respectively. 

 

 

 
 

Figure 8. Classification report of random for random attack 

 

 

3.4.  Type8 attack (random offset attack) 

 Type8 attack or random offset attack is taken into consider by splitting the data into 70% training set 

and 30% testing set. The algorithms show the different results on the same dataset due to their learning 

function. 

 

3.4.1. Random forest 

 The confusion matrix and ROC-curve drawn corresponding to the random forest algorithm is shown 

in the Figure 9. The accuracy is calculated using (5) as 

 

Accuracy =
3941 + 3894

(3941 + 154) + (210 + 3894)
 

 

𝐴ccuracy =
7835

8199
=  0.9556 

 

Hence the accuracy is 95.56%. The classification report is shown in Figure 10. Similarly, other algorithms 

such as Naïve Bayes, KNN, SGD and DT are evaluated with 58.83%, 82.58%, 49.03%, and 95.40% 

respectively. 
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Figure 9. Confusion matrix and ROC-curve of random forest for random offset attack 

 

 

 
 

Figure 10. Classification report of random forest for random offset attack 

 

 

3.5.  Type16 attack (eventual attack) 

 The eventual attack is detected by creating a model using the data for the detection of the eventual 

attack. Let’s calculate the accuracies of each algorithm used to create the models. 

 

3.5.1. Random forest 

 The confusion matrix and ROC-curve drawn corresponding to the random forest algorithm is shown 

in the Figure 11. 

 

 

  
 

Figure 11. Confusion matrix and ROC-curve of random forest for eventual attack 

 

 

The accuracy is calculated using (5) as 

 

Accuracy =
3554 + 3568

(3554 + 121) + (210 + 3568)
 

 

𝐴ccuracy =
7122

7453
=  0.9555 

 

Hence the accuracy is 95.55%. The classification report is shown in Figure 12. 
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Figure 12. Classification report of random forest for eventual attack 

 

 

Similarly, other algorithms such as Naïve Bayes, KNN, SGD and DT are evaluated with 59.33%, 

79.55%, 51.16%, and 94.68% respectively. The results of individual attacks on different algorithms are given 

in Table 1. For the analysis of the new procedure we have combined all the dataset of the type 1, 2, 4, 8, 16 

attacks and make a function to select the best algorithm for the dataset and then choose the best selected 

algorithm to predict the result for the new dataset.  

The discussed algorithms used for the individual attack detection is used in the new procedure. The 

accuracies of each algorithm are also calculated on the combined dataset. On the analysis of the algorithms 

and calculating the results it is found that the random forest is giving the highest accuracy in this dataset with 

97.62% while the other algorithms like Naïve Bayes, KNN, SGD and decision tree is showing the accuracy 

of 70.38%, 88.66%, 67.78%, and 95.64% respectively. This whole procedure can be used for the any dataset 

by changing the feature names and data used for the algorithm to predict the attack. Let’s discuss the 

accuracy of the random forest obtained on the new procedure with highest accuracy. The confusion matrix 

drawn for the random forest is shown in Figure 13. 

 

 

Table 1. Results of attacks on different algorithms 
Attacks↓ Naïve Bayes KNN SGD DT Random Forest 

Algorithms 

Type1 100.00% 99.10% 97.60% 100.00% 100.00% 

Type2 77.84% 95.64% 76.32% 100.00% 99.24% 

Type4 62.08% 86.61% 52.20% 96.70% 98.03% 

Type8 58.83% 82.58% 49.03% 95.40% 95.56% 

Type16 59.33% 79.55% 51.16% 94.68% 95.55% 

 

 

 
 

Figure 13. Confusion matrix of random forest for new procedure 
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
8707 + 10466 + 10389 + 10515 + 9362 + 9307

9266 + 10466 + 10389 + 10521 + 9806 + 9725
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
58746

60173
= 0.9762 

 

Hence accuracy calculated is 97.62%. 
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The ROC-curve is drawn between true positive value and false positive value, hence can be drawn 

for the binary problems by definition. So, it is tedious to draw the curve for multi class classification. 

However, for multi label classification it is possible to do so. The classification report of the random forest 

algorithm for new procedure is shown in Figure 14. 

 

 

 
 

Figure 14. Classification report for the random forest for the new procedure 

 

 

The machine learning algorithms varies their results on the basis of features, dataset and algorithms 

used. According to no free lunch theorem [26], “There is no one algorithm that best fit for every problem”. 

Gahleb et al. used NGSIM dataset to study the misbehavior in VANETs using artificial neural networks (feed 

forward neural network and back propagation). They have used the binary classification to detect the 

misbehavior in every vehicle separately. The features used in this work are overlapped areas, interval to loss 

received information, average prediction error, distance to the sender, average vehicle occurring distance and 

vehicle uncertainty. The total accuracy achieved is 99.74% [27]. A comparison of results with proposed work 

is shown in Table 2. 

Bidgoli et al. used KDDCUP99 dataset for the intrusion detection using decision tree algorithm on 

reduced feature space. A study on 41 features and 24 attack types are done of DoS (denial of service), remote 

to user (R2L), user to root (U2R), and probing class [28]. The comparison with the proposed work is shown 

in Table 3. 

 

 

Table 2. Comparison with previous work 
Research Accuracy 

Faud A. Gahleb et al. 99.74% (ANN) 
Proposed Work 100% (DT, Random Forest and Naïve Bayes ) 

 

 

Table 3. Comparison with previous work 
Research Accuracy 

Behrouz Minaei Bidgol et al. 98.5% (Average for DT in Normal case) 
Proposed Work 97.6% (Random Forest) 

 

 

The comparison of two algorithms should be done on the same dataset in the same environment only 

then it can be said that the algorithm is best in that scenario with corresponding dataset. In both the above 

papers the results are definitely little bit varying because of the dataset chosen for the experiment. Hence all 

the results obtained are correct and best in their own scenario. 

 

 

4. CONCLUSION 

VANETs has gained a lot of attention as it has greatly leaded in the road safety and driving 

conditions. The misbehavior in the VANETs can be detected to find node to be malicious or not. In this 

paper, the five attacks are detected by the five different algorithms and accuracy is calculated for each 

algorithm separately. Although a new procedure is formed for the multiple detection of the attacks using the 

best algorithm that is possible on the combined dataset. This new procedure can also be work as a general 

concept or mechanism for the malicious node detection. This approach is suitable for the detection of 

misbehavior in VANETs by choosing the best algorithm. This algorithm reduces the effort of writing the 
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codes for the different algorithms separately and doing analysis of each algorithm for choosing the best one. 

Naïve Bayes with 100% accuracy, decision tree with 100% accuracy and random forest with 100% is 

obtained in type1 attack. Decision tree with 100% accuracy in type2 attack is obtained. Random forest with 

98.03% accuracy in type4 attack, random forest with 95.56% in type8 attack, and random forest with 95.55% 

is obtained. The new procedure selects the best algorithm as random forest with 97.62%. Hence the new 

procedure is achieved for getting the best algorithm for the detection of misbehavior in VANETs. The 

advancement in this paper can be done with the application of the hybrid machine learning techniques. The 

implementation of the different scenarios and different attacks can also be considered in future for the 

detection of misbehavior. 
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