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 Apache spark, famously known for big data handling ability, is a distributed 

open-source framework that utilizes the idea of distributed memory to 

process big data. As the performance of the spark is mostly being affected by 

the spark predominant configuration parameters, it is challenging to achieve 

the optimal result from spark. The current practice of tuning the parameters is 

ineffective, as it is performed manually. Manual tuning is challenging for 

large space of parameters and complex interactions with and among the 

parameters. This paper proposes a more effective, self-tuning approach 

subject to a neural network called Smart method for spark using neural 

network for big data (SSNNB) to avoid the disadvantages of manual tuning 

of the parameters. The paper has selected five predominant parameters with 

five different sizes of data to test the approach. The proposed approach has 

increased the speed of around 30% compared with the default parameter 

configuration. 
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1. INTRODUCTION 

Around the world, the number of online users is increasing at a rapid rate with the advancement of 

social communication and e-commerce business. Besides, a lot of users are storing their content constantly 

for future use. As indicated by International data corporation (IDC), digital space is projected to increase 

more than 44 Z.B. in volume by 2020 [1-3]. In the era of digital data, big data is something that can't be 

overlooked. Therefore recently, the big data era, different industries and governments have given emphasis 

on big data technologies. Since the conventional computing techniques could not provide the expected result 

and efficiency to manage big data. The different distributed frameworks like hadoop [4], spark [5], and storm 

[6] have been introduced to satisfy the prerequisite of taking care of the big data. 

 Apache spark is one of the most notable and broadly used frameworks because of its high 

performance and flexibility [7]. Apache spark has over 180 parameters with default values. The appropriate 

values of the parameter can be selected by the user manually while processing different sizes and types of 

data. The performance becomes unsatisfactory due to the inappropriate selection of parameter values. 

Therefore, additional tuning of the parameter is required for each particular application [8]. The users require 

appropriate knowledge for manual tuning of the parameters in the spark framework, however, manual tuning 

is very tedious due to the complex interaction between them.  

As per the current practice, parameter tuning in big data is performed in 2 ways. Firstly, manual 

tuning of the parameter by trial and error. This process is very complicated as it requires a long time and 

depth knowledge due to a large number of parameters and its internal correlation with each other. To address 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 3, June 2021 :  2525 - 2534 

2526 

the manual tuning problem, [9] author proposed a cost-based model for the hadoop system. However, the 

model needs to be persevered by users based on different policies. Secondly, self-tuning parameter when it 

requires. This paper proposes an approach based on a neural network to minimize the drawback of manual 

tuning. The research developed a self-tuning approach that can perform self-tuning of the parameter range 

based on the neural network model. This approach has three key advantages compared to the existing 

approaches. Firstly, all tasks are processed by the neural network model. Secondly, all types of datasets that 

consist of structured data, semi-structured data, and unstructured data can be processed. Thirdly, any volume 

of the dataset can be processed.  

The training data has been collected for the selected five parameters by changing the parameter 

range and various input of data sets. The training process is only for one time to learn the machine learning 

model, which then can predict the numerical values for the selected parameters. The method has been 

implemented on a testbed that uses Dell PowerEdge R 720 server, hosting spark framework, and runs as 

spark nodes. The test results provide that our proposed method can perform effective self-tuning based on the 

neural network model so that it meets maximum resource usage capability and saves processing time. The 

key commitments of the method are as follows:  

 It has implemented an artificial neural network in the approach that processes spark jobs using its 

application service based on the neural network model. Hence, users do not require in-depth knowledge 

of the internal system function. Thus, they can save time by avoiding manual tuning. 

 The self-tuning facility of the approach integrates parameter range allocation. It helps to meet task 

deadlines and improves the overall performance of spark. 

 In our evaluation using spark workloads with five different input datasets, the approach achieved an 

average performance speedup of about 30% performance.  

The remains of the paper are organized as follows. Section 2, presenting the background of the 

study. Section 3, the related work, is discussed. Section 4 presents the details of the artificial neural network. 

Section 5 presents the architecture of SSNNB. The methodology is presented in section 6. Section 7 presents 

results and analysis-finally, Conclusions and future work presented in section 8. 

 

 

2. BACKGROUND OF THE STUDY 

2.1.  Spark 

In the area of big data, “Apache Spark” is the most accepted open-source platform that supports the 

idea of resilient distributed datasets (RDDs). The RDDs allow rapid treating of the massive size of data 

leveraging distributed memory. Data operation in memory is appropriate for repetitive applications such as 

graph algorithms and reiterative machine learning. RDD is considered as the main feature of spark. It 

characterizes a read-only collection of entities allocated among several machines. An RDD explicitly stores 

in the cache memory by the user over several machines and can be reused as the parallel operation in 

multiple MapReduce. RDD has the fault tolerance ability over a notion of extraction. Whenever a partition of 

RDD is lost, it can rebuild it since it has sufficient information regarding its origin. Though RDDs do not 

have shared memory construction, on the one hand, they can represent reliability and scalability and, on the 

other hand, a sweet-spot among expressivity. RDDs are well-suited for a diversity of applications. Figure 1 

presents the spark-cluster framework [10]. A spark comprises a driver node that is equivalent to a master 

node and several worker nodes that are correspondent to slave nodes. The driver node manages all worker 

nodes through the worker node process. The worker nodes communicate with the driver node through the 

worker node process and manage local executors. Each application consists of multiple executors and one 

driver. All the jobs in an application come from the same executors. The spark context is creating by the 

main jobs of the application that are run by the driver process. Each of the worker nodes accomplishes one or 

more executor backend process during launching, and a single executor backend does managing executor 

instance.  An executor manages a thread group that runs each of the tasks as a single thread. Nevertheless, the 

time of execution of a specific task in the platform of Apache depends on various factors such as input data 

volume, data type, CPU speed, memory size, number of nodes, configuration parameters, design and 

implementation of the system and so on. Based on these factors, the time of execution time of a specific job 

in apache spark may differ conspicuously [11]. There is more than 180 configuration parameter in apache 

spark that user can tune according to the need of a specific application to enhance the performance. It is the 

modest and most operative approach to enhance the enactment. Users tune these parameters physically by 

experiment [12]. At present, the parameters are manually tuned by experimentation that is not effective. It 

needs complicated interactions with the parameters and takes a larger parameter space. Again, these 

parameters must be re-tuned for various applications and clusters. 

Artificial neural networks (ANN) is a mathematical processing method that can be used for both 

classification and regression [13, 14]. The neurons make it a powerful learning model for this reason for 
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regression analysis. It is the best choice, including multiple inputs and output data [15, 16]. A neural network 

can predict numerical values correctly, and it can prevent overfitting easily. ANN is much suitable in several 

areas, including natural language and image processing, prediction as well as emotion recognition [17-19]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A common layout of apache spark 

 

 

3. RELATED WORK 

In recent years, one of the keenest research is in the optimization of the performance of big data 

system. However, almost all the existing researches have been done on the Hadoop platform or the 

framework of MapReduce computing. Starfish [9] utilizes simulation and a cost-based model to seek the 

required job configuration for the workload of MapReduce. AROMA [20] uses an optimization framework 

and two-phase ML to automate resource distribution and job configurations considering heterogeneous 

clouds. The authors of [21], indicated that hadoop scheduler in the heterogeneous environment, the 

performance reduction and proposed another scheduler named longest approximate time to end. In [22] a 

different work concentrated on examining the different resource consumption effects for variant set for the 

Reduce slots and Map. These problems have been addressed in [23], through a framework called “Profiling 

and Performance-based System” (PPABS), which can atomically tune the configuration of hadoop setting by 

deducting the requirements of application performance. Modifying the popular KMeans++ clustering along 

with the simulated Annealing algorithm are the main contributions of [24], which were needed to adjust to 

the MapReduce paradigm. Reference [23] recommends easing this issue by an engine that suggests the 

configurations for a new analytical job timely and intelligently. This engine is embedded in an adapted k-

nearest neighbor (KNN) algorithm to discover the appropriate configuration based on the past job experience 

that is executed well. However, the research of optimizing apache spark performance is still in the beginning 

stage. The authors of [24], present a simulation driven forecast model to anticipate the performance of a job 

with high correctness for Apache Spark. Their proposed model can predict memory usage and execution time 

of spark systems in the case of default parameters. [25] Showed that the support vector regression (SVR) 

model is computationally efficient with high accuracy. According to their findings, it can be concluded that 

using the auto-tuning method can offer comparable or better performance compared to starfish with a fewer 

number of parameters. 

 

 

4. ARTIFICIAL NEURAL NETWORK (ANN) 

The scikit-learn is an essential tool since it allows only a few lines of coding and prevalent data 

groundwork. In order to proceed with the evaluation, the Keras wrappers need to be provided with a defined 

function to create ANN. In fact, the function is formulated to create a base model that is the subject of 

evaluation. The base model is connected with three neurons through a hidden layer, as illustrated in Figure 2. 

The hidden and output layer is activated with ReLU and softmax activation functions. Furthermore, an 

efficient optimizer "Adam" can be used to update network weights iteratively based on training data. The 

object in the Keras wrapper, known as KerasRegressor, is used as a regression estimator in the scikit-learn. 

The function of ANN is then created immediately to pass parameters including the batch size and epochs 

number along with the function of the model, both of which are set to default. Furthermore, a process of 

arbitrary number creator with a constant arbitrary seed has been initialized to compare the consistency of the 

models. In this research, the process of arbitrary number creators is repeated for the evaluation of each 

model. A neuron takes inputs, does some math with them, and produces an output. A simple neuron looks 

like what is shown in Figure 3.  
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Figure 2. A neural network with hidden layer  

 

 

 
 

Figure 3. Layout of a simple neuron 

 

 

Three things are happening here. First, each input is multiplied by a weight: 

 

𝑥1 →  𝑥1 ∗  𝑤1 , 𝑥2 →  𝑥2 ∗  𝑤2 , 𝑥𝑚 →  𝑥𝑚 ∗  𝑤𝑚 (1) 

 

Next, all the weighted inputs are added together with a bias b: 

 
(𝑥1 ∗ 𝑤1) + (𝑥2 ∗ 𝑤2) + (𝑥𝑚 ∗ 𝑤𝑚) + 𝑏 (2) 

 

Finally, the sum is passed through an activation function: 

 

𝑦 = 𝑓( 𝑥1 ∗ 𝑤1 + 𝑥2 ∗ 𝑤2 + 𝑥𝑚 ∗ 𝑤𝑚) + 𝑏 (3) 

 

4.1.  Activation functions ReLU and softmax 

Rectified linear unit (ReLU), is a recently popular activation function in neural networks [26-28]. It 

is well-defined as 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥). One of the advantages of the function is, it is also non-linear and can 

run backward for error minimization. Additionally, the function activates multiple neuron layers. Figure 4 

shows the rectified linear unit (ReLU) activation function.  

Softmax is a type of logistic function in mathematics. The softmax function accommodates outputs 

of each unit in between 0 to 1, displayed in a K-dimensional vector of random real numbers [29-31]. The 

function is used as an activation function due to its categorical probability distribution characteristic. The 

function is used for any number of classes and able to estimate the probability that any of the tested classes 

are true. The softmax function provided by 

 

𝜎(𝑍)𝑖 =  
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾
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Figure 4. Rectified linear unit 

 

 

5. SSNNB FRAMEWORK 

The spark configuration parameters are tuned by the predicted values from the self-tuning approach 

SSNNB, which architecture is shown in Figure 5. SSNNB considers two input values, which are dataset size 

and execution time. From Figure 5, there are several blocks such as: 

 Training data is obtained from a database 

 The data has been received, and the model is generated by the “Model Training” block 

 Generated model has been stored in a fixed location by the 'Store Model on Disk' block 

 “Predicted Parameter Value”, this block provides the predicted optimum parameter value 

 Finally, the predicted optimum values are received and updated in the “Spark System” block 
 

 

 
 

Figure 5. SSNNB architecture 

 

 

6. METHODOLOGY 

6.1.  Parameter selection 

The selected five parameters are shown in Table 1. The column 'Default value' displays the default 

parameter values, and the column 'Range value' displays the range of the selected parameters in the spark 

method [32-34]. Self-tuning is required when processing various sizes and different types of data to minimize 

processing time and achieve maximum performance from spark [35]. This paper selected five predominant 

parameters of the spark, based on the review of the authors [36]. The notable reason is: firstly, the selected 

five parameters are covered, including CPU, memory and disk of the resource in a cluster. Secondly, in 

schedule and shuffling modules, it has a great impact. Thirdly, this parameter also has a significant impact on 

the machine and cluster level [37].  
 

 

Table 1. Default parameter value of spark with range 
Spark Parameters Spark Parameter Range Value Default Value 

driver.cores driver cores for a driver process 1-8 1 

driver.memory driver memory for a driver process 1g-4 g 1 g 

executor.cores cores are for executor process 10-40 1 

executor.memory executor of memory for  per executor process 2g-8 g 1 g 

reducer.maxSizeInFlight Max size of the map outputs  24m-96 m 48 m 
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6.2.  Data collection 

Training data has been collected by the spark job, which is completed by changing the parameter 

and values and various dataset sizes and types. Finally, the sum of 3,000 sample data have been collected for 

training and testing the neural network model. For the high accuracy of the model, the normalization has 

been done. 

 

6.3.  Training and testing 

For training, the neural network model has randomly sleeted 80% and the remaining 20% data have 

been used for testing. To get the best accuracy from the model, the training cycle has been repeated several 

times. In training, the epoch size has increased up to 250, and the model accuracy level was 97.1% and 

96.7% for testing. It has observed that the accuracy has been increased during training and testing with the 

number of epochs is increased. It is observed from Figure 6 that, after 250 epochs, there is no significant 

improvement in both model accuracy and model loss. 

 

 

  
 

Figure 6. Model accuracy and loss in training 

 

 

6.4.  Test bed 

The SSNNB approach has used the Dell PowerEdge R720 server as a testbed. The server is 

equipped with Intel® Xeon® CPU E5-2650 version 2.0 @ 2.60 GHz 16-core processor and 32 GB PC3 

memory. The operating system was Ubuntu, and the version was 17.10 and hadoop version 2.8.1 with spark 

version 2.2.0. The self-tuning task can be run using an independent or a different VM. As listed in Table 2, 

the spark job is run with five different datasets ranging from 5 GB, 10 GB, 15 GB, 20 GB and 50 GB, which 

is collected from the Puma Benchmark suit. In order to facilitate a fair comparison with the default system, 

the five parameters are selected. Datasets ranging from 1 GB to 5 GB have been used during training, and the 

rest of the datasets up to 50 GB have been used during the evaluation process. 

 

 

Table 2. Considered datasets 
Spark Size of dataset Source of dataset 

Word count 5 GB Puma Benchmark 

10 GB 

15 GB 

20 GB 

50 GB 

 

 

6.5.  Artificial neural network model development 
In ANN model development, the ML libraries are required, which are imported from Keras. One of 

the well-known libraries of Keras and behind it TensorFlow, is supported. Keras framework is much easier to 

use instead of directly using Tensorflow. In some respects, the variables X, Y, and Z are used to load and 

store the train and test data. Thus, X and Y comprise two training data; execution time and dataset size 

obtained by manual parameter tuning. Similarly, the variable Z holds the size and time of execution of the 

test data. The test dataset, as well as the train, are filled into the system. The necessary hidden layer is built 

from the base model. Furthermore, functions for activation are also added. In the base model, the dropout 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

A smart method for spark using Neural Network for big data (Md. Armanur Rahman) 

2531 

function (0.02) is added to prevent overfitting. It passed the optional learning rate of 0.0001 for the 

compilation of the model, and the designated learning rate is 0.01. After that, the optimizer Adam and the 

mean squared error (loss function) are compiled with the base model. X and Y data are then fitted with a 

scale function. To predict the accuracy of Z data, the base model combines batch size and epoch. The validity 

and loss of analysis are printed. The activation function or the number of epoch or the optimizer must be 

changed if the accuracy is lower than the expected result. The accuracy of 96.9% for testing and 97.8% for 

training data could be accomplished by utilizing 250 epoch and appropriately changing the others-the 

accuracy of increments in training and testing segments when the quantity of epochs is increased. Figure 6 

shows that beyond 250 epochs, accuracy or loss is not substantially improved. The model will be saved for 

every parameter. It has five models built by modifying the Y with five distinct parameters, which is 

illustrated in Figure 7. 

 

 

 
 

Figure 7. ANN models to predict the optimized parameter (P for the parameter)  

 

 

7. RESULTS AND ANALYSIS 

7.1.  SSNNB model efficiency  

Figure 8 represents the computational time of spark work independently for both default design and 

SSNNB. For various sizes of input datasets. It has been seen that the time necessary in executing spark job is 

essentially lower with SSNNB rather than the default parameter boundary settings free of information size in 

the scope of 5 GB to 50 GB. 

 

 

 
 

Figure 8.  Comparison with SSNNB approach and default configuration 

 

 

7.2.  Ability of Self-tuning and execution time speedup 

To assess the ability of the SSNNB framework, a spark job has been evaluated for five distinct sizes 

of input data extending from 5 GB, 10 GB, 15 GB, 20 GB to 50 GB independently with both the SSNNB and 

the default design. The predicated ideal parameters value has been introduced in Figure 9. Referring to  

Figure 8, with the default configuration, for dataset sizes of 5, 10, 15, 20, and 50 GB, spark takes 8.33, 14.8, 

19.83, 25.45, and 52.11 minutes separately. Notwithstanding, the SSNNB framework takes 5.98, 10.35, 

13.55, 17.29, and 35.21 minutes separately. In Tables 3 and 4, it can be seen from the result that the SSNNB 

approach achieved an average 30% faster compared to the default configuration with independent dataset 

size. 
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Figure 9. Detected optimum values for spark parameters 

 

 

Table 3. Processing time reduce for different dataset 
 Process with Default Configuration Process with SSNNB system Time Saved 

Data Input Execution Time (Min) Execution Time (Min) In Min 

5 GB 8.33 5.98 2.35 

10 GB 14.8 10.35 4.45 

15 GB 19.83 13.55 6.28 

20 GB 25.45 17.29 8.16 

50 GB 52.11 35.21 16.9 

 

 

Table 4. Predicted optimum parameter value using SSNNB approach 
 

Configurable Parameters 

Default  

Parameter 

Value 

With 

SSNNB 

5 GB 

With 

SSNNB 

10 GB 

With 

SSNNB 

15 GB 

With 

SSNNB 

20 GB 

With 

SSNNB 

50 GB 

Number of cores of driver process 1 3 4 6 6 8 

Driver process memory size in Giga Bytes 1 g 2 g 4 g 4 g 4 g 4 g 

Number of cores of executor process 1 20  20  30 30 40 

Executor process memory size in Giga Bytes 1 g 3 g 4 g 4 g 5 g 6 g 

Maximum number of the map to each reducer 

task 

48 m 48 m 60 m 60 m 65 m 80 m 

 

 

 

8. CONCLUSION 

This research introduces a novel way to deal with the self-tuning approach for spark predominant 

parameters to speed up the execution while handling big data, including the different sizes of the dataset and 

variety of data. Moreover, estimation of optimum parameter value for five selected parameters is enabled by 

the approach. The approach received the optimum value from the neural network model and updated it in the 

spark system before processing. Dell Poweredge R70 server, including five different datasets, has been used 

in the procedure. The performance of SSNNB is compared with the default configuration, and the result 

shows the performance improvement is 30% on an average. It has also been observed that the performance 

was improving while increasing the dataset size. Future research will focus on how to select a more 

appropriate number of parameters and use better servers to obtain better outcomes. Metaheuristics algorithms 

are to be considered for this optimization. 

 

 

ACKNOWLEDGEMENTS 

This research is funded by the Ministry of Higher Education, Malaysia, under the Fundamental 

Research Grant Scheme FRGS/1/2019/ICT02/MMU/02/15. The authors also would like to acknowledge the 

anonymous reviewers for their valuable comments and insights. 

 

 

REFERENCES 
[1] Archana, R. A., Ravindra S. Hegadi, and T. N. Manjunath, "A Study on Big Data Privacy Protection Models using 

Data Masking Methods," International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 5,  

pp. 3976-3983, 2018, doi: 10.11591/ijece.v8i5.pp3976-3983 

[2] Anagnostopoulos, Ioannis, Sherali Zeadally, and Ernesto Exposito, "Handling big data: Research challenges and 

future directions," The Journal of Supercomputing, vol. 72, no. 4, pp. 1494-1516, 2016. 

[3] Salkuti, Surender Reddy, "A survey of big data and machine learning," International Journal of Electrical and 

Computer Engineering (IJECE), vol. 10, no. 1, pp. 575-580, 2020, doi: 10.11591/ijece.v10i1.pp575-580. 

  

“Parameter 1 Value 4” 

“Parameter 2 Value 4g” 

“Parameter 3 Value 30” 

“Parameter 4 Value 6g” 

“Parameter 5 Value 80m” 

“spark.driver.cores”     = 4 
“spark.driver.memory”         = 4g 
“spark.executor.cores”          = 30 
“spark.executor.memory”          = 6g 
“spark.reducer.maxSizeInFlight”      = 80m 

Spark System 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

A smart method for spark using Neural Network for big data (Md. Armanur Rahman) 

2533 

[4] Jankatti, S., Raghavendra, B. K., Raghavendra, S., and Meenakshi, M., “Performance evaluation of Map-reduce jar 

pig hive and spark with machine learning using big data,” International Journal of Electrical and Computer 

Engineering (IJECE), vol. 10, no. 4, pp. 3811-3818, 2020, doi: 10.11591/ijece.v10i4.pp3811-3818. 

[5] Hasan, R. A., Alhayali, R. A. I., Zaki, N. D., and Ali, A. H., “An adaptive clustering and classification algorithm 

for Twitter data streaming in Apache Spark,” TELKOMNIKA Telecommunication, Computing, Electronics and 

Control, vol. 17, no. 6, pp. 3086-3099, 2019. 

[6] Nivash, J. P., et al., “Analysis on enhancing storm to efficiently process big data in real time,” Fifth International 

Conference on Computing, Communications and Networking Technologies (ICCCNT), 2014. pp. 1-5. 

[7] Raswitha Bandi, and G. Anitha, "Machine Learning with PySpark-Review," Indonesian Journal of Electrical 

Engineering and Computer Science (IJEECS), vol. 12, pp. 102-106, 2018. 

[8] Kalyani K., and Pathrikar, “Review on apache spark technology,” International Research Journal of Engineering 

and Technology (IRJET), vol. 04, pp. 1386-1388, Oct. 2017. 

[9] Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F. B., and Babu, S., “Starfish: A Self-tuning System 

for Big Data Analytics,” Cidr, vol. 11, no. 2011, pp. 261-272, 2011. 

[10] Riza, L. S., Pratama, F. D., Piantari, E., and Fashi, M., “Genomic repeats detection using Boyer-Moore algorithm 

on Apache Spark Streaming,” TELKOMNIKA Telecommunication, Computing, Electronics and Control, vol. 18, 

no. 2, pp. 783-791, 2020. 

[11] Salloum, S., Dautov, R., Chen, X., Peng, P. X., and Huang, J. Z., “Big data analytics on Apache Spark,” 

International Journal of Data Science and Analytics, vol. 1, no. 3-4, pp. 145-164, 2016. 

[12] Jonnalagadda, V. S., Srikanth, P., Thumati, K., and Nallamala, S. H, “A review study of apache spark in big data 

processing,” International Journal of Computer Science Trends and Technology, vol. 4, no. 3, pp. 93-98, 2016. 

[13] Naser and M. Abd Ulkareem, “Prediction prices of basrah light oil using artificial neural networks,” International 

Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 3, pp. 2682- 2689, 2020.  

[14] Mahmood, Maha, Belal Al-Khateeb, and Wisam Makki Alwash, “A review on neural networks approach on 

classifying cancers,” Int. J. Artif. Intell., vol. 9, no. 2, pp. 317-326, 2020. 

[15] Kwiatkowski, B., Bartman, and Mazur, “The quality of data and the accuracy of energy generation forecast by 

artificial neural networks,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 4, 

pp. 3957-3966, 2020. 

[16] Anh, Q. H., Tan, P. T., and An, N. T., “A hybrid Artificial neural network-genetic algorithm for load shedding,” 

International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 3, pp. 2250-2258., 2020. 

[17] Goay, C. H., et al., “Progress in neural network based techniques for signal integrity analysis–a survey,” Bulletin of 

Electrical Engineering and Informatics (BEEI), vol. 8, no. 1, pp. 276-282, 2019. 

[18] Souri, A., El Maazouzi, Z., Al Achhab, M., and El Mohajir, B. E., “Neural network dealing with Arabic language,” 

International Journal of Informatics and Communication Technology (IJ-ICT), vol. 9, no. 2, pp. 73-78, 2020. 

[19] Abougarair, A. J., “Neural Networks Identification and Control of Mobile Robot Using Adaptive Neuro Fuzzy 

Inference System,” Proceedings of the 6th International Conference on Engineering & MIS, 2020, pp. 1-9. 

[20] Lama, P., and Zhou, X., “Aroma:Automated resource allocation and configuration of mapreduce environment in 

the cloud,” Proceedings of the 9th international conference on Autonomic computing, 2012, pp. 63-72. 

[21] Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H., and Stoica, I., “Improving MapReduce performance in 

heterogeneous environments,” Osdi, vol. 8, no. 4, pp. 29-42, 2008. 

[22] Wu, D., and Gokhale, A., “A self-tuning system based on application profiling and performance analysis for 

optimizing hadoop mapreduce cluster configuration,” 20th Annual International Conference on High Performance 

Computing, 2013, pp. 89-98. 

[23] Zhang, R., Li, M., and Hildebrand, D., “Finding the big data sweet spot: Towards automatically recommending 

configurations for hadoop clusters on docker containers,” IEEE International Conference on Cloud Engineering, 

2015, pp. 365-368. 

[24] Wang, K., and Khan, M. M. H, “Performance prediction for apache spark platform,” IEEE 17th International 

Conference on High Performance Computing and Communications, 2015, pp. 166-173.  

[25] Yigitbasi, N., Willke, T. L., Liao, G., and Epema, D., “Towards machine learning-based auto-tuning of 

mapreduce,” 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and 

Telecommunication Systems, pp. 11-20, 2013. 

[26] Sahana, H. P., Sanjana, M. S., Muddasir, and N. M., “Apache Spark Methods and Techniques in Big Data-A 

Review,” Inventive Communication and Computational Technologies, pp. 721-726, 2020. 

[27] Nazmul Haque, and Md. Hasnat Riaz., "Autonomous Vehicle Control System as a Mobile Robot by Artificial 

Neural Network," International Journal of Robotics and Automation (IJRA), vol. 6, no. 3, pp. 200-206, 2017. 

[28] Shatha A. Baker, Hesham H. Mohammed, Hanan and A. Aldabagh, “Improving Face Recognition by Artificial 

Neural Network Using Principal Component Analysis,” TELKOMNIKA Telecommunication, Computing, 

Electronics and Control, vol. 18, no. 6, pp. 3357-3364, 2020. 

[29] Shaikh, E., Mohiuddin, I., Alufaisan, Y., and Nahvi, I., “Apache Spark: A Big Data Processing Engine,” 2019 2nd 

IEEE Middle East and North Africa COMMunications Conference (MENACOMM), 2019, pp. 1-6.  

[30] Al-Azzawi, D. S., “Application and evaluation of the neural network in gearbox,” TELKOMNIKA 

Telecommunication, Computing, Electronics and Control, vol. 18, no. 1, pp. 19-29, 2020. 

[31] Abd Rahman, N. H., and Lee, M. H., “Artificial neural network forecasting performance with missing value 

imputations,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 9, no. 1, pp. 33-39, 2020. 

[32] Bhattacharya, A., and Bhatnagar, S., “Big data and apache spark: A review,” International Journal of Engineering 

Research & Science, vol. 2, no. 5, pp. 206-210, 2016. 

https://dl.acm.org/doi/proceedings/10.1145/3410352


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 3, June 2021 :  2525 - 2534 

2534 

[33] Patil, N. S., et al., “A survey on graph database management techniques for huge unstructured data,” International 

Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 2, pp. 1140 -1149, 2018. 

[34] Nair, L. R., Shetty, S. D., and Shetty, S. D., “Streaming big data analysis for real-time sentiment based targeted 

advertising,” International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 1, pp. 402-407, 

2017. 

[35] Vijayarekha, K., “Activation Functions, NPTEL-Electron,” Commun. Eng.-Pattern Recognit, pp. 1-6, 2015. 

[36] Md. Armanur Rahman, J. Hossen and Venkataseshaiah C., “SMBSP: A Self-Tuning Approach using Machine 

Learning to Improve Performance of Spark in Big Data Processing,” 7th International Conference on Computer 

and Communication Engineering, 2018, pp. 274-279. 

[37] Md. Armanur Rahman1, Abid Hossen, J. Hossen, Venkataseshaiah C., “Towards Machine Learning based Self-

tuning of Hadoop-Spark System,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), 

vol. 15, no. 2, pp. 1076-1085, 2019. 

 
 

BIOGRAPHIES OF AUTHORS 

 

 

Md. Armanur Rahman received B.Sc. degree in computer science and engineering 

from Asian University of Bangladesh (AUB) in 2010, Masters (MEngSc.) degree in 

Big data and Machine Learning from the Multimedia University (MMU), Malaysia in 

2019. Now he is persuing Ph.D. in Facial Expression Recognition using Machine 

Learning at Multimedia University (MMU). His research interest include performance 

optimization of big data system, data mining, machine learning and image processing. 

 

  

 

Jakir Hossen is graduated in Mechanical Engineering from the Dhaka University of 

Engineering and Technology (1997), Masters in Communication and Network 

Engineering from Universiti Putra Malaysia (2003) and PhD in Smart Technology and 

Robotic Engineering from Universiti Putra Malaysia (2012). He is currently a Senior 

Lecturer at the Faculty of Engineering and Technology, Multimedia University, 

Malaysia. His research interests are in the area of Artificial Intelligence (Fuzzy Logic, 

Neural Network), Inference Systems, Pattern Classification, Mobile Robot Navigation 

and Intelligent Control. 

  

 

Aziza Sultana received the B.Sc. degree in computer science and engineering from 

Dhaka International University (DIU) in 2016. She is currently persuing Masters 

degree in Computer Science and Engineering at the same university. Her research 

interest include performance optimization of big data system, data mining, machine 

learning and image processing. 

  

 

Abdullah Al Mamun has received B.Sc. degree in Electrical and Electronic 

Engineering from Pabna University of Science and Technology in 2018. Now he is 

pursuing M.Eng.Sc.at Multimedia University (MMU) in the Faculty of Engineering 

and Technology since 2019. His research interest includes computer vision; image 

processing, signal processing, deep learning and machine learning. 

  

 

Nor Azlina Ab Aziz she is currently a Senior Lecturer in the Faculty of Engineering 

and Technology at Multimedia University, Melaka. She is interested in the field of 

soft computing and its application in engineering problems. More specifically, her 

focus is in the area of swarm intelligence and nature inspired optimization algorithm. 

 


