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 Mutual information (MI) is one of the most popular and widely used 

similarity measures in image registration. In traditional registration 

processes, MI is computed in each optimization step to measure the 

similarity between the reference image and the moving image. The 

presumption is that whenever MI reaches its highest value, this corresponds 

to the best match. This paper shows that this presumption is not always valid 

and this leads to registration error. To overcome this problem, we propose to 

use point similarity measures (PSM) which in contrast to MI allows constant 

intensity dependence estimates called point similarity functions (PSF). We 

compare MI and PSM similarity measures in terms of registration 

misalignment errors. The result of the comparison confirms that the best 

alignment is not at the highest value of MI but near to it and it shows that 

PSM performs better than MI if PSF matches the correct intensity 

dependence between images. This opens a new direction of research towards 

the improvement of image registration. 

Keywords: 

Locality 

Mutual information 

Point similarity measures 

Registration 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Wassim El Hajj Chehade 

Mathematics and Computer Science Department 

Beirut Arab University 

Riad El Solh, 11072809, P.O. Box 11-5020 Beirut, Lebanon 

Email: wassim.chehade@bau.edu.lb 

 

 

1. INTRODUCTION 

Image registration is an important field in image processing. It consists in aligning two images 

according to an identified transformation. In medical imaging, the registration of images from different 

modalities is often classified as multimodal. These images can be enhanced [1, 2] and then used for 

registration. When changes or motions in images are limited to global rotations and translations the registration 

is called rigid and when motions include complex local variations the registration called non-rigid. 

Intensity-based registration is used to find the optimal geometric transformation which maximizes 

the correspondences between images. This correspondence can be measured using intensity-based similarity 

measures. In the literature, a variety of intensity-based similarity measures exist [3, 4]. They can be classified 

into mono-modal and multi-modal measures depending on image intensity relations and characteristics. This 

paper focuses on intensity-based registration using multi-modality similarity measures which are often 

considered as solved problems using Mutual Information but are still subject to difficulties requiring active 

further research.  

Registration of medical images tends to find the optimal geometric transformation by optimizing a 

criterion function over multiple optimization steps. In each step, the transformation is altered and the 

criterion function is recomputed. The process is stopped when the criterion function reaches its optimum 

value. The criterion function comprises similarity measures used to evaluate the quality of the image match. 

https://creativecommons.org/licenses/by-sa/4.0/
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Mutual information (MI) is the most widely used multi-modal similarity measure [5-7]. It is a statistical 

measure that evaluates joint intensity distribution. Although it was proposed 25 years ago, it is still 

considered optimal and selected for the vast majority of multi-modality image registration algorithms [8-10]. 

The weakness of mutual information as a similarity measure is its high computational cost. 

To reduce the registration computation cost parallel processing techniques can be used. These 

techniques try to parallelize the implementation of existing image registration algorithms without optimizing 

their core implementation [11-14]. Recent studies have also demonstrated that deep learning methods, 

notably convolutional neural networks (ConvNets), can be used for addressing challenging image registration 

problems [15, 16]. These studies can be classified into two main research areas: transformation estimation 

and similarity estimation. Although deep learning constitutes a famous and promising technique for image 

registration, it still faces some challenges including the lack of a robust similarity measure for multimodal 

applications, the lack of large datasets, the difficulty in obtaining segmentation and ground truth registrations [17].  

There exist also other weaknesses of mutual information which is not so evident and may be 

common to many multimodality similarity measures. It resides in the presumption that a higher value of 

similarity corresponds to lower alignment error. This presumption is not correct and reflects in reducing the 

quality of the image match [18]. In reality, when a geometric transformation T is searched based on 

optimizing a similarity measure, the alignment error between the registered image and the reference image 

may not be the lowest at the optimized similarity value but near to it. Moreover, this alignment error could 

differ based on the similarity measure used. As an alternative, deep metrics were proposed [19-21], however 

the problem of precision remains the same. Therefore, there is an important need for searching alternative 

multi-modality similarity measures that counter this weakness.  

To tackle these problems, an alternative approach called point similarity measures (PSM) was 

proposed in 2003 [22] but has never reached wide attention of the image registration community. It uses 

constant image intensity dependence estimates called point similarity function (PSF) during the registration 

optimization steps which contributes in reducing similarity computation time. Moreover, PSM can enhance 

greatly the quality of the image match if PSF is computed at the correct image alignment. In this paper, we 

will show the potential of using PSM for enhancing the quality of image match while leaving its potential in 

reducing computation time for another paper. We will illustrate the advantages of this method for conventional 

image registration approaches and stimulate its use in modern artificial intelligence based solutions.  

In this paper, we will first demonstrate that the best image match is not always obtained at the 

highest value of MI or PSM. We will compare alignment errors of images from different modalities using MI 

similarity measure and PSM derived from MI. We will prove then that PSM with an optimal choice of PSF 

can reduce the alignment error even more than using Mutual information. The remainder of this paper is 

organized as: section 2 presents point similarity measures and how it can be applied to compute image 

similarity. Section 3 shows a comparative study between MI and PSM in registering medical images. Section 

4 and 5 present discussions and conclusions. 
 

  

2. POINT SIMILARITY MEASURES 

Measuring similarity using point similarity measures consists of two steps. The first step computes a 

point similarity function (PSF) 𝑓(𝑖) which is an estimate of the intensity dependence between two images A 

and B. The second step uses the point similarity function 𝑓(𝑖) to provide actual measurement of similarity 

between images A and B. 
 

2.1.  Computing PSF 
PSF can be derived from almost any intensity-based similarity measure.  Mutual information (MI) is 

one of these intensity-based similarity measures. In this paper, we will derive PSF from Mutual Information 

similarity measure. MI can be computed as (1). 
 

𝑀𝐼 = ∑ 𝑝(𝑖)𝑙𝑜𝑔 (
𝑝(𝑖)

𝑝(𝑖𝐴)𝑝(𝑖𝐵)
)𝑖  (1) 

 

where i=[iA,iB] is an intensity pair corresponding to image intensities in images A and B at position of voxel 

v, p(iA) and p(iB) are marginal intensity probabilities and p(i)=p(iA, iB) is the joint intensity probability, 

estimated from the images. To illustrate how PSF can be computed, imagine two simple images A and B of 

size (6*6 where each cell represents one pixel) representing the same object as shown in Figure 1. Images A 

and B consists of only two intensity color values. In Image A, intensity of light pixels is represented by i1A 

whereas dark pixels are represented by i2A. Similarly, intensity of light pixels in image B is represented i1B 

and i2B for dark pixels. The joint histogram of these two images is depicted in Table 1(a). As we can see, this 

joint histogram consists only of two non-zero values at intensity pairs [i1A, i1B] and [i2A, i2B] because intensity 
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regions in images A and B perfectly overlap. On the other hand, when images do not overlap exactly as 

shown in Figure 2, additional intensity pairs appear ([i1A, i2B] and/or [i2A, i1B]). The values at intensity pairs 

depend on the size of overlapping regions. The joint histogram corresponding to these two images is shown 

in Table 2(a). 

The joint distribution can now be estimated by dividing the values in the joint histogram by the 

number of voxels which equals in our case to 6*6=36 voxels. Tables 1(b) and 2(b) show respectively the 

joint distributions corresponding to the perfectly and not perfectly aligned images. Having now the joint 

distribution, MI could be computed using (1). MI has a high computational cost since it requires to be 

computed in each optimization. The algorithm continues looping until the optimum value of the criterion 

function is found. Computing MI in each optimization step induces computing the joint histogram, the joint 

distribution then calling the log function. Consequently, this contributes to increase MI computational cost. 

 

 

 
(A) 

 
(B) 

 

Figure 1. Images A and B perfectly aligned 

 
(A) 

 
(B) 

 

Figure 2. Images A and B misaligned 

 

 

Table 1. Perfectly aligned images (a) joint histogram, and (b) joint distribution  
 i1A i2A 

i2B 0 6 
i1B 30 0 

(a) 

 i1A i2A 

i2B 0 0.166 
i1B 0.833 0 

(b) 

 

 

Table 2. Misaligned images (a) joint histogram, and (b) joint distribution 
 i1A i2A 

i2B 2 4 
i1B 28 2 

(a) 

 i1A i2A 

i2B 0.05 0.11 
i1B 0.77 0.05 

(b) 

 

 

To reduce this cost, PSM relies instead on using PSF computed once at the beginning of the 

registration process. PSF represents an estimate of the intensity dependence between reference and moving 

images measured for each intensity pair i = [iA, iB] using (2). 

 

𝑓𝑀𝐼(𝑖) =  𝑙𝑜𝑔 (
𝑝(𝑖)

𝑝(𝑖𝐴)𝑝(𝑖𝐵)
) (2) 

 
when these similarities are grouped in one table, they form what we call point similarity function (PSF).  

Table 3 shows respectively PSF for the images perfectly and not perfectly aligned. To show how PSF is 

computed practically, let us consider the case where images are perfectly aligned. Here, a problem arises 

when applying (2) to compute PSF for intensity pairs (i1A, i2B) and (i2A, i1B) that have 0 values in the joint 

histogram Table 1(a). To avoid having such computation errors (i.e. log(0)) an ε could be added to each cell 

to have an updated joint histogram. Here we added +1 for each value in the joint histogram Table 4(a). 

Using now the new joint histogram and (2), similarity for intensity pair [i1A, i1B] can be computed, 

for example, as (3). 

 

𝑓𝑀𝐼 =  𝑙𝑜𝑔 (
𝑝(𝑖1𝐴,𝑖1𝐵)

𝑝(𝑖1𝐴)𝑝(𝑖1𝐵)
) =  log (

0.775
30

36
×

30

36

) = 0.109 (3) 

 

The computation of other intensity pairs follows the same principle. 

The global similarity measure MI based on PSF Table 3 can be computed for the perfectly and not 

perfectly aligned images using (4). 
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𝑀𝐼 =
1

𝑁
∑ 𝑁𝑖 × 𝑓𝑀𝐼(i)𝑖  (4) 

 

where N is the total number of voxels in the image and i represents intensity pairs.  

Using (4), the similarity between perfectly aligned images is then: MI1=[(31×0.109)+(7×1.84)+(1×-

1.714)+(1×-1.714)]/40=0.32 and for not aligned images MI2=[(28×0.113)+(4×1.386)+(2×-1.02)+(2×-

1.02)]/36=0.12856. We notice that MI1 is greater than MI2, which is expected. 
 

2.2.  Registration based on PSM 

The advantage of using point similarity measures in image registration is that PSF can be computed 

once and used for all further similarity measurements. For instance, let's suppose initially that images A and 

B are not perfectly aligned as shown in Figure 2. To start the registration process using point similarity 

measures, we need first to compute the joint histogram Table 2(a) then PSF Table 3(b). The initial similarity 

between images using PSM is the same as it was computed previously and equals to 0.12856. Suppose now 

that the registration process has led to a transformation T that transformed image B in Figure 2 to image B in 

Figure 1. To compute the similarity using point similarity measure, we just need to compute the new joint 

histogram between the image A in Figure 2 and image B in Figure 1 and use the already computed PSF Table 

4(b). The joint histogram was calculated and presented in Table 1(a). Now, using (4), the global similarity 

between image A and image T(B) can then be computed as: MI=[N(i1A, i1B)×fMI(i1A, i1B)+N(i1A, i2B)×fMI(i1A, 

i2B) + N(i2A, i1B)×fMI(i2A, i1B) + N(i2A, i2B)×fMI(i2A, i2B)]/36=(30×0.113 + 0×-1.02+0×-1.02 + 6×1.386)/36 = 

0.3251. 

We can see clearly that the new value of point similarity measure is higher than the initial value 

measured before starting registration. This reflects a real situation since the obtained transformed image is 

perfectly aligned with the reference image which means a higher similarity value is expected. On the other 

hand, if the transformation led to a more image misalignment as shown in Figure 3. This will be reflected by 

the value of the global similarity MI. In Figure 3, there is two-thirds misalignment with the reference image 

A and the joint histogram corresponding to this situation is shown in Table 5. The global similarity MI 

between image A and image T(B) can then be computed as: MI=[N(i1A, i1B)×fMI(i1A, i1B)+N(i1A, i2B)×fMI(i1A, 

i2B)+N(i2A, i1B)×fMI(i2A, i1B)+N(i2A, i2B)×fMI(i2A, i2B)]/36=(26×0.113+4×-1.02+4×-1.02+2×1.386)/36=-0.068. 

The obtained MI value is lower than the initial similarity value (0.12856) computed at the beginning of the 

registration process and this confirms the misalignment. 

 

 

 
 

Figure 3. Image misaligned due to bad registration 
 

 

Table 3. Computing PSF (a) for correctly, (b) for not correctly aligned images 
 i1A i2A 

i2B -1.714 1.84 

i1B 0.109 -1.714 

(a) 

 i1A i2A 

i2B -1.02 1.386 

i1B 0.113 -1.02 

(b) 
 

 

Table 4. Computing PSF (a) Joint histogram and (b) joint distribution for perfectly aligned images updated to avoid 

computation errors 
 i1A i2A 

i2B 1 7 

i1B 31 1 

(a) 

 i1A i2A 

i2B 0.025 0.175 

i1B 0.775 0.025 

(b) 
 

 

Table 5. Joint histogram for a one-third aligned images 
 i1A i2A 

i2B 4 2 

i1B 26 4 
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3. TESTING ON MEDICAL IMAGES 

To evaluate point similarity measures, a comparative study was performed between the widely used 

similarity measure mutual information (MI) and point similarity measure (PSM). The CT and MRI training 

dataset in Vanderbilt database from the retrospective image registration evaluation (RIRE) Project were used 

[23]. This training dataset has five images such as CT (512×512×29), MR-T1 (256×256×25), MR-T2 

(256×256×25), MR-PD (256×256×25) and PET (128×128×15).  

The advantage of using RIRE training dataset in these experiments is that the correct transformation T 

that allows perfect image alignment is known. Therefore, when aligning a moving image B to a reference 

image A by applying the given transformation and then measuring the similarity between T(B) and A, we 

should expect to have the highest value of similarity based on MI or PSM. Moreover, if we alter a translation 

parameter (d) of the rigid transformation T by a small value +/-d in positive or negative directions, and we 

recompute similarity we should expect to have lower similarity values than those obtained using T. In this 

experiment, we are going to test this hypothesis to check its correctness and if proved it shows optimality of 

the similarity measures. 

In the first experiment, we used MI as a similarity measure to determine the translation distance d 

from T where MI reaches its highest value. We have computed this translation on 12 image modality pairs 

each in all three spatial-directions. For each image pair, we started by altering the correct transformation T by 

translating the image in one direction of the three-dimensional space by a small step value 0.01 mm and 

within a predefined range (i.e. -5 to 5 mm). Then for each translation d, the similarity is computed using MI. 

The translation that gives the highest similarity value is then recorded. Figure 4 shows a graph of the MI-

based similarity values computed using translations ranging around the correct image alignment for one 

image pair (T1-CT). In this Figure, we can see how the value of MI increases from a minimum value at T-

5mm to reach a maximum value then it decreases again. An important thing to notice on the graph is that the 

maximum similarity value is not obtained at the correct image alignment (T) but near to it (at T+0.41 mm). 

We performed then the same experiment on all image pairs. Table 6, column MI, shows the translations (d) 

that gave the highest similarity values for all image pairs. All these translations range around the correct 

image alignment except in one case (T2-CT rectified). This means that the presumption stating that always 

the best match is where MI has its highest value is not accurate and leads to some registration error. 

Therefore, there is a need to find reasons for this error and methods to reduce it. 

  

 

 
 

Figure 4. MI similarity values computed within the range T+/-d. The highest similarity value not located at 

the correct alignment T 

 

 

In the second experiment, we used PSM based on MI as a similarity measure. As we mentioned in 

section 2, PSM starts first by computing PSF at the beginning of the registration process and then used in all 

the upcoming translations. In this experiment, we tested PSM with PSFs computed at nine different 

translations (i.e. 0, +/-1, +/-2 mm, +/-5 mm and +/-10 mm). For each PSF, we computed the similarity values 

with respect to translations and found the translation where similarity has its highest value as we did in the 

first experiment. We have tested PSM on the same 12 image modality pairs each in all three spatial-

directions. The idea is to compare the translations obtained using PSM with those obtained using MI. Table 6 

shows also the translation where the similarity reaches its maximum using PSM computed based on nine 
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different PSFs. The bold values in the table represent PSM performing better than MI and the underlined 

values represent the smallest translations.  

It is clear first that the highest value of similarity using PSM is not always obtained at the correct 

match (i.e., d=0). Another interesting observation is that PSM based on MI, when PSF is obtained from the 

correct image alignment, is always at least the same or better than MI. Moreover, the best results (underlined 

values) are obtained when PSF is computed somewhere in the vicinity of the correct image alignment. 

 

 

4. RESULTS AND DISCUSSION 

The results of the experiments prove clearly that the minimum alignment error is not always where 

the similarity value is maximal. The results show also that PSM performs better than standard MI in some 

cases whenever the PSF is computed at the correct image alignment. Moreover, we can analyze the 

performance of similarity measure with respect to misalignment at which PSF is computed, and we can see 

that the best result is always when PSF is computed near to the perfect alignment (see underlined values in 

Table 6). For instance, the registration case T1-CT in direction x has the minimum alignment error obtained 

using a PSF computed at -1 mm. Similarly, the registration case T2-CT in direction 1 has the minimum 

alignment error obtained using a PSF computed at perfect alignment 0 mm. This suggests that we should 

always compute PSF close to the correct image alignment. But unfortunately, to register the images, the 

correct image alignment is not known. However, if we compute PSF at highly misaligned images (see +/-10 

mm in Table 6), we still get the maximum close to the correct image alignment. Therefore, if we registered 

the image using PSF at misaligned images to get an approximately registered image, then we recompute PSF 

based on the newly registered image and restart the registration, we can expect registration improvement 

compared to using standard MI. Moreover, machine-learning techniques could be used to predict the best 

PSF for high quality image match similarly to the way they have been used for detecting anomalies and 

diseases from medical images [24-26]. 

 

 

Table 6. Displacement of the maxima from the correct image alignment for PSM 
Ref-mov image Direction MI PSM [PSF-D] 

-10 -5 -2 -1 0 1 2 5 10 

T1-CT X 0.41 0.56 0.52 0.43 0.35 0.36 0.49 0.51 0.55 0.58 

T1-CT Y -0.52 -0.92 -0.95 -0.96 -0.73 -0.34 -0.02 -0.04 -0.27 -0.49 

T1-CT Z -0.12 -1.57 -1.32 -0.68 -0.43 -0.12 0.20 0.54 1.66 1.33 

T2-CT x 0.55 0.61 0.58 0.55 0.49 0.49 0.62 0.64 0.63 0.66 

T2-CT Y 0.11 -0.32 -0.30 -0.23 -0.24 0.06 0.39 0.43 0.41 0.04 
T2-CT Z  0.70 -1.68 -0.23 0.16 0.36 0.52 0.70 0.86 1.14 1.14 

PD-CT X 0.35 0.43 0.38 0.32 0.26 0.30 0.42 0.42 0.44 0.47 

PD-CT Y -0.26 -0.53 -0.68 -0.68 -0.53 -0.19 0.08 0.13 0.42 0.34 
PD-CT Z 0.87 -1.14 -0.76 -0.20 0.20 0.56 0.85 1.11 1.69 1.88 

T1-rectified-CT X -0.16 -0.03 -0.11 -0.18 -0.23 -0.14 -0.06 -0.10 -0.06 0.00 

T1-rectified-CT Y -0.63 -0.83 -0.82 -0.79 -0.70 -0.50 -0.42 -0.47 -0.47 -0.53 

T1-rectified-CT Z 0.96 -0.72 -0.53 -0.12 0.21 0.57 0.93 1.25 1.84 1.99 

T2-rectified-CT X 0.00 0.05 0.03 -0.06 -0.10 0.00 0.09 0.07 0.07 0.12 

T2-rectified-CT Y -0.18 -0.88 -0.67 -0.42 -0.35 -0.14 -0.03 -0.10 -0.21 -0.44 

T2-rectified-CT Z 1.15 -1.68 -0.53 0.16 0.55 0.88 1.11 1.27 1.52 1.53 

PD-rectified-CT X 0.07 0.18 0.14 0.06 0.01 0.07 0.15 0.13 0.16 0.19 

PD-rectified-CT Y -0.20 0.18 -0.44 -0.37 -0.35 -0.16 0.01 -0.01 -0.05 -0.26 
PD-rectified-CT Z 0.33 -0.57 -0.58 -0.26 -0.11 0.18 0.50 0.81 1.63 1.90 

T1-PET X 0.70 0.50 -4.83 -1.89 -0.91 0.03 0.96 1.91 4.77 0.70 

T1-PET Y 1.95 0.38 -4.87 -1.89 -0.91 0.07 1.00 1.99 4.88 1.82 

T1-PET Z -3.17 -9.18 -4.05 -2.31 -1.48 -0.33 0.71 1.56 4.43 9.06 

T2-PET X 0.95 0.92 0.84 -1.82 -0.87 0.08 0.98 1.93 4.76 0.85 

T2-PET Y 0.87 0.86 -4.86 -1.88 -0.91 0.06 1.00 1.97 4.86 1.14 
T2-PET Z -2.13 -2.70 -4.05 -1.99 -1.39 -0.72 0.28 1.68 3.92 -1.48 

PD-PET X 0.61 0.09 -4.82 -1.88 -0.91 0.02 0.96 1.90 4.77 0.16 

PD-PET Y 1.59 1.49 -4.85 -1.87 -0.90 0.04 1.01 2.01 4.89 2.35 
PD-PET Z -1.75 -1.98 -3.56 -1.86 -1.33 -0.72 0.06 0.69 4.98 -0.98 

T1-rectified-PET X -0.12 -0.13 -4.84 -1.89 -0.94 -0.02 0.94 1.87 4.79 0.09 

T1-rectified-PET Y 0.49 0.74 -4.85 -1.91 -0.92 0.07 1.00 1.98 4.88 2.27 
T1-rectified-PET Z -2.31 -9.52 -3.76 -2.09 -1.44 -0.69 0.14 1.58 4.69 7.96 

T2-rectified-PET X 0.19 0.03 0.12 -1.85 -0.90 0.01 0.93 1.87 0.28 0.27 

T2-rectified-PET Y 0.69 1.23 -4.84 -1.88 -0.91 0.06 1.01 1.96 4.82 1.72 
T2-rectified-PET Z -2.31 -8.42 -4.33 -2.06 -1.19 -0.36 0.48 1.25 3.61 -1.86 

PED-rectified-PET X 0.79 0.32 -4.84 -1.90 -0.95 0.02 0.97 1.89 4.82 0.57 

PED-rectified-PET Y 1.85 1.29 -4.86 -1.90 -0.91 0.05 1.03 1.98 4.88 1.90 
PED-rectified-PET Z -1.12 -8.58 -3.92 -1.63 -0.96 -0.32 0.31 1.03 4.06 -0.13 
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5. CONCLUSION 

In this paper, we demonstrated that the traditional registration process assuming that whenever a 

similarity measure reaches its highest value, this corresponds to the best match is not always valid. This was 

done by analyzing the performance of two similarity measures, the popular and widely used Mutual 

Information and our proposed point similarity measure. None of MI and PSM has their highest values at the 

best match. However, PSM has shown better performance when PSF matches the correct intensity 

dependence between images. So, the first contribution of this paper is to show that there is still a potential for 

further research in this field as MI is not always the best choice for similarity measure in image registration. 

The second contribution is to present the potential of point similarity measures in image registration and how 

registration errors could be reduced using correct PSFs.  

Correct PSF is the key for high-quality image registration. So, future work will concentrate on 

proposing techniques to compute the best PSF. Machine learning techniques will be used to learn from prior 

registration results to predict the best PSF for high-quality image match. 
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