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 Developing a deep learning (DL) model for image classification commonly 

demands a crucial architecture organization. Planetary expeditions produce a 

massive quantity of data and images. However, manually analyzing and 

classifying flight missions image databases with hundreds of thousands of 

images is ungainly and yield weak accuracy. In this paper, we speculate an 

essential topic related to the classification of remotely sensed images, in 

which the process of feature coding and extraction are decisive procedures. 

Diverse feature extraction techniques are intended to stimulate a 

discriminative image classifier. Features extraction is the primary 

engagement in raw data processing with the purpose of data classification; 

when it comes across the task of analysis of vast and varied data, these kinds 

of tasks are considered as time-consuming and hard to be treated with. Most 

of these classifiers are either, in principle, quite intricate or virtually 

unattainable to calculate for massive datasets. Stimulated by this perception, 

we put forward a straightforward, efficient classifier based on feature 

extraction by analyzing the cell of tensors via layered MapReduce 

framework beside meta-learning LSTM followed by a SoftMax classifier. 

Experiment results show that the provided model attains a classification 

accuracy of 96.7%, which makes the provided model quite valid for diverse 

image databases with varying sizes. 
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1. INTRODUCTION  

Deep learning (DL) [1] is protruded as a novel scope of machine learning, applied, and affecting 

several domains in our daily life such as medical image processing [2], prediction [3], mobile traffic 

classification [4], computer vision [5], computer networks [6]. DL's concept can be described as 

straightforward as the process of feature learning by machines as they ordinarily very well in the field of 

classification. Remote sensing (RS) is a scientific defy where scenes are inspected and construed by remote 

means [7]. This term comprises the conventional RS scopes, such as images of the satellite. Remotely sensed 

data analysis and classification overwhelmingly implemented by supervised filters or classifiers. This 

necessitates a sufficient volume of labeled samples to provide the needed training for the classifier. The 

spacecraft of Cassini-Huygens is considered the greatest and the most intricate interplanetary mission ever 

constructed, and it was able to acquire a detailed image within different planetary conditions; science 

investigations in this respect have particular pay attention to the theoretical part. Our work will focus on the 

AI part to support high-rise demand on computerized scientific aspects, reducing effort, time, and hard to be 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 3, June 2021 :  2457 - 2466 

2458 

accomplished by the human, with the point of view of analysis and classification a very massive image 

datasets that have been generated by the Cassini-Huygens mission. Meta-learning offers an ideal preference 

in which the model of machine learning earns knowledge over numerous learning epochs, frequently 

encompass an allocation of associated tasks. It also utilizes this knowledge to enhance its forthcoming 

learning efficiency. 

We provide an approach that pinpoints the frailty of neural networks trained via the optimization of 

a gradient. We put forward an optimizer meta-learner that is emanated with LSTM. Within the training 

process, the classifier's performance is enhanced by the support provided by the optimizer. The proposed 

meta-learner attains together short-term learned data among the performed mission, and long-term acquired 

experience-reported knowledge occurring within the whole previous tasks. The meta-learner algorithm within 

our conception is trained to impel the classifier, so it tends to meet at a point of convergence toward an 

optimal solution swiftly for every task, this is the aim of choosing this algorithm. 

 This research's residual is arranged in the following order: Section 2 includes a description of the 

used dataset. Section 3 contains materials and methods along with the adopted algorithm portions description. 

Section 4 of the research comprises the results and analysis discussion. In the last Section 5 conclusions and 

future work are provided. 

 

 

2. DATASET UTILIZED IN THE ANALYSIS 

Cassini-Huygens spacecraft was so far the most aspirant expedition up till now sent to outer space, 

stuffed with a group of robust devices and cameras. Cassini-Huygens were eligible for gathering delicate 

measurements itemized images within several atmospheric circumstances. The spacecraft had two parts: the 

Huygens probe and Cassini orbiter, Cassini-Huygens arrive at Saturn in 2004, transmitting precious data back 

to us, which improved our comprehension of Saturn and its moons. Huygens step inside Titan's atmosphere, 

Saturn's massive moon, fall downward through a parachute to the furthest point so far, land on its surface, 

take samples and analyze them, and send the results to Cassini, which will send them later to the Earth. 

Cassini instruments of remote sensing collected data remotely from enormous distances. After twenty years 

spent in outer space and thirteen years touring Saturn, the orbiter "Cassini" drained out of energy. Cassini 

was immersed in Saturn's atmosphere on 15 of September 2017, and this is how the mission ended. The 

acquired images data has been generated by the imaging science subsystem (ISS), which has the best 

resolution for the acquired images. The ISS is composed of 2 detached cameras wide-angle camera and a 

narrow-angle camera. ISS image volumes dataset is composed of a massive number of images and their 

related labels that hold the images' metadata. The data set is publicly available at the reference [8]. 

 

 

3. MATERIALS AND METHODS 

The meta-learning approach proposed in [9, 10] works via executing a few-shot dataset sampling 

from an intended task and acclimating the approach inner portrayals among gradient descent certain steps. It 

must be stated that this research is a supplement of past investigation exertion associated with the Cassini-

Huygens project dataset [11-13]. Recurrent model meta-learning is a part of the adopted model tailored to 

long short term memory (LSTM(. With this sub-framework, the algorithm of meta-learning shall train the 

LSTM model, which in its part must perform the needed dataset processing consecutively, and subsequently 

process the incoming data as new inputs to the SoftMax classifier, which requires passing the extracted 

features with the (image, label) pairs set for each batch of the dataset. Figure 1 illustrates a meta-learning 

layout while the adopted framework is shown in Figure 2, which includes three modules, a features extractor 

(G),  a meta-learner LSTM (M), and a map-reducer discriminator (D), all of them are acquiring the knowledge 

altogether. From one side, we anticipate the features extractor (G) to extract all the related data during its task 

by capturing high valued features, which will clue the meta-learner LSTM (M) to carry out. On the other side, 

it is logical that the features extractor (G) will be reinforced via the map-reducer discriminator (D) over 

consequent tasks on a big dataset (Bd). After dealing with a massive number of data and its features, the 

features extractor (G) progressively learns and acquires the knowledge to extract features from raw image data; 

this mapping process will considerably facilitate the meta-learning implementation. By considering the domain big 

data (Bd) of possible experiences ET by arithmetic approach, we devise the subsequent optimization issue in (1) 

methodically: 

 

𝑚ⅈ𝑛𝜃𝐺,𝜃𝑀,𝜃𝐷 𝐸𝑇~𝑝(𝑇),(𝑋,𝑌)~𝐵𝑑[𝐽(𝐿𝑇(𝜃𝑀,   𝜃𝐺), 𝐿(𝑋,𝑌) (𝜃𝐷,   𝜃𝐺)]  (1) 

 

where 𝜃𝐺, 𝜃𝑀, 𝑎𝑛𝑑  𝜃𝐷 represent the congruent modules parameters. The task of meta-learning (T) has a 

distribution p(T), while (x, y) symbolizes a sampled labeled instance from the Bd.  The purpose is to decrease 
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the joint expectation indicated by J. This joint will be applied on both losses: the loss LT (θM, θG), which is 

related to the task of meta-learning, and on the loss L(x,y) (θD, θG) which is related to map-reducer 

discriminator (D). A meta-learner can also commence a learner to bring up to date learner via gradient 

descent, which has a steady learning rate (R) over every task, gradient descent begins from incipient 

parameters θ0, and afterward, it carries out the subsequent update in (2): 

 

𝜃𝑡 =  𝜃𝑡−1 –  𝑅𝛻𝜃𝑡−1  𝐿𝑡 (2) 
 

The previous equation is utterly analogical to the cell state update of the LSTM. With each meta-

learning process epochs, the associated task includes a training set train (T) and another one for testing (T). 

For the map-reducer discriminator (D) it should be able to eliminate the identical images or batches among 

the Bd and provide labeled batches and images. The map-reducer discriminator (D), and the meta-learner 

LSTM (M) have a joint loss with the purpose of reducing the expected loss with the task of map-reducer 

discrimination:   
 

𝐿(𝑋,𝑌)(𝜃𝐷,   𝜃𝐺) = 𝐿𝑠(𝐷 ◦ 𝐺(𝑋), 𝑌) (3) 

 

where Ls can be any appropriate loss function for map-reducer discrimination, the features extractor (G) is 

supplied with the required training to extract the needed data from the image batches, while meta-learner 

obtain experience and learned to carry out the image and batch labeling. The map-reducer discriminator (D), 

which has given the parameter θD, is intended to foretell image labels created by G, and it is performed via 

gated neural networks. The features extractor (G) has given the parameter θG and is carried out via gated 

neural networks. The meta-learner LSTM (M), has given the parameter θM, and its mission is to gain the 

knowledge and pass from a task (T) to another among the training process. Over any provided task (T), the 

related concepts include meta-learner (M) that adjusts a learner AT for a given task with a specific aim, 

which is to reduce the anticipated loss with the task of meta-learning, and provided by (4): 

 

𝐿𝑇(𝜃𝑀,   𝜃𝐺) =  
1

|test(T )|
 ∑ Ls(AT ◦  G(x), y)(x,y)∈test(T )  (4) 

 

Implementing SoftMax on a huge dataset produce a more reliable LSTM, for classification, 

ordinarily, SoftMax function (5) is utilized by: 
 

𝑃𝑘 =
exp(Vk)

 ∑ exp(Vn)𝐤
𝐧=𝟏

 (5) 

 

where Pk indicates the chance or the probability that the vector k is a part of a group termed as class v. In 

multiclass classification, there is a need to compute the loss related to every class label for each process 

observation, and the outcome can be aggregated as a sum by cross-entropy, which is expressed by (6).  
 

𝐶𝐸 =  − ∑ 𝐵𝑐 𝑙𝑜𝑔 𝑍
𝑘=1 Pk (6) 

 

where Z-represents the number of classes that may include (Saturn, Rings, Titan, Icy Satellites, Small 

satellites (rocks), Sky), the log indicates the traditional log, At the same time B is a binary reference (1 or 0) 

that shows whether a class label k is the proper classification for a given observation. The indicator P 

represents the predicted probability of a given observation that belongs to a class k. To reduce cross-entropy 

loss, the proposed network is indoctrinated to present the result vector k near its related one-hot vector. It is 

crucial to pay attention that the right results of the target vectors within the network are steady throughout the 

training process. 

 

3.1.  The algorithm 

After representing the framework, among deep meta-learning LSTM, the phase of illustrating our 

harmonized algorithm is necessary. The algorithm of stochastic gradient descent could be utilized to optimize 

the previous aims, but with our thematic model, we generated a modified version of the stochastic gradient 

descent method, the elaborated approach is summarized in Figure 1.  

The upper section indicates the set of meta training D(meta-train) where each numbered box represents a 

different batch of the Bd that is composed of the training set denoted as Dtrain and Dtest. The meta-test set 

which is indicated in the illustration with D(meta-test) is also demonstrated in the same method, but via a various 

dataset that includes batches that are not available in any of the other batches in D(meta-train). Furthermore, there 

is a set of meta-validation which is exploited to specify additional labels and features. The adopted 

framework is presented in Figure 2. 
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Figure 1. Illustration of meta-learning layout 
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Figure 2. Overview of the adopted framework 
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We acquired the revelation algorithm by gradient descent that represented in (1), if we assumed that 
there is a learner classification process that has a parameter θ which it needs to be trained on the set Dtrain. 
The decisive algorithm which makes the best or most effective use of (a situation, opportunity, or resource) 
and also exploited to train the neural classifier is approximately divergent of gradient descent, that utilizes 
updates, where the expression of the (θt−1) represents the learner parameters in accordance with (t-1) updates, 
and (R) which is obtained during the time. period t, Lt denotes the loss, which is brought to optimization via 
the learner through nth number of update, ∇θt−1 Lt specifies loss gradient corresponding to the associated 
parameters θt−1, and θt demonstrates the learner updated parameters, the pivotal rumination that we 
parameterized at this spot this update which has common features that look or seem like LSTM cell state. 
The characteristics of the time difference ∆t between consecutive samplings as shown in Figure 3. The mean 
and standard deviation of the ∆t is 1,053 s and 12,282 s, respectively. This example figure demonstrates how 
the extracted image features (learned features) can be utilized to train the classifier. 

 
 

  
 

Figure 3. Features of the consecutive sampling intervals at Cassini and its histogram 
 
 

There are several parameters of similarity which could be exploited within our approach, and we 
consider the process of image classification by analyzing several parameters as a preprocessing phase for 
image classification and analyses of a block of tensors via layered MapReduce (LMR) for image patches 
classification where these investigation processes passed into  (LSTM) blocks, we are using LSTMs block unit 
as it exploits the memory dependencies component to regulate the information flow, as we are dealing with a 
Bd meta-learning LSTM is a perfect choice. The prime factor to DL's prosperity is within its potentiality 
towards acquiring knowledge from hierarchical features via enormous amounts of raw data such as text or 
images. Extracted features through DL methods have been confirmed to be outstanding, and better than 
traditional approaches in many different aspects such as preciseness and reduced resource challenging [14].  

 

3.1.1. Primary algorithm of meta-learning LSTM 

The learning algorithm will include an input, which has an aim to perform training via a training set 

referred to as Dtrain = [(Xt, Yt)]. Also, it has an output with a parameter θ, which will model the learner (AT), 

the aim of the learning algorithm to gain a robust performance performed on the test set Dtest= (X, Y). Table 1 

displays the primary algorithm of the meta-learning LSTM. 

 

3.1.2. Train of meta-learning LSTM algorithm 

The meta-learning LSTM algorithm will include an input, which has an aim to perform training and 

testing via a meta-validation training set referred to as D meta-validation train-LTSM train=[(𝐷train, 𝐷test)]=1; 

also it has an output with a parameter φ, which will model the meta-learning LSTM algorithm, this process 

aims to gain a robust performance via the set of (meta-test) D Meta LSTM test= (Dtrain, Dtest). Table 2 presents 

the training algorithm of the meta-learning LSTM. 
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Table 1. Primary algorithm of meta-learning LSTM 
Input: task distribution P (T), labeled image big dataset Bd, learning rate R 

Output: 𝜃𝐷   , 𝜃𝐺  ,  𝜃𝑀   

while true: Initialize 𝜃𝐷   , 𝜃𝐺  ,  𝜃𝑀   
      for task T = 1, 2... do 

          calculate corresponding loss of meta-learning: LT (θM, θG); 

          calculate corresponding loss of map-reducer discriminator (D): L(x, y) (θD, θG); 

           𝜃𝐷   , 𝜃𝐺  ,  𝜃𝑀                    (θG, θD, θM) - R∇ [𝐽(𝐿𝑇(𝜃𝑀,   𝜃𝐺), 𝐿(𝑋,𝑌) (𝜃𝐷,   𝜃𝐺)]; 
end while 

      end for 

 

 

Table 2. Meta-learning LSTM training algorithm 
Input: task distribution P(T ), labeled image Big dataset (Bd), images batch size with n tasks, image batch size with m instances, 

meta-learner LSTM with Initialization Φ as a primary random parameter vector 

learner (AT) accompanied by the parameter θ, meta-training set (𝐷𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛), meta-learner M accompanied by the parameter φ. 

Output: 𝜃𝐷   , 𝜃𝐺  ,  𝜃𝑀  = {φ, r}  
dataTrain = LOAD 

dataTest = LOAD 
for 1, … n iterations do 

    𝐷train , 𝐷test                      haphazard dataset from D meta-train  

initialize φ, r, 𝜃𝐷,   𝜃𝐺 

splitting dataset to training and testing with a sequential model train and validate 

Cell          0           inaugurate learner parameter 
Activation = sigmoid 

     for every task T do 

 Xt, Yt           random batch obtained from the training dataset (D train) 
Lt           L (AT (Xt; θ t-1), Yt) → obtain learner loss on train batch 

  ct M ((∇ θt-1 Lt, Lt); φ d-1) → obtain meta-learner output 
  θt                ct bring up to date learner parameters 

  X, Y          D test   

      Ltest L (AT (X; θT), Y) → obtain learner loss on test batch 

update φ𝑑  by-utilizing(𝛻𝜃𝑑−1  𝐿𝑡𝑒𝑠𝑡)→bring up to date meta-learner parameters 
     end for 

end for 

 

 

3.2.  Feature extraction and labeling 

Feature extraction depicts the affined shape details that comprised in recognition of a pattern, the 

concept of feature extraction considered as discriminatory kind of dimensionality reduction, where the 

purpose of the extraction process is to attain the significant pertinent data from the source of that data to 

appoint them in a minimized dimensionality. Referring to time or circumstance, the input data is so huge to 

be handled based on the followed set of rules in an algorithm, so input data should be metamorphosed into a 

minimized form of features. The process of metamorphosing input data into a group of features can be 

defined as feature extraction. The extraction process involves capturing essential details and distinctive 

characteristics from raw data, where each feature is exemplified through a feature vector that turns into its 

identity [15]. Table 3 shows the extraction and labeling algorithm of the meta-learning LSTM. 

 

3.3.  MapReduce framework 
MapReduce model contains two tasks; Map-task and reduce task. MapReduce model is deduced 

from the function amalgamation of a map and reduces; this model is exceedingly utilized to process an 
enormous dataset. MapReduce uses the set of (key/value) as a data category [16]. A representation of the 
MapReduce framework is displayed in Figure 2. The major stages of the MapReduce platform are Mapper, 
Reducer, and a middle phase known as shuffle, all of them are introduced in the section: 

Mapper function: handles input data and carry out a few calculations on that input then generates 
intermediate outcomes with the arrangement of (key/value) [17]. Reducer function: a group of key values and 
averaged key, it mingles all values with each other to create values of a lower set [18]. Shuffle phase: within 
the MapReduce platform, after the task of the Map, ordinarily considerable volumes of middle data need to be 
shifted to Reduce operation from the Map operation, the shuffle moves the available data from the Mapper to 
the Reducer phase, after being arranged via the keys. Thus the whole pairs with an identical key shall be 
organized and grouped with each other and then transferred [19]. MapReduce's framework carries out those 
functions side by side efficiently, even in many devices [20]. The meta-LSTM could be considered as past 
learning of the semantic structure, and the pivotal LSTM is the subsequent knowledge. Consequently, the 
learned meta-LSTM offers a competent method of implementing transfer learning. 
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Table 3. Extraction and labeling algorithm 
extract_features 

imge = loadImage("*.jpeg") 

loadPixels();      //pixel looping and then perform  

                   looping through all columns and rows 
for (int Column = 0; Column < width; Column ++)      

// Loop over pixel column    

   for (int Row = 0; Row < height; Row++)  
// Loop over pixel row 

   for (int pix = 0; pix < pixels. length; pix++)     

// acquiring pixel value with range 0 to 255 
   color = grayscale 

pixels [pix] = color based on range [0-255]   //update pixels 

  image_size= (image-width, image-height), 
sample-size = batch-size, 

Data = Dataset batches 

data-batch = LOAD 
map-data 

data batch-size = 128 

if data size > specified data sample then 
data-batch = split-batch(reduce) 

k = 0 

for (inputs-sample, labels-sample): 
     features_batch = LSTM.predict(inputs- sample) 

           features [k * sample_size: (k + 1) * sample-size] = 
           features- sample 

labels [k * sample_size: (k + 1) * sample-size] = labels sample 

   k += 1 
        if k * sample -size >= sample-numerate: 

            break 

    return labels, features  
train_labels & features= extract_features (train- directory, train-size) //initiate training directory 

validation_features, validation_labels = extract_features (validation- directory, validation-size) 

test_features, test_labels = extract_features (test- directory, test-size) 
validation_data= (validation-features, validation-labels) 

# Compile model 

model. compile (optimizer= Adam (),                    
 // Usage of Stochastic gradient descent optimizer. 

              loss='binary-crossentropy', 

              metrics=['target_tensors-accuracy']) 
              model.add (Activation('softmax')) 

record = model.fit (train_features, train-labels,    

                    epochs=epochs, 
                    sample-size=batch-size,  

                   validation-data=(validation_labels,validation_features) // Model Train    

end for 
end for 

     end for 

end for 

 

 

4. RESULTS AND ANALYSIS DISCUSSION 

The essential considered factors of quantitative image analysis are processing and analysis. Among 

the challenges that will face any researcher, are software and hardware limitations. During our dataset 

processing and inspection, we encountered these kinds of restrictions. And we were able to overcome them, 

as we are dealing with the Bd, we cannot depend on the regular computer hardware, so we used graphical 

processing units (GPUs); they are a hardware appliance that is most effective for parallel and rapid 

processing. GPUs provide DL with the ability to perform separated computations from the central processor 

(that is serial tasks dedicated) and adequately fulfilling complex computations. In our research, we will use 

the GPU to be eligible to process a big data set of Saturn images that contain more than 400,000 images. To 

initiate the process of training, we indiscriminately sampled 50K images from the adopted dataset volumes. 

Every image is correlated to one or more categories, arranged in 6 observable denominations containing as 

represented in Figure 4. From left to right: Saturn, Rings, Titan, Icy Satellites, Small Satellites (rocks), Sky. 

The label selection method is based on each image content, as it is delineated to an interpretative word just as 

Cassini teams adopted. Figure 4 provided a screenshot of the classification process adopted, which shows the 

image with its target with correct classification accuracy, even with not existing before images. 

The proposed algorithm is capable of processing at high speed. Also, the effectiveness of the 

adopted approach to transfer learning is noticed. Table 4 shows the adopted classes and the number of images 

utilized in the primary processes of training and testing. 
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Figure 4. Cassini mission images sampling presenting the adopted content labeling classes 

 

 

Table 4. Number of used images for the initiated process of training and testing 
Class Saturn Rings Titan Icy Satellites Small Satellites (rocks) Sky 

Training Images 9865 8369 9568 7460 7879 6859 

Testing images 1983 1870 2120 1987 2060 1580 

 

 

The framework of meta-learning could be executed to any technique which is trained via the scheme 

of meta-learning. The purpose is imparting an inclusive approach that can readily be ordered to achieve the 

best or the desired performance with any required task. The analyses of the cell of tensors are straightforward 

embedding via the layer of map-reducer discriminator (D), which is acting as a pooling layer that reduces the 

mapped features. At the same time, the meta-learning LSTM will deconstruct each generated tensor into four 

cell tensors: (input tensor cell), (forget tensor cell), (cell state tensor cell), and (output tensor cell). Our model 

complexity is determined by the revelation of Levin complexity definition [21]: 

 

𝐶𝐿(𝑃) = 𝑚ⅈ𝑛
𝑃

{𝑐𝐿(𝑝): if program p solves P and then ceases during time 𝑡𝑃} (7) 

  

where 

 

𝐶𝐿(𝑃) = 1(𝑝) + 𝑙𝑜𝑔(𝑡(𝑝)) (8) 

 

The problem that needs to be solved is represented by P, while l(p) is the program p length, and t(p) 

represents the time that is consumed by p to solve P. Transferring knowledge acquired from a single task 

with the abundance of labeled data to some other tasks with slight labeled data, the level of progression of 

performing its mission relies on how pertinent is the former task of big-scale image recognition to the current 

task [22]. In the situation of meta-learning LSTMs, with the epilogue of each task, the experience is gained 

and kept in the memory of the LSTM cell. To confirm the proposed model efficiency, this model is set to 

weigh with other commonly known methods of image classification. Our conducted experiment results are 

demonstrated in Table 5. 

It is clear by the evidence that support vector machine (SVM) and random forest models notably 

have less accuracy than the other models. The justification of this lies in the emphatic feature extraction 

performed by our provided model. Also, our model adopts DL within its optimal optimization and parameter 

initialization. Figure 5 shows the diagram of training accuracy versus validation accuracy over the number of 

epochs. Within the loss plot, it is clear that the model holds a comparable efficiency on the training data and 

validation data. The confusion matrix for calculating the overall classifier accuracy is shown in Figure 6, 

which is evaluated using the 50 thousand images dataset. The acquired percentage is 96.7%. 

 

 

Table 5. A comparison among prior relevant work 

Model Name SVM [23] 
Random 

Forest [23] 

Fuzzy 

Clustering 
[24] 

Optimized 

Fuzzy system 
[25] 

Sweep Image 

Transformation 
Technique [26] 

Gray Level 

Co-occurrence 
Matrices [27] 

Our 

Proposed 
Model 

Accuracy 52.6 % 72.3 % 88.78 % 
93.07% and 

95.25% 
93.34% 90% 96.7 % 
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Figure 5. Plot representation of the model accuracy and loss on train, validation 

 

 

 
 

Figure 6. Plot representation of the model confusion matrix 

 

 

5. CONCLUSION AND FUTURE WORK 

The image classification process is a complex also time-effort draining operation, and cause extreme 

physical or mental fatigue; it needs further space and time to complete a single task, also additional effort to 

express and extract features from images or to create a neural network to classify images, especially when the 

size of the dataset is huge, single device capabilities will not be enough to comply with space or time 

exigencies to perform image classification. The parallel analysis of the three modules: the features extractor 
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(G), the meta-learner LSTM (M), and map-reducer discriminator (D): all together demonstrates a robust, 

optimized neural network framework that has shown ameliorated training speed, and here we conclude that 

using potent image data analyzing framework, offers the ability to process big data with more precise 

classification results. The adopted framework acquired a classification precision of 96.7%. The subsequent 

phase for this work can be to add another layer of classification to our model, such as convolutional neural 

networks (CNNs), to acquire a higher classification accuracy. 
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