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 With the increasing requirement of high accuracy for particulate matter 

prediction, various attempts have been made to improve prediction accuracy 

by applying machine learning algorithms. However, the characteristics of 

particulate matter and the problem of the occurrence rate by concentration 

make it difficult to train prediction models, resulting in poor prediction. In 

order to solve this problem, in this paper, we proposed multiple classification 

models for predicting particulate matter concentrations required for 

prediction by dividing them into AQI-based classes. We designed multiple 

classification models using logistic regression, decision tree, SVM and 

ensemble among the various machine learning algorithms. The comparison 

results of the performance of the four classification models through error 

matrices confirmed the f-score of 0.82 or higher for all the models other than 

the logistic regression model. 
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1. INTRODUCTION 

Particulate matter is a substance made up of various sizes, shapes, and ingredients. Particulate 

matter, divided into 𝑃𝑀10, 𝑃𝑀2.5 according to the size of 10𝜇𝑔, 2.5𝜇𝑔 or less, affects our health by causing 

some diseases such as cardiovascular, respiratory, and cerebrovascular diseases. Accordingly, particulate 

matter was classified as a dangerous substance, and it is analyzed as the cause of decreasing the vitality of 

society members [1-7]. In order to avoid such harmful effects of particulate matter as much as possible, it has 

become a routine practice to check the information provided based on the air quality index (AQI), which is 

divided into four categories: 'good', 'moderate', 'bad', and 'very bad'. Korea's particulate matter prediction 

accuracy was approximately 60% in 2015, and the Korea Meteorological Administration's prediction process 

has the annual predicton accuracy of approximately 80%. However, this is information reflecting on the 

weather forecaster's experience, and the actual particulate matter prediction model shows the accuracy of 

approximately 50% [8, 9]. 

Therefore, various attempts have been made to improve the prediction accuracy of particulate matter 

by applying machine learning prediction algorithms along with conventional statistical techniques [10, 11]. 

However, the characteristics of particulate matter arising from various external factors and the problem of the 

the occurrence rate by concentration make it difficult to effectively train prediction models. In order to 

improve the prediction accuracy of particulate matter concentrations, K. W. Cho et al., in their study, 
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proposed a prediction model that separated and predicted them based on a specific concentration. By dividing 

the low and high concentrations based on the particulate matter concentration of 81𝜇𝑔, they compared the 

prediction performance through a deep neural network-based prediction model. The prediction results 

confirmed that the prediction performance of the low and high concentrations was improved, and especially it 

showed the performance improvement of 20.62% for the high concentrations [9]. The study by K. Kaya et al. 

proposed a solution to an unbalanced problem in order to address the prediction problem of the regression 

model due to the variation in the occurrence rate by particulate matter concentration. They confirmed the 

accuracy of approximately 80% in the entire data set by making the number of samples of the class the same 

for unbalanced data through the proposed upper sampling and down sampling [12]. 

In this paper, we propose data classification models by concentration to improve the performance of 

a particulate matter concentration prediction model. Of the machine learning classification models, we use 

the logistic regression, decision tree, support vector machine (SVM), and ensemble models. Based on the 

AQI, we configure multiple classification models by dividing particulate matter concentrations into 4 classes. 

In order to apply the optimal parameters to the models, we design the models by performing parameter search 

through grid search cross validation. We perform model evaluation using the error matrix. 

 

 

2. DATA COLLECTION AND CONFIGURATION 

2.1.  Data collection and preprocessing 

Particulate mattert is affected by various factors. Air pollutants and meteorological elements are 

typical, which are commonly applied to studies for predicting particulate matter concentrations [13-16]. 

Based on the studies, we selected the major data as shown in Table 1. 

 

 

Table 1. Major data definition 
Type Name Description 

Air 

pollutants 
𝑃𝑀10 The average particulate matter(< 10𝜇𝑚) per hour 

𝑃𝑀10ℎ The average particulate matter(< 10𝜇𝑚) of the previous 1 hour 

𝑂3 The average ozone of the previous 1 hour 

𝐶𝑂 The average carbon monoxide of the previous 1 hour 

𝑁𝑂2 The average nitrogen dioxide of the previous 1 hour 

𝑆𝑂2 The average sulfur dioxide of the previous 1 hour 

Meteorological 

elements 

Temperature The average temperature of the previous 1 hour 

Humidity The average humidity of the previous 1 hour 

Wind Speed The average wind speed of the previous 1 hour 

Wind Direction The most frequent wind direction of the previous 1 hour 

 

 

According to the selected data, we collected the final confirmed data measured at an interval of an 

hour for 10 years from 2009 to 2018 at the measurement station around Cheonan in Korea. Air pollution data 

is composed of 𝑃𝑀10, 𝑃𝑀10ℎ, 𝑂3, 𝐶𝑂, 𝑁O2, and 𝑆𝑂2, and meteorological elements consist of temperature, 

humidity, wind speed, and wind direction. Since some data were missing due to the power outage and 

maintenance of measurement equipment, we removed all data of the same time when the missing data was 

present. Of the meteorological elements, the largest wind direction expressed in azimuth, that is, the 0° and 

360°, which were often used with mixed notation, were unified to 360°. 

There is a need for data preprocessing to perform classification through machine learning algorithms 

using the collected data. Since we used the classification algorithm based on supervised learning, we 

performed classification by separately dividing the data corresponding to independent variables and the data 

corresponding to dependent variables. The independent variable data, which includes 𝑃𝑀10ℎ, 𝑂3, 𝐶𝑂, 𝑁O2, 

𝑆𝑂2, temperature, humidity, wind speed and wind direction, is used to predict the range of particulate matter 

concentrations based on the AQI. As for the wind direction, it is necessary to convert it to a vector form 

because it corresponds to categorical data expressed in 16 directions. Therefore, through one-hot encoding, 

we converted the categories corresponding to 16 directions to 16 vectors expressed in 0 and 1. For the 

remaining input sample data other than the wind direction, they are numerical data with different 

characteristics, and they were converted to a value between 0 and 1 through min max scaling in order to unify 

the range of numerical values expressed according to the data. The dependent variable data correspond to 

𝑃𝑀10, and as shown in Table 2, based on the AQI used as a forecast by the Ministry of Environment, we 

divided 𝑃𝑀10 into the sequential categories: 'good', 'moderate', 'bad', and 'very bad' , and expressed them as 

four classes of 0, 1, 2, and 3, respectively. 
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Table 2. The range of particulate matter concentrations based on AQI 
Grade Good Moderate Bad Very Bad 

𝑃𝑀10(μg/𝑚3) 0 ~ 30 31 ~ 80 81 ~ 150 150 ~ 

 
 
2.2.  Data configuration 

The data used in the supervised learning model is mainly composed of a training set for learning and 

a test set for evaluating the trained model. The training set used to train the model is subdivided into a train 

set and a validation set because of the need to verify whether training is well completed. In this paper, we 

configure a training set of 75% and a test set of 25% with the preprocessed data. The training set is composed 

of a train set of 80% and a validation set of 20%. Figure 1 shows the structure of the final data used in the 

model, and Table 3 shows the configuration of the data set. 

 

 

 
 

Figure 1. Structure of data set 

 

 

Table 3. Data set configuration 
Structure of data set Samples 

Training set 
Train set 52,315 

Validation set 13,079 

Test set 21,799 

Total 87,193 

 

 

3. CLASSIFICATION MODEL DESIGN 

3.1.  Logistic regression model design 

Logistic regression is an algorithm used to predict the likelihood of an event using a linear 

combination of independent variables. As in general regression analysis, it is used in future prediction models 

by deriving a specific function through the relationship between dependent and independent variables. 

However, unlike linear regression, since the prediction result is classified as a specific category when the 

dependent variable is categorical data, it is used as a classification technique rather than a regression 

technique. It is divided into binomial or multinomial depending on the category characteristics of the 

dependent variable. The dependent variable for training the classification model of particulate matter 

concentrations has four categories. Accordingly, we built a model by applying a multinomial logistic 

regression method. 

For a model predicting a certain result, overfitting or underfitting is contingent on the intensity of 

training. It is difficult for a model with overfitting to predict new data since it only focuses on training data. 

In the case of underfitting, there is a problem that the model does not predict most of the data since it does 

not identify the characteristics of the data due to simple training. To solve these problems, logistic regression 

basically uses L2 regularization parameter c [17]. 

Therefore, for better prediction performance, we performed the search for the optimal c value using 

grid search cross validation to find the value of c that fits the model. We set the range of c values to be 

searched to 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, and 1000. In order to select parameters with high 

generalization performance, we set the cv parameter of k-fold cross validation to 5. Accordingly, the c value 

was sequentially accessed to compare scores using the test set after 5 repetitive training runs and validations. 

For preprocessing of validation fold during cross validation, we searched the c values by building the 

pipeline of min max scaler and the model. Table 4 shows the mean test score and c values of the top 3 

rankings in the cross validation results. The cross validation results showed that the mean test score was 

highest with 0.808958 when the c value was 10.0, thus we selected the c value to be applied to logistic 

regression as 10.0. 
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Table 4. Grid search cross validation results (logistic regression) 

Rank Mean test score c 

1 0.808958 10.0 

2 0.808927 1000.0 

3 0.806817 1.0 

 
  

3.2.  Decision tree model design 

Decision tree is a widely used model for classification and regression. It is basically an algorithm 

that learns by continuously answering questions to approach a specific decision. With the increase in the 

number of leaf nodes, the accuracy of the training set increases but overfitting may occur [18]. One of the 

methods used to prevent overfitting is to stop the growth of the tree when the depth of the tree reaches a 

certain level. The parameter that limits the depth of a decision tree is max_depth, and we are able to improve 

the performance of the model by adjusting the depth. 

Therefore, we performed the search for the optimal max_depth value using grid search cross 

validation. We set the range of max_depth values to be searched to 1~24, and performed the search by setting 

the cv parameter of k-fold cross validation to 5. Additionally, for preprocessing of validation fold during 

cross validation, we searched the max_depth values by building the pipeline of min max scaler and the 

model. Table 5 shows the mean test score and max_depth values of the top 3 rankings in the cross validation 

results. The cross validation results showed that the mean test score was highest with 0.85936013 when the 

max_depth value was 4, thus we selected the max_depth value to be applied to decision tree as 4. 

 

 

Table 5. Grid search cross validation results (decision tree) 
Rank Mean test score Max_depth 

1 0.85936013 4 

2 0.85896255 5 

3 0.85856496 3 

  

 

3.3.  SVM model design 

SVM is one of machine learning methods and is a supervised learning model for pattern recognition 

and data analysis. It is mainly used for classification and regression analysis. Given a set of data belonging to 

one of two categories, it generates a non-stochastic binary linear classification model that determines the 

category to which new data belongs based on a given data set. The generated classification model is 

expressed as a boundary in the space onto which the data is mapped. It is an algorithm to find the boundary 

with the largest width [19-21]. Therefore, SVM is a model that defines a baseline for classification between 

categories, which is expressed as a decision boundary. 

In SVM, the difference in performance is determined depending on how the decision boundary is 

defined, and it is crucial to find the optimal decision boundary. The parameters applied to find the optimal 

decision boundary are c and gamma. C is a parameter that adjusts the allowable range of outliers by 

controlling the margin of the decision boundary, and gamma is a parameter that prevents overfitting of the 

model by controlling the flexibility of the decision boundary. 

We performed the search for the optimal c and gamma values to find the optimal decision boundary 

using grid search cross validation. We set the range of c and gamma values to be searched to 0.0001, 0.001, 

0.01, 0.1, 1, 10, 100, and 1000, and performed the search by setting the cv parameter of k-fold cross 

validation to 5. Additionally, for preprocessing of validation fold during cross validation, we searched the c 

and gamma values by building the pipeline of min max scaler and the model. Table 6 shows the mean test 

score and relevant c and gamma values of the top 3 rankings in the cross validation results. The cross 

validation results showed that the mean test score was highest with 0.859238 when the c and gamma values 

were 1000 and 0.01, respectively, thus we selected the c value and the gamma value to be applied to SVM as 

1000 and 0.01, respectively. 

 

 

Table 6. Grid search cross validation results (SVM) 
Rank Mean test score c gamma 

1 0.859238 1000 0.01 

2 0.859177 1 1 

3 0.859146 1 0.1 
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3.4.  Ensemble model design 

Ensemble is a technique that generates a powerful model by combining multiple models to achieve 

better prediction performance as compared with using an individual machine learning model. When multiple 

models are combined, the amount of calculation is generally increased, yet it prevents overfitting more 

effectively than using an individual model and it has the advantage of showing better performance than an 

individual model if the performance of an individual model is poor [22-24]. Ensemble is mainly divided into 

a collection methodology and a boosting methodology. The collection methodology has the predetermined 

set of models to be used, but the boosting methodology gradually increases the models to be used. In this 

study, we combined the logistic regression, decision tree, and SVM models previously designed, which 

corresponds to the collection methodology, to build an enemble model. Figure 2 shows the structure of the 

ensemble model. 

 

 

 
 

Figure 2. Structure of ensemble model 

 

 

The training set data are used as an input variable to the combined logistic regression, decision tree, 

and SVM models, and the predicted results are outputted from an individual model. The final prediction 

results are generated by voting on the outputted results [25]. Voting is divided into hard and soft voting. Hard 

voting simply selects the final prediction based on the prediction results of an individual model. The voting 

method of the ensemble model designed in this study is soft voting, which selects the final prediction based 

on the sum of conditional probabilities of an individual model. 

 

 

4. PERFORMANCE EVALUATION 

We evaluated classification performance using the previously configured data set and designed the 

classification models. For performance evaluation, we used precision, recall, and f-score based on the error 

matrix. Figure 3 shows the error matrices created based on the classification results of the trained models. 

Table 7 shows the performance evaluation of the classification models calculated by referring to the error 

matrices.  

When the logistic regression model predicted 'good', the precision was highest with 0.8685. When 

the prediction was performed based on the input data of 'moderate', the recall was highest with 0.9341. On 

the other hand, the classification did not work well for ‘bad’ and ‘very bad’. Especially, the prediction was 

not made at all for 'very bad'. When the decision tree model predicted 'moderate', the precision was highest 

with 0.8977. When the prediction was performed based on the input data of 'moderate', the recall was highest 

with 0.9023. On the other hand, the precision and recall for 'bad' and 'very bad' showed relatively low values 

compared to 'good' and 'moderate’. The SVM model showed the highest precision and recall with 0.8997 and 

0.8997, respectively, for 'moderate’. As in the decision tree model, the precision and recall for 'bad' and 'very 

bad' showed relatively low values compared to 'good' and 'moderate’. The ensemble model showed the 

highest precision and recall with 0.8997 and 0.8997 for 'moderate’. However, the precision and recall for 

'bad' and 'very bad' showed relatively low values compared to 'good' and 'moderate’, resulting in difficulty 

classifying the relevant classes. The analysis results based on the precision and recall showed that the 

precision and recall of 'good' and 'moderate' were relatively higher than those of 'bad' and 'very bad'. When 

analyzed through the error matrixes in Figure 3, it was confirmed that, of the input data, the proportion of 
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data corresponding to 'good' and 'moderate' used for classification was high. For an unbalanced model with 

the high proportion of a specific class, the generally used accuracy is meaningless. Therefore, we should 

evaluate the performance of the model by taking into account all classes with the same proportion, and used 

the mean of macro f-score. Other than the logistic regression model with an f-score of 0.4930, the other 

models showed the similar scores with 0.8264, 0.8277, and 0.8265. 

 

 

  

(a) (b) 

 
 

(c) (d) 

 

Figure 3. Confusion matrix; (a) Logistic regression model, (b) Decision tree model, (c) SVM model,  

(d) Ensemble model 

 

 

Table 7. Classification performance evaluation by models 
 Logistic regression Decision tree SVM Ensemble 

class precision recall precision recall precision recall precision recall 

0 (good) 0.8685 0.8378 0.8616 0.8528 0.8577 0.8578 0.8579 0.8577 

1 (moderate) 0.8162 0.9341 0.8977 0.9023 0.8997 0.8997 0.8997 0.8998 

2 (bad) 0.6925 0.1510 0.7881 0.7885 0.7885 0.7885 0.7881 0.7885 

3 (very bad) 0.0000 0.0000 0.7630 0.7574 0.7647 0.7647 0.7630 0.7574 

f-score 
(macro) 

0.4930 0.8264 0.8277 0.8265 

 

 

5. CONCLUSION  

In predicting particulate matter concentrations, there is a problem of training particulate matter 

concentration prediction models because of the characteristics of particulate matter. In order to solve this 

problem, various studies have been underway such as performing prediction by dividing particulate matter 

concentrations based on a specific concentration. In this paper, to improve the performance of the particulate 

matter concentration prediction model, we proposed multiple classification models that provided particulate 

matter concentrations in four classes based on the AQI. To this end, we configured data sets by selecting air 

pollutant data and meteorological elements collected at an interval of an hour for 10 years around Cheonan. 

As the classification models in this study, we used the logistic regression, decision tree, SVM, ensemble. In 

order to apply optimal parameters to each model, we searched the parameters through grid search cross 

validation. We built the ensemble model by combining the logistic regression, decision tree, and SVM 

models into one. We used error matrixes to evaluate the performance of four multiple classification models. 

Logistic regression showed poor precision, recall, and f-score compared to other classification models. 
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Decision tree, SVM, and ensemble models all showed the precision and recall with 0.85 or higher for 'good' 

and 'moderate' based on the AQI, whereas they showed 0.75~0.79 for '’bad' and 'very bad'. We confirmed 

that this was because the particulate matter data used in the classification models were unbalanced data with 

the high proportion of a specific class. Accordingly, we verified the scores of the models by taking into 

account all classes with the same proportion, and found that the models other than the logistic regression 

model showed a score of 0.82 or higher. Of these models, the SVM model showed the best classification 

performance with 0.8277. In future, in order to address the problem of unbalanced data, we are going to 

compare classification performance through the algorithm changes of the classification models and design a 

particulate matter concentration prediction model based on the improved classification models. 
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