
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 11, No. 3, June 2021, pp. 2525~2534

ISSN: 2088-8708, DOI: 10.11591/ijece.v11i3.pp2525-2534  2525

Journal homepage: http://ijece.iaescore.com

A smart method for spark using neural network for big data

Md. Armanur Rahman1, J. Hossen2, Aziza Sultana3, Abdullah Al Mamun4, Nor Azlina Ab. Aziz5
1,2,4,5Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia

3Faculty of Computing and Engineering, Dhaka International University, Dhaka, Bangladesh

Article Info ABSTRACT

Article history:

Received Aug 24, 2020

Revised Oct 6, 2020

Accepted Oct 27, 2020

 Apache spark, famously known for big data handling ability, is a distributed

open-source framework that utilizes the idea of distributed memory to

process big data. As the performance of the spark is mostly being affected by

the spark predominant configuration parameters, it is challenging to achieve

the optimal result from spark. The current practice of tuning the parameters is

ineffective, as it is performed manually. Manual tuning is challenging for

large space of parameters and complex interactions with and among the

parameters. This paper proposes a more effective, self-tuning approach

subject to a neural network called Smart method for spark using neural

network for big data (SSNNB) to avoid the disadvantages of manual tuning

of the parameters. The paper has selected five predominant parameters with

five different sizes of data to test the approach. The proposed approach has

increased the speed of around 30% compared with the default parameter

configuration.

Keywords:

Apache spark

Big data

Configuration parameters

Machine learning

Self-configuration

This is an open access article under the CC BY-SA license.

Corresponding Author:

Md. Armanur Rahman

Faculty of Engineering and Technology

Multimedia University

Melaka, 75450, Malaysia

Email: arman.bdmail@gmail.com

1. INTRODUCTION

Around the world, the number of online users is increasing at a rapid rate with the advancement of

social communication and e-commerce business. Besides, a lot of users are storing their content constantly

for future use. As indicated by International data corporation (IDC), digital space is projected to increase

more than 44 Z.B. in volume by 2020 [1-3]. In the era of digital data, big data is something that can't be

overlooked. Therefore recently, the big data era, different industries and governments have given emphasis

on big data technologies. Since the conventional computing techniques could not provide the expected result

and efficiency to manage big data. The different distributed frameworks like hadoop [4], spark [5], and storm

[6] have been introduced to satisfy the prerequisite of taking care of the big data.

 Apache spark is one of the most notable and broadly used frameworks because of its high

performance and flexibility [7]. Apache spark has over 180 parameters with default values. The appropriate

values of the parameter can be selected by the user manually while processing different sizes and types of

data. The performance becomes unsatisfactory due to the inappropriate selection of parameter values.

Therefore, additional tuning of the parameter is required for each particular application [8]. The users require

appropriate knowledge for manual tuning of the parameters in the spark framework, however, manual tuning

is very tedious due to the complex interaction between them.

As per the current practice, parameter tuning in big data is performed in 2 ways. Firstly, manual

tuning of the parameter by trial and error. This process is very complicated as it requires a long time and

depth knowledge due to a large number of parameters and its internal correlation with each other. To address

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 3, June 2021 : 2525 - 2534

2526

the manual tuning problem, [9] author proposed a cost-based model for the hadoop system. However, the

model needs to be persevered by users based on different policies. Secondly, self-tuning parameter when it

requires. This paper proposes an approach based on a neural network to minimize the drawback of manual

tuning. The research developed a self-tuning approach that can perform self-tuning of the parameter range

based on the neural network model. This approach has three key advantages compared to the existing

approaches. Firstly, all tasks are processed by the neural network model. Secondly, all types of datasets that

consist of structured data, semi-structured data, and unstructured data can be processed. Thirdly, any volume

of the dataset can be processed.

The training data has been collected for the selected five parameters by changing the parameter

range and various input of data sets. The training process is only for one time to learn the machine learning

model, which then can predict the numerical values for the selected parameters. The method has been

implemented on a testbed that uses Dell PowerEdge R 720 server, hosting spark framework, and runs as

spark nodes. The test results provide that our proposed method can perform effective self-tuning based on the

neural network model so that it meets maximum resource usage capability and saves processing time. The

key commitments of the method are as follows:

 It has implemented an artificial neural network in the approach that processes spark jobs using its

application service based on the neural network model. Hence, users do not require in-depth knowledge

of the internal system function. Thus, they can save time by avoiding manual tuning.

 The self-tuning facility of the approach integrates parameter range allocation. It helps to meet task

deadlines and improves the overall performance of spark.

 In our evaluation using spark workloads with five different input datasets, the approach achieved an

average performance speedup of about 30% performance.

The remains of the paper are organized as follows. Section 2, presenting the background of the

study. Section 3, the related work, is discussed. Section 4 presents the details of the artificial neural network.

Section 5 presents the architecture of SSNNB. The methodology is presented in section 6. Section 7 presents

results and analysis-finally, Conclusions and future work presented in section 8.

2. BACKGROUND OF THE STUDY

2.1. Spark

In the area of big data, “Apache Spark” is the most accepted open-source platform that supports the

idea of resilient distributed datasets (RDDs). The RDDs allow rapid treating of the massive size of data

leveraging distributed memory. Data operation in memory is appropriate for repetitive applications such as

graph algorithms and reiterative machine learning. RDD is considered as the main feature of spark. It

characterizes a read-only collection of entities allocated among several machines. An RDD explicitly stores

in the cache memory by the user over several machines and can be reused as the parallel operation in

multiple MapReduce. RDD has the fault tolerance ability over a notion of extraction. Whenever a partition of

RDD is lost, it can rebuild it since it has sufficient information regarding its origin. Though RDDs do not

have shared memory construction, on the one hand, they can represent reliability and scalability and, on the

other hand, a sweet-spot among expressivity. RDDs are well-suited for a diversity of applications. Figure 1

presents the spark-cluster framework [10]. A spark comprises a driver node that is equivalent to a master

node and several worker nodes that are correspondent to slave nodes. The driver node manages all worker

nodes through the worker node process. The worker nodes communicate with the driver node through the

worker node process and manage local executors. Each application consists of multiple executors and one

driver. All the jobs in an application come from the same executors. The spark context is creating by the

main jobs of the application that are run by the driver process. Each of the worker nodes accomplishes one or

more executor backend process during launching, and a single executor backend does managing executor

instance. An executor manages a thread group that runs each of the tasks as a single thread. Nevertheless, the

time of execution of a specific task in the platform of Apache depends on various factors such as input data

volume, data type, CPU speed, memory size, number of nodes, configuration parameters, design and

implementation of the system and so on. Based on these factors, the time of execution time of a specific job

in apache spark may differ conspicuously [11]. There is more than 180 configuration parameter in apache

spark that user can tune according to the need of a specific application to enhance the performance. It is the

modest and most operative approach to enhance the enactment. Users tune these parameters physically by

experiment [12]. At present, the parameters are manually tuned by experimentation that is not effective. It

needs complicated interactions with the parameters and takes a larger parameter space. Again, these

parameters must be re-tuned for various applications and clusters.

Artificial neural networks (ANN) is a mathematical processing method that can be used for both

classification and regression [13, 14]. The neurons make it a powerful learning model for this reason for

Int J Elec & Comp Eng ISSN: 2088-8708 

A smart method for spark using Neural Network for big data (Md. Armanur Rahman)

2527

regression analysis. It is the best choice, including multiple inputs and output data [15, 16]. A neural network

can predict numerical values correctly, and it can prevent overfitting easily. ANN is much suitable in several

areas, including natural language and image processing, prediction as well as emotion recognition [17-19].

Figure 1. A common layout of apache spark

3. RELATED WORK

In recent years, one of the keenest research is in the optimization of the performance of big data

system. However, almost all the existing researches have been done on the Hadoop platform or the

framework of MapReduce computing. Starfish [9] utilizes simulation and a cost-based model to seek the

required job configuration for the workload of MapReduce. AROMA [20] uses an optimization framework

and two-phase ML to automate resource distribution and job configurations considering heterogeneous

clouds. The authors of [21], indicated that hadoop scheduler in the heterogeneous environment, the

performance reduction and proposed another scheduler named longest approximate time to end. In [22] a

different work concentrated on examining the different resource consumption effects for variant set for the

Reduce slots and Map. These problems have been addressed in [23], through a framework called “Profiling

and Performance-based System” (PPABS), which can atomically tune the configuration of hadoop setting by

deducting the requirements of application performance. Modifying the popular KMeans++ clustering along

with the simulated Annealing algorithm are the main contributions of [24], which were needed to adjust to

the MapReduce paradigm. Reference [23] recommends easing this issue by an engine that suggests the

configurations for a new analytical job timely and intelligently. This engine is embedded in an adapted k-

nearest neighbor (KNN) algorithm to discover the appropriate configuration based on the past job experience

that is executed well. However, the research of optimizing apache spark performance is still in the beginning

stage. The authors of [24], present a simulation driven forecast model to anticipate the performance of a job

with high correctness for Apache Spark. Their proposed model can predict memory usage and execution time

of spark systems in the case of default parameters. [25] Showed that the support vector regression (SVR)

model is computationally efficient with high accuracy. According to their findings, it can be concluded that

using the auto-tuning method can offer comparable or better performance compared to starfish with a fewer

number of parameters.

4. ARTIFICIAL NEURAL NETWORK (ANN)

The scikit-learn is an essential tool since it allows only a few lines of coding and prevalent data

groundwork. In order to proceed with the evaluation, the Keras wrappers need to be provided with a defined

function to create ANN. In fact, the function is formulated to create a base model that is the subject of

evaluation. The base model is connected with three neurons through a hidden layer, as illustrated in Figure 2.

The hidden and output layer is activated with ReLU and softmax activation functions. Furthermore, an

efficient optimizer "Adam" can be used to update network weights iteratively based on training data. The

object in the Keras wrapper, known as KerasRegressor, is used as a regression estimator in the scikit-learn.

The function of ANN is then created immediately to pass parameters including the batch size and epochs

number along with the function of the model, both of which are set to default. Furthermore, a process of

arbitrary number creator with a constant arbitrary seed has been initialized to compare the consistency of the

models. In this research, the process of arbitrary number creators is repeated for the evaluation of each

model. A neuron takes inputs, does some math with them, and produces an output. A simple neuron looks

like what is shown in Figure 3.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 3, June 2021 : 2525 - 2534

2528

Figure 2. A neural network with hidden layer

Figure 3. Layout of a simple neuron

Three things are happening here. First, each input is multiplied by a weight:

𝑥1 → 𝑥1 ∗ 𝑤1 , 𝑥2 → 𝑥2 ∗ 𝑤2 , 𝑥𝑚 → 𝑥𝑚 ∗ 𝑤𝑚 (1)

Next, all the weighted inputs are added together with a bias b:

(𝑥1 ∗ 𝑤1) + (𝑥2 ∗ 𝑤2) + (𝑥𝑚 ∗ 𝑤𝑚) + 𝑏 (2)

Finally, the sum is passed through an activation function:

𝑦 = 𝑓(𝑥1 ∗ 𝑤1 + 𝑥2 ∗ 𝑤2 + 𝑥𝑚 ∗ 𝑤𝑚) + 𝑏 (3)

4.1. Activation functions ReLU and softmax

Rectified linear unit (ReLU), is a recently popular activation function in neural networks [26-28]. It

is well-defined as 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥). One of the advantages of the function is, it is also non-linear and can

run backward for error minimization. Additionally, the function activates multiple neuron layers. Figure 4

shows the rectified linear unit (ReLU) activation function.

Softmax is a type of logistic function in mathematics. The softmax function accommodates outputs

of each unit in between 0 to 1, displayed in a K-dimensional vector of random real numbers [29-31]. The

function is used as an activation function due to its categorical probability distribution characteristic. The

function is used for any number of classes and able to estimate the probability that any of the tested classes

are true. The softmax function provided by

𝜎(𝑍)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝐾

𝑗=1

 (4)

b1

X2

X1

W2

a1
1

a3
1

a2
1

b2

a1
2

a2
2

W1

Ŷ

Output Hidden Input

1

X1

X2

Xm

∑ f ()

W0

W

W2

W1

Inputs Weights
Weighted

Sum

Activation
Function

Error
Weight Update

Output

Int J Elec & Comp Eng ISSN: 2088-8708 

A smart method for spark using Neural Network for big data (Md. Armanur Rahman)

2529

Figure 4. Rectified linear unit

5. SSNNB FRAMEWORK

The spark configuration parameters are tuned by the predicted values from the self-tuning approach

SSNNB, which architecture is shown in Figure 5. SSNNB considers two input values, which are dataset size

and execution time. From Figure 5, there are several blocks such as:

 Training data is obtained from a database

 The data has been received, and the model is generated by the “Model Training” block

 Generated model has been stored in a fixed location by the 'Store Model on Disk' block

 “Predicted Parameter Value”, this block provides the predicted optimum parameter value

 Finally, the predicted optimum values are received and updated in the “Spark System” block

Figure 5. SSNNB architecture

6. METHODOLOGY

6.1. Parameter selection

The selected five parameters are shown in Table 1. The column 'Default value' displays the default

parameter values, and the column 'Range value' displays the range of the selected parameters in the spark

method [32-34]. Self-tuning is required when processing various sizes and different types of data to minimize

processing time and achieve maximum performance from spark [35]. This paper selected five predominant

parameters of the spark, based on the review of the authors [36]. The notable reason is: firstly, the selected

five parameters are covered, including CPU, memory and disk of the resource in a cluster. Secondly, in

schedule and shuffling modules, it has a great impact. Thirdly, this parameter also has a significant impact on

the machine and cluster level [37].

Table 1. Default parameter value of spark with range
Spark Parameters Spark Parameter Range Value Default Value

driver.cores driver cores for a driver process 1-8 1

driver.memory driver memory for a driver process 1g-4 g 1 g

executor.cores cores are for executor process 10-40 1

executor.memory executor of memory for per executor process 2g-8 g 1 g

reducer.maxSizeInFlight Max size of the map outputs 24m-96 m 48 m

Predicted

Parameter

Value

Training

Data
Model

Training
Test and

save Model

Store

Model on

Disk
Database

 Spark

System

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 3, June 2021 : 2525 - 2534

2530

6.2. Data collection

Training data has been collected by the spark job, which is completed by changing the parameter

and values and various dataset sizes and types. Finally, the sum of 3,000 sample data have been collected for

training and testing the neural network model. For the high accuracy of the model, the normalization has

been done.

6.3. Training and testing

For training, the neural network model has randomly sleeted 80% and the remaining 20% data have

been used for testing. To get the best accuracy from the model, the training cycle has been repeated several

times. In training, the epoch size has increased up to 250, and the model accuracy level was 97.1% and

96.7% for testing. It has observed that the accuracy has been increased during training and testing with the

number of epochs is increased. It is observed from Figure 6 that, after 250 epochs, there is no significant

improvement in both model accuracy and model loss.

Figure 6. Model accuracy and loss in training

6.4. Test bed

The SSNNB approach has used the Dell PowerEdge R720 server as a testbed. The server is

equipped with Intel® Xeon® CPU E5-2650 version 2.0 @ 2.60 GHz 16-core processor and 32 GB PC3

memory. The operating system was Ubuntu, and the version was 17.10 and hadoop version 2.8.1 with spark

version 2.2.0. The self-tuning task can be run using an independent or a different VM. As listed in Table 2,

the spark job is run with five different datasets ranging from 5 GB, 10 GB, 15 GB, 20 GB and 50 GB, which

is collected from the Puma Benchmark suit. In order to facilitate a fair comparison with the default system,

the five parameters are selected. Datasets ranging from 1 GB to 5 GB have been used during training, and the

rest of the datasets up to 50 GB have been used during the evaluation process.

Table 2. Considered datasets
Spark Size of dataset Source of dataset

Word count 5 GB Puma Benchmark

10 GB

15 GB

20 GB

50 GB

6.5. Artificial neural network model development
In ANN model development, the ML libraries are required, which are imported from Keras. One of

the well-known libraries of Keras and behind it TensorFlow, is supported. Keras framework is much easier to

use instead of directly using Tensorflow. In some respects, the variables X, Y, and Z are used to load and

store the train and test data. Thus, X and Y comprise two training data; execution time and dataset size

obtained by manual parameter tuning. Similarly, the variable Z holds the size and time of execution of the

test data. The test dataset, as well as the train, are filled into the system. The necessary hidden layer is built

from the base model. Furthermore, functions for activation are also added. In the base model, the dropout

Int J Elec & Comp Eng ISSN: 2088-8708 

A smart method for spark using Neural Network for big data (Md. Armanur Rahman)

2531

function (0.02) is added to prevent overfitting. It passed the optional learning rate of 0.0001 for the

compilation of the model, and the designated learning rate is 0.01. After that, the optimizer Adam and the

mean squared error (loss function) are compiled with the base model. X and Y data are then fitted with a

scale function. To predict the accuracy of Z data, the base model combines batch size and epoch. The validity

and loss of analysis are printed. The activation function or the number of epoch or the optimizer must be

changed if the accuracy is lower than the expected result. The accuracy of 96.9% for testing and 97.8% for

training data could be accomplished by utilizing 250 epoch and appropriately changing the others-the

accuracy of increments in training and testing segments when the quantity of epochs is increased. Figure 6

shows that beyond 250 epochs, accuracy or loss is not substantially improved. The model will be saved for

every parameter. It has five models built by modifying the Y with five distinct parameters, which is

illustrated in Figure 7.

Figure 7. ANN models to predict the optimized parameter (P for the parameter)

7. RESULTS AND ANALYSIS

7.1. SSNNB model efficiency

Figure 8 represents the computational time of spark work independently for both default design and

SSNNB. For various sizes of input datasets. It has been seen that the time necessary in executing spark job is

essentially lower with SSNNB rather than the default parameter boundary settings free of information size in

the scope of 5 GB to 50 GB.

Figure 8. Comparison with SSNNB approach and default configuration

7.2. Ability of Self-tuning and execution time speedup

To assess the ability of the SSNNB framework, a spark job has been evaluated for five distinct sizes

of input data extending from 5 GB, 10 GB, 15 GB, 20 GB to 50 GB independently with both the SSNNB and

the default design. The predicated ideal parameters value has been introduced in Figure 9. Referring to

Figure 8, with the default configuration, for dataset sizes of 5, 10, 15, 20, and 50 GB, spark takes 8.33, 14.8,

19.83, 25.45, and 52.11 minutes separately. Notwithstanding, the SSNNB framework takes 5.98, 10.35,

13.55, 17.29, and 35.21 minutes separately. In Tables 3 and 4, it can be seen from the result that the SSNNB

approach achieved an average 30% faster compared to the default configuration with independent dataset

size.

8.33
14.8

19.83
25.45

52.11

5.98
10.35 13.55

17.29

35.21

0

20

40

60

5 10 15 20 50

M
in

u
te

Data Size

With Default Configuration With SSNNB System

Reload Model

& Correspond

Argument

data

“memory_model.h5”

“cores_model.h5”

“memory_model.h5”

“maxSizeInFlight_model.h5”

“cores_model.h5” P-1 Value 4

P-2 Value 4g

P-3 Value 30

P- 4 Value 6g

P-5 Value 80m

Dataset

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 3, June 2021 : 2525 - 2534

2532

Figure 9. Detected optimum values for spark parameters

Table 3. Processing time reduce for different dataset
 Process with Default Configuration Process with SSNNB system Time Saved

Data Input Execution Time (Min) Execution Time (Min) In Min

5 GB 8.33 5.98 2.35

10 GB 14.8 10.35 4.45

15 GB 19.83 13.55 6.28

20 GB 25.45 17.29 8.16

50 GB 52.11 35.21 16.9

Table 4. Predicted optimum parameter value using SSNNB approach

Configurable Parameters

Default

Parameter

Value

With

SSNNB

5 GB

With

SSNNB

10 GB

With

SSNNB

15 GB

With

SSNNB

20 GB

With

SSNNB

50 GB

Number of cores of driver process 1 3 4 6 6 8

Driver process memory size in Giga Bytes 1 g 2 g 4 g 4 g 4 g 4 g

Number of cores of executor process 1 20 20 30 30 40

Executor process memory size in Giga Bytes 1 g 3 g 4 g 4 g 5 g 6 g

Maximum number of the map to each reducer

task

48 m 48 m 60 m 60 m 65 m 80 m

8. CONCLUSION

This research introduces a novel way to deal with the self-tuning approach for spark predominant

parameters to speed up the execution while handling big data, including the different sizes of the dataset and

variety of data. Moreover, estimation of optimum parameter value for five selected parameters is enabled by

the approach. The approach received the optimum value from the neural network model and updated it in the

spark system before processing. Dell Poweredge R70 server, including five different datasets, has been used

in the procedure. The performance of SSNNB is compared with the default configuration, and the result

shows the performance improvement is 30% on an average. It has also been observed that the performance

was improving while increasing the dataset size. Future research will focus on how to select a more

appropriate number of parameters and use better servers to obtain better outcomes. Metaheuristics algorithms

are to be considered for this optimization.

ACKNOWLEDGEMENTS

This research is funded by the Ministry of Higher Education, Malaysia, under the Fundamental

Research Grant Scheme FRGS/1/2019/ICT02/MMU/02/15. The authors also would like to acknowledge the

anonymous reviewers for their valuable comments and insights.

REFERENCES
[1] Archana, R. A., Ravindra S. Hegadi, and T. N. Manjunath, "A Study on Big Data Privacy Protection Models using

Data Masking Methods," International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 5,

pp. 3976-3983, 2018, doi: 10.11591/ijece.v8i5.pp3976-3983

[2] Anagnostopoulos, Ioannis, Sherali Zeadally, and Ernesto Exposito, "Handling big data: Research challenges and

future directions," The Journal of Supercomputing, vol. 72, no. 4, pp. 1494-1516, 2016.

[3] Salkuti, Surender Reddy, "A survey of big data and machine learning," International Journal of Electrical and

Computer Engineering (IJECE), vol. 10, no. 1, pp. 575-580, 2020, doi: 10.11591/ijece.v10i1.pp575-580.

“Parameter 1 Value 4”

“Parameter 2 Value 4g”

“Parameter 3 Value 30”

“Parameter 4 Value 6g”

“Parameter 5 Value 80m”

“spark.driver.cores” = 4
“spark.driver.memory” = 4g
“spark.executor.cores” = 30
“spark.executor.memory” = 6g
“spark.reducer.maxSizeInFlight” = 80m

Spark System

Int J Elec & Comp Eng ISSN: 2088-8708 

A smart method for spark using Neural Network for big data (Md. Armanur Rahman)

2533

[4] Jankatti, S., Raghavendra, B. K., Raghavendra, S., and Meenakshi, M., “Performance evaluation of Map-reduce jar

pig hive and spark with machine learning using big data,” International Journal of Electrical and Computer

Engineering (IJECE), vol. 10, no. 4, pp. 3811-3818, 2020, doi: 10.11591/ijece.v10i4.pp3811-3818.

[5] Hasan, R. A., Alhayali, R. A. I., Zaki, N. D., and Ali, A. H., “An adaptive clustering and classification algorithm

for Twitter data streaming in Apache Spark,” TELKOMNIKA Telecommunication, Computing, Electronics and

Control, vol. 17, no. 6, pp. 3086-3099, 2019.

[6] Nivash, J. P., et al., “Analysis on enhancing storm to efficiently process big data in real time,” Fifth International

Conference on Computing, Communications and Networking Technologies (ICCCNT), 2014. pp. 1-5.

[7] Raswitha Bandi, and G. Anitha, "Machine Learning with PySpark-Review," Indonesian Journal of Electrical

Engineering and Computer Science (IJEECS), vol. 12, pp. 102-106, 2018.

[8] Kalyani K., and Pathrikar, “Review on apache spark technology,” International Research Journal of Engineering

and Technology (IRJET), vol. 04, pp. 1386-1388, Oct. 2017.

[9] Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F. B., and Babu, S., “Starfish: A Self-tuning System

for Big Data Analytics,” Cidr, vol. 11, no. 2011, pp. 261-272, 2011.

[10] Riza, L. S., Pratama, F. D., Piantari, E., and Fashi, M., “Genomic repeats detection using Boyer-Moore algorithm

on Apache Spark Streaming,” TELKOMNIKA Telecommunication, Computing, Electronics and Control, vol. 18,

no. 2, pp. 783-791, 2020.

[11] Salloum, S., Dautov, R., Chen, X., Peng, P. X., and Huang, J. Z., “Big data analytics on Apache Spark,”

International Journal of Data Science and Analytics, vol. 1, no. 3-4, pp. 145-164, 2016.

[12] Jonnalagadda, V. S., Srikanth, P., Thumati, K., and Nallamala, S. H, “A review study of apache spark in big data

processing,” International Journal of Computer Science Trends and Technology, vol. 4, no. 3, pp. 93-98, 2016.

[13] Naser and M. Abd Ulkareem, “Prediction prices of basrah light oil using artificial neural networks,” International

Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 3, pp. 2682- 2689, 2020.

[14] Mahmood, Maha, Belal Al-Khateeb, and Wisam Makki Alwash, “A review on neural networks approach on

classifying cancers,” Int. J. Artif. Intell., vol. 9, no. 2, pp. 317-326, 2020.

[15] Kwiatkowski, B., Bartman, and Mazur, “The quality of data and the accuracy of energy generation forecast by

artificial neural networks,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 4,

pp. 3957-3966, 2020.

[16] Anh, Q. H., Tan, P. T., and An, N. T., “A hybrid Artificial neural network-genetic algorithm for load shedding,”

International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 3, pp. 2250-2258., 2020.

[17] Goay, C. H., et al., “Progress in neural network based techniques for signal integrity analysis–a survey,” Bulletin of

Electrical Engineering and Informatics (BEEI), vol. 8, no. 1, pp. 276-282, 2019.

[18] Souri, A., El Maazouzi, Z., Al Achhab, M., and El Mohajir, B. E., “Neural network dealing with Arabic language,”

International Journal of Informatics and Communication Technology (IJ-ICT), vol. 9, no. 2, pp. 73-78, 2020.

[19] Abougarair, A. J., “Neural Networks Identification and Control of Mobile Robot Using Adaptive Neuro Fuzzy

Inference System,” Proceedings of the 6th International Conference on Engineering & MIS, 2020, pp. 1-9.

[20] Lama, P., and Zhou, X., “Aroma:Automated resource allocation and configuration of mapreduce environment in

the cloud,” Proceedings of the 9th international conference on Autonomic computing, 2012, pp. 63-72.

[21] Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H., and Stoica, I., “Improving MapReduce performance in

heterogeneous environments,” Osdi, vol. 8, no. 4, pp. 29-42, 2008.

[22] Wu, D., and Gokhale, A., “A self-tuning system based on application profiling and performance analysis for

optimizing hadoop mapreduce cluster configuration,” 20th Annual International Conference on High Performance

Computing, 2013, pp. 89-98.

[23] Zhang, R., Li, M., and Hildebrand, D., “Finding the big data sweet spot: Towards automatically recommending

configurations for hadoop clusters on docker containers,” IEEE International Conference on Cloud Engineering,

2015, pp. 365-368.

[24] Wang, K., and Khan, M. M. H, “Performance prediction for apache spark platform,” IEEE 17th International

Conference on High Performance Computing and Communications, 2015, pp. 166-173.

[25] Yigitbasi, N., Willke, T. L., Liao, G., and Epema, D., “Towards machine learning-based auto-tuning of

mapreduce,” 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and

Telecommunication Systems, pp. 11-20, 2013.

[26] Sahana, H. P., Sanjana, M. S., Muddasir, and N. M., “Apache Spark Methods and Techniques in Big Data-A

Review,” Inventive Communication and Computational Technologies, pp. 721-726, 2020.

[27] Nazmul Haque, and Md. Hasnat Riaz., "Autonomous Vehicle Control System as a Mobile Robot by Artificial

Neural Network," International Journal of Robotics and Automation (IJRA), vol. 6, no. 3, pp. 200-206, 2017.

[28] Shatha A. Baker, Hesham H. Mohammed, Hanan and A. Aldabagh, “Improving Face Recognition by Artificial

Neural Network Using Principal Component Analysis,” TELKOMNIKA Telecommunication, Computing,

Electronics and Control, vol. 18, no. 6, pp. 3357-3364, 2020.

[29] Shaikh, E., Mohiuddin, I., Alufaisan, Y., and Nahvi, I., “Apache Spark: A Big Data Processing Engine,” 2019 2nd

IEEE Middle East and North Africa COMMunications Conference (MENACOMM), 2019, pp. 1-6.

[30] Al-Azzawi, D. S., “Application and evaluation of the neural network in gearbox,” TELKOMNIKA

Telecommunication, Computing, Electronics and Control, vol. 18, no. 1, pp. 19-29, 2020.

[31] Abd Rahman, N. H., and Lee, M. H., “Artificial neural network forecasting performance with missing value

imputations,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 9, no. 1, pp. 33-39, 2020.

[32] Bhattacharya, A., and Bhatnagar, S., “Big data and apache spark: A review,” International Journal of Engineering

Research & Science, vol. 2, no. 5, pp. 206-210, 2016.

https://dl.acm.org/doi/proceedings/10.1145/3410352

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 3, June 2021 : 2525 - 2534

2534

[33] Patil, N. S., et al., “A survey on graph database management techniques for huge unstructured data,” International

Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 2, pp. 1140 -1149, 2018.

[34] Nair, L. R., Shetty, S. D., and Shetty, S. D., “Streaming big data analysis for real-time sentiment based targeted

advertising,” International Journal of Electrical and Computer Engineering (IJECE), vol. 7, no. 1, pp. 402-407,

2017.

[35] Vijayarekha, K., “Activation Functions, NPTEL-Electron,” Commun. Eng.-Pattern Recognit, pp. 1-6, 2015.

[36] Md. Armanur Rahman, J. Hossen and Venkataseshaiah C., “SMBSP: A Self-Tuning Approach using Machine

Learning to Improve Performance of Spark in Big Data Processing,” 7th International Conference on Computer

and Communication Engineering, 2018, pp. 274-279.

[37] Md. Armanur Rahman1, Abid Hossen, J. Hossen, Venkataseshaiah C., “Towards Machine Learning based Self-

tuning of Hadoop-Spark System,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS),

vol. 15, no. 2, pp. 1076-1085, 2019.

BIOGRAPHIES OF AUTHORS

Md. Armanur Rahman received B.Sc. degree in computer science and engineering

from Asian University of Bangladesh (AUB) in 2010, Masters (MEngSc.) degree in

Big data and Machine Learning from the Multimedia University (MMU), Malaysia in

2019. Now he is persuing Ph.D. in Facial Expression Recognition using Machine

Learning at Multimedia University (MMU). His research interest include performance

optimization of big data system, data mining, machine learning and image processing.

Jakir Hossen is graduated in Mechanical Engineering from the Dhaka University of

Engineering and Technology (1997), Masters in Communication and Network

Engineering from Universiti Putra Malaysia (2003) and PhD in Smart Technology and

Robotic Engineering from Universiti Putra Malaysia (2012). He is currently a Senior

Lecturer at the Faculty of Engineering and Technology, Multimedia University,

Malaysia. His research interests are in the area of Artificial Intelligence (Fuzzy Logic,

Neural Network), Inference Systems, Pattern Classification, Mobile Robot Navigation

and Intelligent Control.

Aziza Sultana received the B.Sc. degree in computer science and engineering from

Dhaka International University (DIU) in 2016. She is currently persuing Masters

degree in Computer Science and Engineering at the same university. Her research

interest include performance optimization of big data system, data mining, machine

learning and image processing.

Abdullah Al Mamun has received B.Sc. degree in Electrical and Electronic

Engineering from Pabna University of Science and Technology in 2018. Now he is

pursuing M.Eng.Sc.at Multimedia University (MMU) in the Faculty of Engineering

and Technology since 2019. His research interest includes computer vision; image

processing, signal processing, deep learning and machine learning.

Nor Azlina Ab Aziz she is currently a Senior Lecturer in the Faculty of Engineering

and Technology at Multimedia University, Melaka. She is interested in the field of

soft computing and its application in engineering problems. More specifically, her

focus is in the area of swarm intelligence and nature inspired optimization algorithm.

