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 Algal blooms data are collected and refined as experimental data for algal 

blooms prediction. Refined algal blooms dataset is analyzed by logistic 

regression analysis, and statistical tests and regularization are performed to 

find the marine environmental factors affecting algal blooms. The predicted 

value of algal bloom is obtained through logistic regression analysis using 

marine environment factors affecting algal blooms. The actual values and the 

predicted values of algal blooms dataset are applied to the confusion matrix. 

By improving the decision boundary of the existing logistic regression, and 

accuracy, sensitivity and precision for algal blooms prediction are improved. 

In this paper, the algal blooms prediction model is established by the 

ensemble method using logistic regression and confusion matrix. Algal 

blooms prediction is improved, and this is verified through big data analysis. 
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1. INTRODUCTION  

Logistic regression is a special case of a typical model and is similar to linear regression, however it 

has a difference in the relationship between dependent and independent variables. The dependent variable of 

logistic regression can be binary or continuous, and it is used as a model for classification or prediction when 

the dependent variable is binary [1, 2]. If the dependent variable of logistic regression is binary, the range of 

its value is limited to the bivariate and the distribution of conditional probability follows the Bernoulli 

distribution. Logistic regression allows dependent variable values to be between 0 and 1 regardless of the 

range of independent variable values, so it is possible to classify the result of data into a specific 

classification when input data is given and predict the likelihood of an event occurring [3-5]. 

In logistic regression, where the dependent variable is binary, the predicted value can be calculated 

using a linear combination of the independent variables. However, since the value of the dependent variable 

is classified as pass or fail around the decision boundary, the value close to the decision boundary may be 

less accurate [6-8]. In binary logistic regression, since the actual value of the dependent variable is present 

and the predicted value can be calculated, the predicted value can be applied to a confusion matrix that can be 

compared to the target value [9, 10]. It can be obtained sensitivity and precision from the confusion matrix 

using the actual and predicted values of the logistic regression, and apply it to algal blooms to create a 

summary of indicators such as sensitivity and precision including accuracy [11-13]. 

Sensitivity and precision are as important as accuracy in predicting algal bloom occurrence. This is 

because high sensitivity and precision can provide indicators that can prevent massive property damage  

[14-17]. The elements of the marine environment that cause algal blooms are generally known, but no study 

https://creativecommons.org/licenses/by-sa/4.0/
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can be found to analyze the influence of each element on algal blooms and predict algal blooms. In this 

study, the predicted value of logistic regression is calculated by machine learning. The actual value used in 

logistic regression analysis and the prediction calculated through machine running are applied to the 

confusion matrix to create a prediction model for algal blooms. 

This paper is organized as follows. The logistic regression and confusion matrix as the background 

theory of this study are describe in section 2. In section 3, we describe the algal blooms prediction model 

using the ensemble method of the logistic regression and confusion matrix proposed in this study. Here we 

describe the process of extracting marine environmental elements using logistic regression, obtaining red tide 

prediction values, applying improved decision boundaries to logistic regression, and how to improve 

accuracy, sensitivity and precision through confusion matrix. In section 4, we verify the proposed algal 

blooms prediction model using the algal blooms dataset, and conclusions are described in section 5. 

 

 

2. LOGISTIC REGRESSION AND CONFUTION MATRIX 

2.1.  Logistic regression 

Linear regression is a model that estimates a regression coefficient that can linearly express the 

relationship between independent variables X and dependent variables Y with continuous values. If the 

dependent variable Y is a binary variable, logistic regression is used because linear regression cannot be 

applied directly. Some regression algorithms can be used for classification, and logistic regression is widely 

used to estimate the probability that a sample belongs to a particular class. If the estimated probability 

exceeds 0.5, the sample is predicted to belong to the class, and if it is less than 0.5, it is used as a binary 

classifier to predict that the sample does not belong to the class [18, 19]. To estimate the probability, logistic 

regression calculates the weighted sum of the input characteristics, but instead of outputting the result 

immediately such as linear regression, it outputs the logistic of the result value. Logistic is a sigmoid function 

that outputs a value between 0 and 1 [20]. The logistic function has the effect of limiting the output result to 

always between 0 and 1 for numerical values x, and its expression is defined as follows. 
 

𝑦 =  
1

1+𝑒−𝑓(𝑥)  (1) 

 

In (1), 𝑓(𝑥) can be either a simple linear function or a multiple linear function. For classification 

problems with two categories, if 𝑓(𝑥) > 0 is classified as 𝑦 → 1 and 𝑓(𝑥) < 0 is classified as 𝑦 → 0. The 

decision boundary of the logistic regression model is the 𝑓(𝑥) = 0 in hyperplane and becomes 𝑦 = 0.5. 

Errors in prediction usually occur around the decision boundary [21, 22]. 

 

2.2.  Confusion matrix 
The confusion matrix is a tool that easily and effectively shows the performance of the classifier and 

has the advantage of being easy to interpret the results. A confusion matrix can be used to evaluate the 

performance of any models or algorithms. As shown in Table 1, the rows in the confusion matrix represent 

the values of the predictive class and the columns represent the values of the actual class. Each cell is one of 

the possible combinations of prediction and actuality. In the 2×2 confusion matrix, there are true positive 

(TP), false positive (FP), false negative (FN), and true false (TF) [23]. 

The perfect model will only have values on the diagonal, the rest of the cells will be all zeros, and 

the bad model will be evenly distributed in all cells. The error matrix tells us how bad a model is when it is 

bad. The value of each cell can identify a misclassified pattern [24]. 

 

 

Table 1. Confusion matrix 

Confusion matrix 
True class (Actual) 

P N 

Hypothesized class 

(Predicted) 

Y True Positives False Positives 

N False Negatives True Negatives 

 

 

Methods for summarizing the results of the confusion matrix include accuracy, precision, and recall. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (2) 

 

The accuracy is obtained by dividing the accurately predicted number (TP+TN) by the total number 

of samples, and is represented by (2). Among the methods for summarizing the results in the confusion 
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matrix, the most frequently used precision and sensitivity are as shown in (3) and (4), respectively. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
             (3) 

 

Precision is a positive predictive value that measures how many of the samples (TP+FP) predicted 

to be positive are true positives (TP). Precision is used as a performance indicator when the goal is to reduce 

the number of false positives (FP). 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (4) 

 

Sensitivity measures how many of the total positive samples (TP+FN) are classified as positive classes (TP). 

 

 

3. PREDICTION MODEL 

After collecting algal blooms dataset from the National Institute of Fisheries Science, it was cleaned 

and refined. The first multiple logistic regression analysis was performed on the refined algal blooms dataset, 

and some attributes were removed through a statistical test. A second multiple logistic regression analysis 

was performed with the exception of the attributes removed and then the regularization was applied. After 

applying the regularization, a third multiple logistic regression analysis is performed and the results are 

applied to the confusion matrix. Figure 1 shows this process.  

 

 

 
 

Figure 1. Prediction process of algal blooms 

 

 

The probability of occurrence of harmful algal blooms with two or more independent variables is 

defined as p(x) and the odds as =
𝑝

1−𝑝
 . When the range of input values is [0, 1], log it transformation is 

performed to adjust the range of output values to (−∞,∞), resulting in log(𝑜𝑑𝑑𝑠) = log (
𝑝(𝑥)

1−𝑝(𝑥)
) = 𝛽0 +

𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑖𝑥𝑖  [25]. Therefore, for multiple independent variables that affect harmful algal blooms, 

the multiple logistic function that allows the dependent variable range to be between [0, 1] is as shown in (5). 

In (5) calculates the effect of each element of the ocean observation data, which is an independent variable, 

on the occurrence of a harmful algal blooms as a dependent variable. This is a basic model for estimating the 

probability of occurrence of harmful algal blooms. 

 

𝑝(𝑥) =
1

1+𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑖𝑥𝑖)        (5) 

 

The maximum likelihood estimation is used to estimate parameter 𝛽 in regression expression 

𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑖𝑥𝑖  by logit transformation. The log likelihood function can be obtained from the 

likelihood function [26] expressed as the product of Bernoulli's probability function, and is expressed as (6). 
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The parameter that maximizes the log likelihood function in (6) is determined from multiple independent 

variables that affect the harmful algal blooms. 

 

ln𝐿 = ∑ 𝑦𝑖(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑖𝑥𝑖)𝑖 + ∑ ln𝑖 (1 + 𝑒𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑖𝑥𝑖 )  (6) 

 

The L1 regularization [27] used to eliminate low-impact independent variables among multiple independent 

variables that affect harmful algal blooms is shown in (7). 

 

argmin ∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗)2 + 𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1

𝑝
𝑗=1

𝑛
𝑖=1      (7) 

 

The properties in the marine environment observation dataset are shown in Table 2 and used as 

independent variables in logistic regression. 

 

 

Table 2. Multiple independent variables for logistic regression 
Variables Comments 

T Temperature 
S Salinity 

DO Dissolved Oxygen 

P Phosphate Phosphorus 
NA Nitrous Acid Nitrogen 

N Nitric Acid Nitrogen 

SA Silicic Acid Silicon 

 

 

In (8) is obtained by applying seven independent variables, such as water temperature, salinity, 

dissolved oxygen, phosphate phosphorus, nitrous acid nitrogen, nitric acid nitrogen, silicic acid silicon, to the 

basic model of multiple logistic regression (5).  

 

log
𝑝(𝑥)

1−𝑝(𝑥)
=  𝛽0 + 𝛽1𝑇𝑖 + 𝛽2𝑆𝑖 + 𝛽3𝐷𝑂𝑖 + 𝛽4𝑃𝑖 + 𝛽5𝑁𝐴𝑖 + 𝛽6𝑁𝑖 + 𝛽7𝑆𝐴𝑖    (8) 

 

P-value is used to determine if any independent variable was statistically significant in the results of 

multiple logistic regression analysis on the training dataset, and independent variables with a P-value of 0.05 

or higher are excluded. The parameters for statistically significant independent variables are as shown in (9). 

 

log
𝑝(𝑥)

1−𝑝(𝑥)
=  𝛽0 + 𝛽1𝑇𝑖 + 𝛽2𝑆𝑖 + 𝛽3𝑃𝑖 + 𝛽4𝑁𝑖           (9) 

 

The regulation for removing an independent variable close to zero in order to make some coefficients zero is 

as shown in (7). The result is as shown in (10) when (7) is applied to the result of (9). 

 

log
𝑝(𝑥)

1−𝑝(𝑥)
=  𝛽0 + 𝛽1𝑇𝑖 + 𝛽2𝑆𝑖 + 𝛽3𝑃𝑖    (10) 

 

In (11) is the logistic regression model for algal blooms prediction obtained by applying the above process to 

the algal blooms dataset. 

 

𝑝(𝑥) =
1

1+𝑒−(−5.89+0.34𝑇𝑖−0.12𝑆𝑖+0.35𝑃𝑖) (11) 

 

The normalization process from the (8) to the (11) is from Step 2 to Step 5 among the algorithms in 

Table 3, respectively. The algal blooms prediction model was normalized while performing experiments 

based on the algorithm in Table 3. The detailed experimental process is described in section 4. The equation 

for obtaining a decision boundary to increase the sensitivity and precision is defined as shown in (12). 

 

𝛥 = |0.5 ±
1

2
(

𝑇𝑃

𝑇𝑃+𝐹𝑁
+

𝑇𝑃

𝑇𝑃+𝐹𝑃
)|   (12) 

 

Table 3 shows algorithm for establishing algal blooms prediction model. This algorithm shows the 

process of performing multiple logistic regression first in a refined dataset, then statistical tests on the results, 
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and then removing low-weight independent variables, finally setting up a logistic regression model, and 

finding the decision boundary finally. 

 

 

Table 3. Algorithm for establishing algal blooms prediction model 
Step Statements 

1 Extraction, Transformation and Loading from collected dataset 
Prepare training dataset 

2 Perform multiple regression analysis using (1) on the training dataset 

Output regression coefficients and statistical tests 
3 Perform a statistical significance test  

∙attributes P-value > 0.5 are excluded in the training dataset 

4 Perform multiple regression analysis for the training dataset with attributes whose P-value <= 0.5 
Output regression coefficients and statistical tests for attributes whose P-value <= 0.5 

5 Regularize regression coefficients from step 4 using  

argmin ∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗)2 + 𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1

𝑝
𝑗=1

𝑛
𝑖=1   

Perform multiple regression analysis using a regularized regression formula 

Output test dataset 

6 Input test dataset from step 5 
Predict probability using decision boundary  

𝛥 = |0.5 ±
1

2
(

𝑇𝑃

𝑇𝑃+𝐹𝑁
+

𝑇𝑃

𝑇𝑃+𝐹𝑃
)|based on confusion matrix 

 

 

4. EXPERIMENT 

Multiple logistic regression analysis (8) can be performed on the training dataset to obtain the 

results shown in Table 4. In Table 4, p-value is used to determine whether any independent variable is 

statistically significant, and independent variables with a p-value of 0.05 or higher are excluded. Parameters 

𝛽 are determined for statistically significant independent variables in Table 4 and L1 regularization is applied 

and then the results shown in Table 5 can be obtained. In (11) of the logistic regression model for algal 

blooms prediction is obtained from the coefficients in Table 5. 

 

 

Table 4. 1st multiple logistic regression analysis on training dataset 
Input variables Coefficient Std. error P-value 

Constant -5.35 1.49 0.00 
Temperature 0.33 0.02 0.00 

Salinity -0.12 0.03 0.00 

Dissolved Oxygen -0.05 0.08 0.54 
Phosphate Phosphorus 0.38 0.14 0.01 

Nitrous Acid Nitrogen -0.07 0.12 0.58 

Nitric Acid Nitrogen -0.06 0.02 0.00 
Silicic Acid Silicon -0.02 0.01 0.16 

 

 

Table 5. Coefficients of logistic regression model for algal blooms prediction 
Input variables Coefficient Std. error P-value 

Constant -5.89 1.21 0.00 
Temperature 0.34 0.01 0.00 

Salinity -0.12 0.03 0.00 

Phosphate Phosphorus 0.35 0.14 0.01 

 

 

Predicting the occurrence of algal blooms from (11) gives 91.84% accuracy. Accuracy alone may 

not be sufficient to assess the predicted performance of algal blooms. We utilize the confusion matrix since 

we do not know false negatives or false positives of algal blooms. A confusion matrix for algal blooms 

shown in Table 6 is obtained from algal blooms dataset. 

 

 

Table 6. Confusion matrix for algal blooms 
Confusion matrix 

(Error matrix) 

Actual values of algal blooms 

P(Occurrence) N(Not occurrence) 

Predicted values of 
algal blooms 

Y (0.5 or higher) True Positive 
tp=222 

False Positive 
fp=205 

N (less than 0.5 ) False Negative 
fn=599 

True Negative 
tn=8828 
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Table 7 shows the sensitivity, specificity, and precision are obtained based on the decision boundary 

0.5 using the values of the confusion matrix in Table 6. The prediction rate of false negative of algal blooms 

is low as the sensitivity is 27.04%, and the prediction rate of false positive is also low because the precision is 

51.99%. Since the sensitivity and precision are low in case of the decision boundary is 0.5, we apply 

proposed the decision boundary (12) in order to solve these problems, and results are as shown in Table 8. 

When the decision boundary proposed in this paper is applied, the decision boundary becomes 

𝛥 = |0.5 ± 0.25|. When this is used as a decision boundary, TP=494, TN=9026, FN=327, FP=7, the 

sensitivity is 60.17%, and the precision is 98.6% as shown in Table 8. 

 

 

Table 7. Resulting confusion matrix based on decision boundary 0.5 (unit: %) 
TPR TNR PPV FPR ACC F1 

Sensitivity Specificity Precision Fallout Accuracy F1 Score 

27.04 97.73 51.99 2.27 91.84 35.58 

 

 

Table 8. Resulting confusion matrix based on proposed decision boundary 𝛥 (unit: %) 
TPR TNR PPV FPR ACC F1 

Sensitivity Specificity Precision Fallout Accuracy F1 Score 

60.17 99.92 98.6 0.08 96.61 74.74 

 

 

5. CONCLUSION 

In this paper, logistic regression and confusion matrix were used to predict the occurrence of algal 

blooms. Algal blooms datasets were collected and refined for experimental analysis of algal blooms 

prediction. Logistic regression analysis was performed on refined algal blooms dataset and main marine 

environmental factors affecting algal blooms were found through statistical test and regularization processes. 

Logistic regression was performed using the marine environmental factors that were influential on algal 

blooms and the accuracy of algal bloom occurrence was obtained. The values of the confustion matrix were 

obtained using the dataset for algal blooms prediction and the predicted values obtained from logistic 

regression. Although the sensitivity and precision for the occurrence of algal blooms can be obtained from 

the values of the confusion matrix, the sensitivity and precision were low when the existing decision 

boundary was 0.5. Sensitivity and precision were improved by using the decision boundary proposed in this 

study. In this paper, the algal blooms prediction model was established by the ensemble method using logistic 

regression analysis and confusion matrix. Also, the accuracy, sensitivity, and precision for algal blooms 

prediction were improved, and these were verified through big data analysis. 
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